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ABSTRACT

Context. Membership analyses of the DANCe and Tycho + DANCe data sets provide the largest and least contaminated sample of
Pleiades candidate members to date.
Aims. We aim at reassessing the different proposals for the number surface density of the Pleiades in the light of the new and most
complete list of candidate members, and inferring the parameters of the most adequate model.
Methods. We compute the Bayesian evidence and Bayes Factors for variations of the classical radial models. These include elliptical
symmetry, and luminosity segregation. As a by-product of the model comparison, we obtain posterior distributions for each set of
model parameters.
Results. We find that the model comparison results depend on the spatial extent of the region used for the analysis. For a circle of
11.5 parsecs around the cluster centre (the most homogeneous and complete region), we find no compelling reason to abandon King’s
model, although the Generalised King model introduced here has slightly better fitting properties. Furthermore, we find strong evidence
against radially symmetric models when compared to the elliptic extensions. Finally, we find that including mass segregation in the
form of luminosity segregation in the J band is strongly supported in all our models.
Conclusions. We have put the question of the projected spatial distribution of the Pleiades cluster on a solid probabilistic framework,
and inferred its properties using the most exhaustive and least contaminated list of Pleiades candidate members available to date. Our
results suggest however that this sample may still lack about 20% of the expected number of cluster members. Therefore, this study
should be revised when the completeness and homogeneity of the data can be extended beyond the 11.5 parsecs limit. Such a study will
allow for more precise determination of the Pleiades spatial distribution, its tidal radius, ellipticity, number of objects and total mass.

Key words. astrometry – open clusters and associations: individual: M 45 – infrared: stars – methods: data analysis –
methods: statistical

1. Introduction

The projected spatial distribution (PSD), also known as number
surface density, of a stellar cluster is the two dimensional (2D)
projection, in the plane of the sky, of its three dimensional (3D)
space distribution. Because celestial coordinates are far more
easily measured than parallaxes (at least before Gaia), only a
small fraction of the objects with stellar positions have distance
estimates. Furthermore, the relative uncertainties in the celestial
coordinates yield far more precise measurements (by a factor of
104) of distances perpendicular to the line of sight than those
achieved by parallaxes along this line so far (except perhaps
for very close objects). This explains why most of the previ-
ous works devoted to studying the spatial distribution of stars
in clusters have been done using the PSD.

In the case of the Pleiades, cross-matching the HIPPARCOS

catalogue (Perryman et al. 1997) with the 2109 candidate mem-
bers of Bouy et al. (2015), shows that only 70 of them have
parallax measurements. This figure has roughly doubled with
the first Gaia data release DR1 (Gaia Collaboration 2016), and
is expected to improve based on the longer time baselines and
hence more accurate measurements of subsequent Gaia releases.
In preparation for the analysis of these upcoming data sets and to
narrow down the set of models that will be tested in the context
of 3D studies, we have initiated a re-examination of the cur-
rent analytical alternatives to describe the PSD of the Pleiades
cluster.

The Pleiades PSD has been thoroughly studied in the past.
Pinfield et al. (1998) fitted King’s (King 1962, hereafter King’s)
empirical profiles to the positions of 1194 candidate members
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from the literature, which were contained in a 3◦ radius area. For
their fitted King profiles, they used different mass ranges, with
bins centred at 5.2, 1.65, 0.83 and 0.3 M⊙. Using tidal forces1,
they iteratively constrained the tidal radius to a value of 13.1 pc
(∼5.6◦). They infer a core radii in the 0.9–2.91 pc range in the
different mass bins, and a total mass of 735 M⊙. They interpreted
the gradual increase in the core radii for decreasing mass ranges
as evidence of mass segregation.

The same year, Raboud & Mermilliod (1998) also fitted a
King’s profile to a list of 270 candidate members with masses
in the range 0.74–7.04 M⊙, which were contained within a 5◦

radius area. They found a core radius of 1.5 pc and a tidal radius
of 17.5 pc (7.5◦). Using different approaches, they derived a total
mass within the range of 500–8000 M⊙. They also measured an
ellipticity of ǫ = 0.17. However, they did not make any explicit
mention of the position angle of the axis of the ellipse, and
simply state that it is roughly parallel to the galactic equator.

Later, Adams et al. (2001) also fitted a King’s profile to
objects with membership probabilities p > 0.3 within a radius
of 10◦. They found a core radius of 2.35–3.0 pc and a tidal radius
of 13.6–16 pc (5.8–6.8◦). They estimate a total mass of ∼800 M⊙,
and their measured ellipticities are in the range 0.1–0.35.

Converse & Stahler (2008) fitted a King’s profile to a sam-
ple of 1245 candidate members from the Stauffer et al. (2007)
compilation. These objects have masses greater than 0.08 M⊙
and are contained within a 5◦ radius. They obtained a tidal
radius of 18 pc (7.7◦) and a core radius of 1.3 pc. They found
unambiguous evidence of mass segregation using a method they
devised inspired by econometrics. Later, Converse & Stahler
(2010) refined their previous study (Converse & Stahler 2008)
and obtained a core radius of 2.0 ± 0.1 pc, a tidal radius of
19.5 ± 1.0 pc (∼8.3◦), a total number of systems of 1256 ± 35,
and a total mass of 870 ± 35 M⊙.

The previous summary of results shows at least two inter-
esting points. In the first place, the King’s profile has been
the preferred choice for the Pleiades cluster, although it was
created to fit the PSD of globular clusters. Since globular
clusters are farther away than open clusters and in a low-density
environment, the end of their PSD is usually well within the
survey area, which is not the case for the Pleiades. The second
point concerns the increasing trend of the tidal radius with the
size of the survey and the publication date (Table 1); as the
surveys increase in area, the derived tidal radii increase as well.
This may indicate that truncation has not been accounted for
(see Appendix A and Fig. A.3 particularly). The exception to
this trend is the work of Adams et al. (2001), in which the tidal
radius is well within the survey radius. Since these authors used
low-membership-probability (≥0.3) objects, their results may be
affected by a significant contamination rate, which these authors
acknowledge for their >5◦ sample.

The two points mentioned above are tightly related. With
the exception of the work of Adams et al. (2001), the coverages
of the rest of the surveys have not reached their estimated tidal
radius. This indicates that the previously used samples of mem-
bers were spatially truncated. They only contain objects from the
inner parts of the cluster. Thus, estimates of the tidal radius may
have been biased, and were, in any case, highly correlated with
the contamination rate.

With Gaia data coming up soon, we will have very accu-
rate measurements of the spatial distribution of all the brightest

1 We highlight that their Eqs. (10) and (12) seem to be slightly different
from those reported Binney & Tremaine (2008).

Table 1. Survey, and derived core and tidal radius for recent studies in
the literature.

Core Tidal Survey
radius radius radius
(pc) (pc/◦) (◦)

Pinfield et al. (1998) 0.9–2.91 13.1/5.6 3
Raboud & Mermilliod (1998) 1.5 17.5/7.5 5
Adams et al. (2001) 2.35–3.0 16/6.8 10
Converse & Stahler (2008) 1.3 18/7.7 5
Converse & Stahler (2010) 2.0 19.5/8.3 5

(G ≤ 20 mag) members of nearby clusters. Therefore, it is impor-
tant to define sufficiently complex models to describe these
measurements. The early and simple formulations of the PSD
(e.g. King) were perfect when a dozen or a few tens of dozens
of members were known. But the accuracy and completeness of
future surveys will allow us to look in finer detail.

The study of the spatial distribution also has implications
that go beyond its intrinsic interest. One of them is the existence
of mass segregation as a result of star formation and dynami-
cal interactions in the cluster. This effect has been predicted by
numerical simulations of the internal cluster dynamics; see, for
example, Terlevich (1987), Kroupa et al. (2001), Moraux et al.
(2004) and Converse & Stahler (2010). Confirming and quan-
tifying its dependence on various parameters (e.g. initial mass
function, core mass function, total mass of the cluster, presence
or absence or massive stars, T- or OB-association) shall provide
important input to the models and simulations of star formation
and dynamical evolution.

In the specific case of the Pleiades, mass segregation has
been reported in the works of Raboud & Mermilliod (1998),
Pinfield et al. (1998), Kroupa et al. (2001), Adams et al. (2001),
Moraux et al. (2004) and Converse & Stahler (2008, 2010). Yet,
Loktin (2006), using radial and tangential velocity dispersions,
found no hint of mass segregation in a sample of 340 stars con-
tained in the central 2.3◦. However, his results may arise from
the low number and extent of his sample. All the mentioned
works performed their analyses by binning the stellar samples
in mass or distance ranges. It is well known however that fitting
a function to a binned data set can introduce biases (Bevington
& Robinson 2003; Nousek & Shue 1989), and that modifying the
bin width could improve the fitting to a preferred model (Towers
2012). Thus, the use of bins in previous works and the contra-
dictory mass-segregation results found by Loktin (2006) may
suggest that the hypothesis of mass segregation in the Pleiades
requires a more solid reexamination.

In this work we aim at addressing this hypothesis on the
basis of the largest and least contaminated sample of Pleiades
candidate members found to date: the combined list of candi-
date members from Bouy et al. (2015) and Olivares et al. (2017).
We avoid the binning biases by using Bayesian inference meth-
ods applied to continuous and thus non-binned distributions. In
addition, these Bayesian methods allow a quantitative compari-
son of the competing models, including those with and without
mass segregation. This will allow us to establish on firm grounds
the analytical expression of the Pleiades PSD, and its potential
dependence on stellar mass.

In Sect. 2 we briefly describe the data set that forms the
basis of our analysis. In Sect. 3 we present the set of radially
symmetric analytical models we used, as well as their exten-
sion to biaxially symmetric (elliptical) profiles. We also include
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a luminosity dependence of the core radius (as a proxy to the
investigation of mass segregation). In Sect. 4 we describe the
foundations of model selection in the Bayesian framework. We
then discuss and compare the results that we obtain for the pos-
terior distributions of the various models in Sect. 5, where we
also briefly describe our estimates on the total mass and number
of members in the cluster. Finally, in Sect. 6 we summarise the
conclusions drawn from the study.

2. The data sample

The data set used to compare the models in Sect. 3 corre-
sponds to the high-membership-probability candidate members
of Olivares et al. (2017), in the middle and faint luminosity end,
with the addition of the Tycho-2 Pleiades high-luminosity can-
didate members from Bouy et al. (2015). This joint data set
comprises the equatorial coordinates RA and Dec (in the fol-
lowing α and δ), proper motions, photometry, and membership
probabilities of 2060 sources. In this analysis we work only
with the positions, membership probabilities, and J photomet-
ric band. The latter is the reddest most available band for this list
of members, and is used as a proxy for the mass and to explore
evidence of mass segregation.

2.1. Completeness of the sample

To properly establish the probabilistic framework, it is necessary
to take into account the observational constraints of the data. The
Pleiades DANCe catalogue is constrained by its sky coverage
and the different degrees of completeness (see Bouy et al. 2013,
2015, for details). Although the data set extends up to a radius
of 6.5◦, Bouy et al. (2015) conservatively assume that the census
is homogeneous in coverage and limiting magnitude only in the
central 3◦ radius area.

Here, we estimate the completeness of the whole of the joint
Tycho + DANCe survey in terms of the J band luminosity and
spatial coverage, which also applies to our list of candidate mem-
bers. In Fig. 1 we show the distributions of the number of sources
in the combined DANCe + Tycho catalogue as a function of the
radial position for different limiting magnitudes and bins in the
J band. The radial position is computed assuming a distance of
134.4 pc to the Pleiades cluster (Galli et al. 2017) and a centre
at α, δ = [56.65, 24.13]. As can be seen from the top panel of
this figure, the DANCe + Tycho catalogue is spatially complete
until a radial distance of 11.5 pc (∼5◦). The latter corresponds
roughly to the sky coverage of the UKIDSS survey (Lawrence
et al. 2007). Above this limit, the density of sources drops with
two different slopes. The first one is created by the sawtooth
pattern at the edge of the DANCe survey, while the last one cor-
responds to the more extended selection box used for the Tycho
survey. To evaluate the photometric completeness, we assume
that the distribution of sources in the sky region of the Pleiades
is uniform (this simplistic assumption is sufficient for our current
purpose). We compare the radial density of sources of differ-
ent J magnitude bins with that of a synthetic sample uniformly
distributed in space and truncated at the completeness radius of
11.5 pc. The radial distribution of this synthetic sample and those
of the three magnitude bins are shown in the bottom panel of
Fig. 1. As can be seen from the latter, the joint Tycho + DANCe
survey is expected to be complete until magnitude ∼19 in the
J band. Above this limit, the distribution of sources departs
significantly from the expected one. Hence, we restrict our list
of candidate members to those with: (i) J band observed and

Fig. 1. Density of sources in the combined DANCe + Tycho catalogue
as a function of the radial distance to the cluster centre and the J mag-
nitude. Top panel: all sources contained within the limiting magnitudes.
Bottom panel: sources within the 11.5 pc radius of spatial completeness
(vertical grey line), and binned in magnitudes. The black line represents
the density of two million sources uniformly distributed in the plane of
the sky.

less than 19 mag, and (ii) radial distances less than 11.5 pc. This
results in 1954 candidate members, which represents more than
50% more candidate members than those of Converse & Stahler
(2010), who did the latest analysis of the Pleiades PSD. Account-
ing for completeness and the previous truncation in the data set
is essential to avoid possible bias in the inferred parameters (see
Appendix A). Nevertheless, we remind the reader that the inho-
mogeneities (e.g. spatial resolutions, gaps in luminosity) of the
DANCe + Tycho data set are so complex (and some of them only
partially understood) that they can indeed bias the sample of
candidate members in unknown ways. For example, the gap in
luminosity coverage between the faint end of the Tycho-2 cat-
alogue and the bright end of the DANCe survey (see Fig. 8 of
Bouy et al. 2015) may result in undetected sources, therefore
unmeasured proper motions and, finally, an incomplete list of
candidate members.

Another important constraint is the number of cluster stars
observed within the survey area coverage. Truncating the prob-
ability distributions properly accounts for the cluster members
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left outside the truncation radius. However, due to the several
artefacts surrounding the images of bright sources (e.g. halos,
spikes, saturation), potential cluster members could also remain
undetected. Furthermore, these artefacts can severely bias any
evidence of mass segregation, as the most massive and brightest
stars are located at the centre of the cluster. However, the statis-
tical treatment of the impact of these artefacts lays beyond the
scope of this work.

The information provided by the observational constraints,
which we call I, consists of the maximum radius, Rmax = 11.5 pc,
and the number of stars observed within this radius, N = 1954.
These constraints will be incorporated into the model through
the likelihood.

2.2. Contamination

Olivares et al. (2017) estimate a contamination rate of 4.3± 0.2%
in their sample of candidate members at the probability threshold
of p84%

2 > 0.84. This would amount to 84 of their 1963 candidate
members. Also, Sarro et al. (2014) estimate that the contamina-
tion rate of their methodology is 11.0 ± 2.0% for a probability
threshold of p = 0.5, similar to that used by Bouy et al. (2015)
to classify the candidate members of their Tycho + DANCe data
set. Thus, in our combined Tycho + DANCe list of candidate
members, we acknowledge a mean contamination rate of ∼8%
(approx. 156 objects). We expect these contaminating sources
to be uniformly distributed in right ascension and declination
because the position on the sky was explicitly removed from
the calculation of membership probabilities. Nevertheless, there
may be a mild positive gradient of the density towards the Galac-
tic centre. In addition, these contaminants may not be uniformly
distributed in J band, with possible concentrations around 14 and
17 mag, where the entanglement of field and cluster populations
is higher. The quantification of this possible dependency of con-
taminants with photometric magnitude and its consequences lay
beyond the objective of this work and will be analysed in future
studies.

3. Spatial density models

3.1. Spherical models

In this section we consider spherically symmetric models of the
spatial distribution of Pleiades members. In the following para-
graphs we give a brief description of each model, its analytical
parameterisation, and the corresponding references.

Our starting point is the classical King’s profile. Although it
was introduced as an empirical law to describe the number sur-
face density of globular clusters, it has also been used to describe
open clusters (see Alonso-Santiago et al. 2017; Panwar et al.
2017, for recent applications), globular clusters (Myeong et al.
2017) and even to study galaxies (Robotham et al. 2017), halo
substructure (Sohn et al. 2007) and the dark matter distribution
(Jiang & van den Bosch 2016). The analytical description of the
surface number density of stars n is given by

n(R) = k ·















1
√

1 + (R/rc)2
−

1
√

1 + (rt/rc)2















2

, (1)

where rc, the core radius, is a scale factor, rt is the tidal radius,
and k is a constant related (but not equal) to the central surface

2 In Olivares et al. (2017), individual membership probabilities are
themselves probability distributions. Thus, p84% stands for the 84th
percentile of those distributions.

density. In the following we use R instead of r (as is often com-
monly done in the literature) to refer to the distance from the
system centre projected on the celestial sphere.

In addition to the classical King’s profile we have tested two
extensions of it. We define the Generalised King’s profile (here-
after GKing) as the classical King’s profile without fixing the
exponents of the analytical expression. Instead of Eq. (1), we
have

n(R) = k ·

[

(

1 + (R/rc)
1
α

)−α
−

(

1 + (rt/rc)
1
α

)−α
]β

, (2)

where the classical King’s profile is recovered for α = 0.5 and
β = 2. To the best of our knowledge, only in the work of
Robotham et al. (2017) has a similarly modified King’s profile
been used. However, the profile used by those authors is more
restrictive than the one presented here, requiring that β = α−1,
and that both terms (R/rc), and (rt/rc) are at the power of 2.

The optimised generalised King’s profile (hereafter OGK-
ing) is the GKing profile with the values of α and β fixed at
the maximum-a-posteriori (MAP) values of the GKing param-
eters. This maximises the Bayesian evidence and reduces the
dimensionality of the parameter space.

To avoid the use of a tidal radius in the radial profile, we
have also considered the model proposed by Elson et al. (1987),
henceforth EFF, to describe young open clusters in the Large
Magellanic Cloud. Their surface density (in star counts per solid
angle) is given by

n(R) = n(0) · (1 + (R/rc)2)
γ

2 , (3)

with rc the core radius, and γ the slope of the profile at radii
much larger than the core radius.

Finally, we analyse a more general parameterisation intro-
duced in Lauer et al. (1995), Byun et al. (1996) and Zhao (1997),
where the projected mass density is given as

ρ(R) =
k′

(R/rc)γ · (1 + (R/rc)1/α)(γ−β)α
. (4)

Equation (4) represents a double power law, with rc being
the so-called core or break radius, γ and β the exponents of the
inner and outer regions, respectively, α the width of the transi-
tion region, and k′ a scale constant. Meaningful values of these
parameters fulfil the following conditions: α > 0 and 0 ≤ γ ≤ β.
The aforementioned works assume this functional form for the
projected surface brightness, the projected mass density ρ, and
the volume density v, although the latter two are related by
integration:

ρ(R) =

∫ ∞

0

v(r) dz, (5)

where z is the distance along the line of sight.
In this work we use the same analytical expression as in

Eq. (4) but for the number density n(R). We call this model
the generalised density profile3 (hereafter GDP), as it com-
prises many simpler models, each of which corresponding to
particular choices of the model parameters. Several density
profiles proposed to describe galaxies can indeed be grouped
by parameter values. For example, α = 1 includes models by
Navarro et al. (1997), Hernquist (1990), Jaffe (1983) and Moore
et al. (1999). Similarly, α = 1/2, γ = 0 includes the models by

3 Although it is also called Nuker profile by Küpper et al. (2010).
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Plummer (1911) (with β = 5), by Sackett & Sparke (1990) and
by de Zeeuw (1985). The EFF model corresponds also to α =
1/2, γ = 0. King’s profile, however, cannot be cast into this
general model unless the tidal radius rt is fixed at infinity.

For our spatial analysis, we also considered the restricted
generalised profile (RGDP), corresponding to the generalised
profile with the value γ fixed at 0.

We note that we have used similar names for parameters rc

and γ in all the aforementioned formulations. However, these
parameters do not share the same meaning amongst models. The
latter is distinctively specified by each model relationM.

In all cases, the R coordinate is defined with respect to the
cluster centre. The actual values of R then depend on the choice
of this origin (see Sect. 3.2).

3.2. Central symmetry constraint

In the above, we have defined six models: King, GKing, OGK-
ing, EFF, GDP and RGDP. Each of them has a different set
of parameters. For example, the King’s model depends on two
parameters (rc and rt), the EFF model depends on two other
parameters (rc and γ), and the generalised profile GDP depends
on four parameters (α, β, γ and rc).

In reality, there are always two more parameters that do not
appear explicitly in any of the above analytical formulations of
the number density profiles. These are the cluster centre coordi-
nates from which all radial distances R are measured. It is not
a minor question because the problem is degenerate, and there
is a maximum likelihood solution for each choice of the cluster
centre. In principle, one could even choose a poor cluster centre
estimate that renders the angular distribution of members asym-
metric, and obtain a maximum likelihood fit better than those
obtained with a better centred estimate. The models assume cen-
tral symmetry, but this can only be ensured approximately. There
is a region of non-negligible extent, where the cluster centre
may be, and any particular choice of its position will influence
the posterior distribution inferred. Thus, in order to propagate
appropriately this uncertainty about the cluster centre position in
our posterior inferences, we have included the two cluster centre
coordinates, αc and δc, as further parameters of our models (their
allowed intervals will be described in Sect. 4.3).

For any given choice of the central coordinates, we calcu-
late the radial distance, R, and the position angle θ of each star
in our data set. To avoid biases introduced by projection effects
of objects located far from the cluster centre, we project each
object’s coordinates into the plane of the sky along the line-
of-sight vector (see for example, Eq. (1) of van de Ven et al.
2006).

These projected coordinates are

x̃ = sin(α − αc) · cos(δ),

ỹ = cos(δc) · sin(δ) − sin(δc) · cos(δ) · cos(α − αc). (6)

From these projected coordinates, the radial distance, R, and
the position angle, θ, are computed as

R =

√

x̃2 + ỹ2,

θ = arctan 2(x̃, ỹ) + 2π (mod 2π). (7)

The requirement of central symmetry is enforced by the
inclusion of a multiplicative term in the likelihood. For a given
set of parameter values of αc, δc, we divide the computed polar
angles of individual stars, θ, into four symmetric quadrants (divi-
sions at [0, π/2, π, 3π/2]) and require that the number of stars

in each quadrant be Poisson distributed with a mean rate given
by Nq = Ntot/4. Under this model, the likelihood of any given
proposal for the model parameters (αc, δc) will be

L = p(N1,N2,N3,N4|αc, δc)

= P(N1|Nq) · P(N2|Nq) · P(N3|Nq) · P(N4|Nq), (8)

where Ni, i = 1, 2, 3, 4 is the number of sources in each quadrant,
and P(Ni|Nq) is the Poisson distribution with mean rate Ntot/4
evaluated at Ni.

3.3. Elliptical models

In this section we extend the aforementioned spherical models to
allow for deviations from radial symmetry. We do this by allow-
ing variations of the radial profile that depend on the angular
coordinate but still maintain biaxial symmetry. This can be done
in many ways. In this work we focus on the simplest one: the
analytical expression of the radial profile is maintained along
any radial direction but the profile parameters (e.g. rc and rt in
the King profile) have an ellipse-like dependence on the angular
coordinate.

This requires the definition of a coordinate system centred at
the cluster centre (parameters αc and δc), and potentially rotated
from the RA–Dec system of axes. Thus, we further include the
angle φ between the principal axes of the ellipse and RA–Dec
system as a parameter of these models. The coordinates x̃ and
ỹ of Eq. (6) are rotated by angle φ to obtain coordinates x and
y. Then, R and θ are computed from the latter by means of
Eq. (7).

The radially symmetric parameters of the previous section
have now an angular dependency, which is now expressed by
means of the characteristic radii at the semi-major and semi-
minors axes (denoted by subscripts a and b, respectively). These
new radii are expressed as

r(θ) =
ra · rb

√

(ra sin(θ))2 + rb cos(θ))2
, (9)

where θ is the position angle measured from the semi-major
axis, and ra and rb are the parameters representing the char-
acteristic radius at the semi-major and -minor axis, respec-
tively.

We illustrate this new biaxial dependency in the King’s
profile. The surface number density is now

n(R) = k ·















1
√

1 + (R/rc(θ))2
−

1
√

1 + (rt(θ)/rc(θ))2















2

, (10)

where rc and rt are obtained from Eq. (9). Explicitly they are,

rc(θ) =
rca · rcb

√

(rca sin(θ))2 + rcb cos(θ))2
, (11)

rt(θ) =
rta · rtb

√

(rta sin(θ))2 + rtb cos(θ))2,
(12)

where rca and rta are the core and tidal semi-major axis of the
ellipse, and rcb and rtb correspond to the semi-minor axis. We
highlight that we do not constrain the two ellipses to have the
same aspect ratio, but they are co-aligned.

For the other model, the surface densities are similarly
obtained. We do not incorporate any angle dependence for the
exponents α, β or γ.
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The position angle of the semi-major axis with respect to the
Right Ascension axis (φ) is constrained using the equivalent of
the radial symmetry likelihood term, except that now the position
angle has its origin at the semi-major axis.

3.4. Segregated models

Finally, in this section we introduce another set of profiles to
revisit the problem of mass segregation in the context of the
Pleiades.

We consider the previous biaxially symmetric models to
which we add a dependence of the core radius with the J mag-
nitude. We select the J magnitude because it is the reddest of
the magnitudes that are available for all candidate members. We
assume that stars of the same mass have approximately the same
magnitude and that distance differences (due to the 3D spatial
extent of the Pleiades) average out. The core radius dependence
with the J magnitude is modelled as

rc(θ, J) = rc(θ) + κ · (J − Jmode), (13)

where Jmode is the mode of the J band distribution.
The slope of the relationship, κ, is independent of the angle

θ. Therefore, for J = Jmode = 13.6 the model reduces to the
elliptic profile described in Sect. 5.2. A positive value of κ corre-
sponds to smaller values of the core radius for stars brighter than
Jmode = 13.6; in other words, it describes a system where the
more massive stars are more concentrated than the less massive
ones.

4. Bayesian analysis

As mentioned in Sect. 2, our data set may be contaminated.
Thus, in an effort to minimise the possible impact that these
contaminants may have on our inference, we also model their
spatial distribution. Hence, our model of the spatial distribution
of stars not only includes the model of the Pleiades cluster, but
also a field component which is modelled by a uniform spatial
distributionU within the maximum radius Rmax.

The measured properties of each of star in our data set can be
assumed to be unaffected by the measured properties of any other
star in the data set (this assumption is called statistical indepen-
dence). Under this assumption, the probability that the data set
was generated by the mixture of cluster and field is the product
of the probabilities that each of the stars was generated by this
mixture.

Allowing D = {di, πi}
N
i

to denote our data set, with d com-
prising the sky coordinates and J magnitude, and π the cluster
membership probability of each object, the probability or like-
lihood of the data set D, given the modelM, constraints I, and
parameters q, is

L(D|q,M, I) =

N
∏

i

[

πi · p(di|q,M, I) + (1 − πi) · U(di|I)
]

. (14)

The probability p(d|q,M, I) depends on the profile under
consideration and is described in the following section.

4.1. Probabilistic framework

To avoid the use of bins and to properly infer the parameters of
the models presented in Sect. 3, we need to convert the projected
stellar densities into probability density functions that describe

the probability of finding a star between R and R + dR, under
the assumption of spherical symmetry. The probability density
function p(R) is constructed from the definition:

p(R) · dR =
2π · R · n(R) · dR

N
, (15)

where N is the total number of stars in the system.
This probability is renormalised to integrate to unity at the

truncation radius Rmax, which in our data set corresponds to
11.5 pc. Thus,

pT (R) =















p(R)
∫ Rmax

0
p(R)·dR

for R ≤ Rmax

0 for R > Rmax

. (16)

All the probabilities rendered by our set of models are renor-
malised according to the previous equation. However, in the
following and for the sake of simplicity, we only present the
non-truncated probabilities.

Applying Eq. (15) to the spherically symmetric King’s pro-
file, we obtain

p(R) =
k · 2π

N
· R ·















1
√

1 + (R/rc)2
−

1
√

1 + (rt/rc)2















2

. (17)

Actually, in probabilistic inference we write this probability
function as:

p(R|rc, rt, k1, I,M1) = k1 ·R ·















1
√

1 + (R/rc)2
−

1
√

1 + (rc/rt)2















2

,

(18)

where we have defined a new constant, k1 =
k·2π

N
, and made

explicit the dependence of the probability on the underlying ana-
lytical expression (M1), the constraints I, and the values of the
parameter set (k1, rc and rt). In practice, k1 is treated as a normal-
isation constant (to enforce unit integral) and there is no need to
know the total number of stars in the system.

For the generalised King’s profile, this becomes

p(R|rc, rt, α, β, k2, I,M2)

= k1 · R ·

[

(

1 + (R/rc)
1
α

)−α
−

(

1 + (rt/rc)
1
α

)−α
]β

. (19)

Likewise, the expression for the EFF model is

p(R|rc, γ, k3, I,M3) = k3 · R · (1 + (R/rc)2)
γ

2 . (20)

And finally, the GDP model is given by

p(R|rc, α, β, γ, k4, I,M4) =
k4 · R

(R/rc)γ · (1 + (R/rc)1/α)(γ−β)α
, (21)

with γ = 0 for the RGDP model.
For the elliptical and luminosity segregated density profiles,

the likelihoods are obtained similarly by adding φ and replacing
rc and rt by rca, rcb and rta, rtb in the model parameters, and intro-
ducing the dependence on θ and J in the relations. For example,
the likelihood of the biaxial King’s profile is

p(R, θ|φ, rca, rcb, rta, rtb, k5, I,M5)

= k5 · R ·















1
√

1 + (R/rc(θ))2
−

1
√

1 + (rt(θ)/rc(θ))2















2

. (22)
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4.2. Model selection

In this section we aim at comparing the aforementioned ana-
lytical parameterizations of the projected stellar densities in the
light of the currently available data. In order to do so, we use the
Bayesian evidence, also known as marginal likelihood. In the fol-
lowing, we use evidence (and its plural evidences4) to refer to the
Bayesian evidence. The evidence is the key for model compari-
son in the Bayesian framework. In this framework, the model
comparison is done on the basis of the model posterior prob-
ability p(M|D). This is the probability of model M given the
collected data D. In our opinion, this is the most natural way to
compare and select (if needed) models in the scientific context.
The posterior probability can be expressed as

p(M|D) =
p(D|M) · p(M)

p(D)
, (23)

using Bayes’ theorem. The ratio of posterior probabilities can
then be expressed as

p(Mi|D)

p(M j|D)
=

p(D|Mi)

p(D|M j)
·

p(Mi)

p(M j)
. (24)

If there is no difference in the prior probabilities for models i
and j, then the posterior ratio is equal to the marginal likelihood
ratio (also known as Bayes Factor), where the marginal likeli-
hood (i.e. the evidence) is the full likelihood marginalised over
the model parameters q, as follows

p(D|M) =

∫

p(D|q,M) dq. (25)

It is important to remark that the Bayesian model compari-
son naturally incorporates a preference towards the less complex
models if they are equally supported by the data. In fact, the
preference is towards models with less effective parameters
(understood as parameters that the data can constrain).

The computation of the posterior probability distributions
and the evidence of each model is carried out in practice using
the Nested Sampling (Skilling 2006) algorithm as implemented
in PyMultiNest (Buchner et al. 2014).

4.3. Priors

In the spherical models, we have assumed exponential priors,
with a scale value of 1, and truncated at 100, for all expo-
nent parameters α, β, γ, normal priors for the central coordinates
(with mean at [56.65◦, 24.13◦] and standard deviation of 1◦), and
half-Cauchy priors for radial parameters (with scale parameter
at 10 pc). These priors fall in the category of weakly informative
ones (see Gelman 2006).

In the biaxially symmetric models, we use the same priors as
for the radially symmetric ones but we restrict the semi-major
axes of the core and tidal radii to be larger than, or at least
equal to, their corresponding semi-minor axis. We also include a
uniform prior for the angle φ ∈ [−π/2, π/2].

In the luminosity segregated models, in addition to the pre-
vious priors, we use a normal, N(0, 0.5), as a prior for κ, which
represents our prior beliefs of almost negligible luminosity
segregation.

4 Since the Bayesian evidence is a number that can be computed for
each model and/or data set (see Eq. (25)), we use the plural evidences
to address any set containing the Bayesian evidence of more than one
model.

The code to perform the analysis of the present work,
together with the data set described in Sect. 2, is available at
https://github.com/olivares-j/PyAspidistra

5. Results and discussion

We apply the Bayesian formalism described in Sect. 4 to the
data set detailed in Sect. 2. Thus, for each of our models we
obtain the posterior distribution of its parameters, together with
its evidence. Appendix B contains the details of the inferred pos-
terior distributions, figures of the fitted densities and marginal
distributions, together with the uncertainties of the parameters
in each analysed model. Table 2 summarises the evidences and
Bayes Factors resulting from all our models and their extensions.
In the following we use these evidences to discuss the model
comparison.

The boundaries for decision making from Bayes Factors
should be set ab initio. We mostly discuss our results following
the classical scale by Jeffreys (1961). In this scale, the strength
of the evidence5 is said to be: inconclusive if the Bayes Factor
is .3:1, weak if it is ∼3:1, moderate if it is ∼12:1, and strong if
it is &150:1. Nevertheless, we hope that our conclusions can be
shared by the reader independently of the scale used to categorise
the Bayes Factors.

5.1. Models with radial symmetry

The upper-left panel of Table 2 summarises the evidences
and Bayes Factors obtained from our radially symmetric mod-
els. In addition, Table 3 shows the MAP estimate of each
parameter in the radially symmetric models (uncertainties
are shown in Appendix B in the form of covariance matri-
ces).

We observe that the evidences cluster in two groups. On one
hand there is the family of King’s models, where the evidence
to compare between them is inconclusive and weak in favour
of OGKing over GKing. On the other hand there are the EFF,
GDP, and RGDP, where there is weak evidence supporting EFF
over GDP and RGDP. There is inconclusive evidence supporting
RGDP over GDP.

Comparing the two groups shows that models in King’s fam-
ily provide evidence that is: inconclusive and weak over the EFF,
weak and moderate over RGDP, and moderate over GDP. Using
this information only, we conclude that the tidal radius is an
important parameter.

In addition, we observe that in GDP and RGDP, param-
eters rc and β show large correlations (0.85 and 0.92 for
GDP and RGDP, respectively) and are relatively unconstrained
with large uncertainties; see Appendix B. Despite this fact,
the models still provide evidences comparable to those of the
other models, suggesting that these two parameters, although
necessary for the model, are unconstrained by the data, and
therefore not penalised by the evidence. Aiming at eliminat-
ing this source of degeneracy, we tested models in which one
of these two parameters was removed. However, the fits and
evidence resulting from them were poorer than that of the
RGDP. Thus, we consider these parameters as necessary for this
model.

We find that the introduction of more flexibility in the ana-
lytical expressions of the classical radially symmetric profiles

5 The Jeffreys scale is used to relate the Bayes Factors, which con-
tain the Bayesian evidences of the two models, to the possible shared
understanding of the word evidence.
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Table 2. Natural logarithm of the evidence for each profile density (diagonal) and Bayes Factors (off-diagonal elements, with the evidence for the
model specified in the column header placed in the denominator, i.e. p(D|Mrow)/p(D|Mcolumn)).

Radial Biaxial Segregated
EFF GDP GKing King OGKing RGDP EFF GDP GKing King OGKing RGDP EFF GDP GKing King OGKing RGDP

R
ad

ia
l

EFF −4569.15 8.83 0.83 0.40 0.19 2.53 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2
GDP 0.11 −4571.33 0.09 0.05 0.02 0.29 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2

GKing 1.21 10.64 −4568.97 0.48 0.23 3.05 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2
King 2.51 22.17 2.08 −4568.23 0.49 6.35 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2

OGKing 5.13 45.31 4.26 2.04 −4567.52 12.99 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2
RGDP 0.40 3.49 0.33 0.16 0.08 −4570.08 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2

B
ia

x
ia

l

EFF >999 >999 >999 >999 >999 >999 −4557.32 5.14 0.08 0.08 0.01 0.84 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2
GDP >999 >999 >999 >999 >999 >999 0.19 −4558.96 0.02 0.02 <1e−2 0.16 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2

GKing >999 >999 >999 >999 >999 >999 12.31 63.26 −4554.81 0.97 0.13 10.37 <1e−2 0.01 <1e−2 <1e−2 <1e−2 <1e−2
King >999 >999 >999 >999 >999 >999 12.64 64.93 1.03 −4554.78 0.14 10.64 <1e−2 0.01 <1e−2 <1e−2 <1e−2 <1e−2

OGKing >999 >999 >999 >999 >999 >999 91.95 472.37 7.47 7.28 −4552.80 77.41 0.04 0.10 <1e−2 <1e−2 <1e−2 0.04
RGDP >999 >999 >999 >999 >999 >999 1.19 6.10 0.10 0.09 0.01 −4557.15 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2 <1e−2

S
eg

re
g
at

ed

EFF >999 >999 >999 >999 >999 >999 >999 >999 212.43 206.96 28.45 >999 −4549.45 2.95 0.10 0.03 0.16 1.15
GDP >999 >999 >999 >999 >999 >999 886.29 >999 71.98 70.13 9.64 746.15 0.34 −4550.53 0.03 0.01 0.05 0.39

GKing >999 >999 >999 >999 >999 >999 >999 >999 >999 >999 293.70 >999 10.32 30.47 −4547.12 0.32 1.64 11.86
King >999 >999 >999 >999 >999 >999 >999 >999 >999 >999 913.86 >999 32.12 94.81 3.11 −4545.98 5.10 36.91

OGKing >999 >999 >999 >999 >999 >999 >999 >999 >999 >999 179.23 >999 6.30 18.59 0.61 0.20 −4547.61 7.24
RGDP >999 >999 >999 >999 >999 >999 >999 >999 184.89 180.13 24.76 >999 0.87 2.57 0.08 0.03 0.14 −4549.59

Notes. The evidence corresponds to the data set truncated at 11.5 pc.

Table 3. Maximum-a-posteriori estimates of the inferred parameters in
each radially symmetric model.

αc [◦] δc [◦] rc [pc] rt [pc] α β γ

EFF 56.66 24.18 2.23 2.53
GDP 56.66 24.17 3.02 0.64 2.95 0.09
GKing 56.66 24.16 1.42 18.17 0.46 1.48
King 56.66 24.16 2.04 32.08
OGKing 56.66 24.17 1.38 18.87
RGDP 56.66 24.17 3.11 0.69 3.13

does not provide an increased amount of evidence, and results,
in some cases, in unconstrained parameters and a loss of the
interpretability associated to the original formulations. There-
fore, the competing models are within the King’s family, with
insufficient evidence to select amongst them. Only additional,
perfectly acceptable prejudices like physical interpretability or
the ability to compare with previous results can be invoked to
choose one (e.g. King’s profile) over the rest.

The Bayes Factors seem to indicate (with inconclusive evi-
dence however) that the best model is the OGKing. However,
the fact that this profile has a larger evidence than any of the
remaining models should come as no surprise since it results
from fixing the values of α and β of the GKing model to their
MAP values.

Comparing the rest of the models, we see that the poor-
est model is GDP with moderate evidence against it. The
best models are again in King’s family, followed by EFF and
RGDP.

The conclusion from the comparison of these radially sym-
metric profiles is that (i) there is no compelling reason to
abandon the widely used King profile, and (ii) there are slightly
better models, but we lack evidence to prove if they truly rep-
resent a requirement to make the King’s profile more flexible to
accommodate the data.

5.2. Biaxially symmetric models

The central panel of Table 2 contains the logarithm of the evi-
dences and Bayes Factors of the biaxially symmetric models.
The evidences follows a pattern similar to that observed for the
radially symmetric models, with the exception of those that are

against the GDP model. We can conclude that there is strong evi-
dence for the family of King’s models and against the GDP one.
The evidence is still moderate and too weak to compare the rest
of the models.

Additionally, we compute a posteriori (from the MCMC
chains) the ellipticities6 ǫrc and ǫrt, which are defined as,

ǫrc = 1 −
rcb

rca

,

ǫrt = 1 −
rtb

rta

,

with the latter available only for the King’s family of models.
Table 4 shows the MAP estimate for the parameters in the

models of this section, together with the mode of the distri-
butions of ellipticities. Uncertainties for the latter are given in
Appendix B.

We can observe that models with no tidal radius have similar
ǫrc ellipticities with a mean value of 0.23 ± 0.01. This value is
similar to the 0.17 found by Raboud & Mermilliod (1998), who
use a multicomponent analysis to derive the directions (although
its value is not given) and the aspect ratio of the ellipse’s axes.
However, it is very interesting to see that the models within
King’s family result in lower values of the ellipticity in the cen-
tral region and larger values in the outer one. This result is
expected from the interaction with the galactic potential and is
predicted by numerical simulations of open clusters (see, e.g.
Terlevich 1987).

By comparing the evidences of the biaxially symmetric mod-
els to those of the radially symmetric ones, we can conclude
that in all cases there is strong evidence in favour of the biaxial
models.

5.3. Models with luminosity segregation

The lower-right panel of Table 2 summarises the evidences and
Bayes Factors of models with luminosity segregation. Also,
Table 5 shows the MAP of the inferred distributions for this set
of models, together with the derived ellipticities.

We observe that the ellipticities follow the same pattern
as those of the previous section. This is expected because we
explicitly model the luminosity segregation as independent of
the position angle.

6 The ellipticity used here is also known as “flattening”.
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Table 4. Maximum-a-posteriori estimates of the inferred parameters in each biaxially symmetric model.

αc [◦] δc [◦] φ [rad] rca [pc] rta [pc] rcb [pc] rtb [pc] α β γ ǫrc ǫrt

EFF 56.66 24.15 0.99 2.61 2.11 2.58 0.22
GDP 56.64 24.15 1.01 3.90 3.14 0.68 3.28 0.04 0.23
GKing 56.66 24.14 0.94 1.35 18.00 1.21 12.79 0.48 1.34 0.10 0.30
King 56.64 24.20 1.01 2.05 51.23 2.04 20.92 0.07 0.64
OGKing 56.68 24.16 1.04 1.51 22.63 1.38 14.54 0.09 0.36
RGDP 56.68 24.17 0.96 4.05 3.04 0.78 3.32 0.24

Notes. Ellipticities are derived a posteriori using the inferred parameters.

Table 5. Maximum-a-posteriori estimates of the inferred parameters in each luminosity segregated model.

αc [◦] δc [◦] φ [rad] rca [pc] rta [pc] rcb [pc] rtb [pc] α β γ κ [pc mag−1] ǫrc ǫrt

EFF 56.66 24.16 1.02 2.65 2.22 2.60 0.12 0.18
GDP 56.68 24.17 1.01 3.60 3.19 0.63 3.14 0.13 0.23 0.18
GKing 56.66 24.16 0.83 1.39 16.88 1.22 12.61 0.67 1.28 0.13 0.05 0.38
King 56.62 24.19 0.96 2.34 38.49 2.37 20.49 0.19 0.05 0.60
OGKing 56.61 24.17 0.99 1.62 22.08 1.59 14.04 0.10 0.07 0.36
RGDP 56.62 24.17 0.96 3.78 3.35 0.73 3.34 0.24 0.19

Notes. Ellipticities are derived a posteriori using the inferred parameters.

The luminosity segregation inferred here is non-negligible
with κ in the range 0.1–0.25 pc mag−1, thus indicating that it
is indeed an important parameter. However, in all the mod-
els, the marginal posterior distribution of κ does not dis-
card the zero value (see the marginal posterior of κ in
Appendix B).

The evidences provided by the models with luminosity seg-
regation follow a similar pattern as those from radial symmetry.
However, in this case the best model is the classical King’s,
which shows only moderate evidence against the EFF, RGDP,
and GDP models. The evidence of King’s model over GKing
and OGKing is weak.

The evidences provided by the luminosity segregated mod-
els lead to them being strongly favoured over the radially
and biaxially symmetric ones in all cases. We can conclude
that, despite having a small value of κ, the luminosity seg-
regation is an important parameter regardless of the model
used.

5.4. Total mass and number of members

In this section we use the inferred values of the parame-
ters in King’s family of models to derive simple estimates
of the total number of members and mass of the Pleiades
cluster.

For each model and extension within the King’s family, we
estimate the total number of cluster members by integrating the
surface density profile until the tidal radii inferred for the model.
This is done for each set of parameters returned by PyMultiNest.
The resulting distributions of the total numbers fore each model
and extension in the King’s family are shown in Fig. 2. Addition-
ally, Table 6 shows the mode of these distributions. As can be
seen from this table, our current data set (with 1954 members),
although twice as large as previous studies in the literature, still
lacks almost one fifth of the predicted number of objects in the
cluster.

Table 6. Mode of the distribution of total number of stars in the cluster.

GKing King OGKing

Ctr 2087 2251 2086
Ell 2209 2509 2257
Seg 2272 2455 2231

We also estimated the total mass of the cluster using the
posterior samples of the parameters returned by PyMultiNest.
To gain an estimate of the total mass we use the tidal force
resulting from the interaction of the self-gravitating cluster
with the galactic potential. A detailed derivation of the Jacobi
radius under the Hill’s approximation can be found at p. 681 of
Binney & Tremaine (2008). Following the mentioned authors,
the Jacobi radius is given by,

rJ =

(

Gm

4Ω0A0

)1/3

, (26)

where G is the gravitational constant, m the total mass of the
cluster, and Ω0 the circular frequency of the cluster around the
galactic centre, which can be expressed in terms of the Oort’s
constants A0 and B0 as Ω0 = A0 − B0.

In the following, we assume an over-simplistic correspon-
dence between the tidal radius of the King’s family of mod-
els and Jacobi radius. Binney & Tremaine (2008, p. 677)
provide a detailed list of reasons why this correspondence
is only approximate. Thus, using the Oort’s constant values
given by Bovy (2017, A = 15.3 ± 0.4 km s−1 kpc−1 and B =
−11.9 ± 0.4 km s−1 kpc−1), we can derive an estimate of the
total mass of the cluster for each inferred value of the tidal
radius.

Figure 3 shows the distributions of the total mass derived
from the posterior distributions of the parameters of the King’s
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Fig. 2. Distribution of the total number of systems within the tidal radius
in each model and extension of the King’s family. The abbreviations
Ctr, Ell, and Seg stand for the radial and biaxial symmetric models, and
those with luminosity segregation, respectively.

Table 7. Mode of the distribution of total mass of the cluster.

GKing King OGKing

Ctr 1408 8584 2277
Ell 1956 6049 3571
Seg 2247 6605 3508

Notes. Units in solar masses.

family of models with biaxial symmetry and luminosity segre-
gation (the distributions of total mass resulting from the radial
and biaxial models are shown in Appendix B). As a sum-
mary, Table 7 shows the mode of each of these total mass
distributions.

As can be seen from this figure and table, inferring the total
mass by means of the poorly constrained tidal radius leads to
large uncertainties and probably biased estimators. This effect
has already been observed by Raboud & Mermilliod (1998),
who derived a total mass of 4000 M⊙ with a confidence inter-
val ranging from 1600 M⊙ to 8000 M⊙. These values are in good
agreement with the ones reported in Table 7 and observed in
Fig. 3.

Given the large ellipticity of the cluster, we also inves-
tigated the possibility of deriving the total mass by means
of the tidal elongation effect. However, the values determined
are even more poorly constrained than those determined using
Eq. (26).

The results of this section show that: (i) there is still a large
fraction (up to 20%) of cluster members that lay beyond the
spatial coverage of our data set, and (ii) although poorly uncon-
strained, the distributions of the total mass of the cluster seem
to suggest that it is highly unlikely that the total mass of the
cluster lays below the 1000 M⊙ limit, as commonly stated in
the literature. However, the large and unconstrained mass dis-
tribution could also be an artefact resulting from: (i) the poor
correspondence between the Jacobi radius and the tidal radius,
(ii) the poorly constrained values of the tidal radius, and (iii)
dynamical effects not taken into account to derive Eq. (26) (e.g.
the cluster is not a point mass but a self gravitating and rotating
system).

Fig. 3. Distribution of the total mass of the cluster derived from each
biaxially symmetric and luminosity segregated model of the King’s
family.

6. Conclusions

In this work we have formulated the existing radially symmetric
alternatives for the spatial distribution of stars in open clusters
in a probabilistic framework. The set of distributions reviewed
include (i) the classical King’s profile with two variants put for-
ward by us, (ii) the EFF model, and (iii) a general profile inspired
by galactic profiles together with a more restricted version of it.
We have used Bayesian techniques to both obtain posterior prob-
ability distributions for the parameters, and evidences for each
model. With them, we compare and select the best model, given
the data (and its possible biases). Furthermore, we have com-
puted Bayes Factors for all pairwise model comparisons. Due to
high correlations among their rc and β parameters, the GDP and
RGDP models loose their physical interpretability. The result of
the comparison amongst models with radial symmetry is that
the King’s family of models is only mildly superior, with weak
and moderate evidence, to those models without the tidal radius
parameter.

Furthermore, we have analysed biaxially symmetric exten-
sions of our set of models. The results indicate that deviations
from spherical symmetry have strong evidence when compared
to the more simple radially symmetric models. Additionally,
the distribution of ellipticities derived from the EFF, GDP, and
RGDP models peak at 0.22 ± 0.01, which is similar to the
value of 0.17 found by Raboud & Mermilliod (1998). Within
the King’s family, the models return ellipticities that are small
(mean ǫrc = 0.07 ± 0.02) and large (mean ǫrt = 0.44 ± 0.14)
in the inner and outer parts of the cluster, respectively. This
effect is expected from the dynamical interaction of the clus-
ter with the galactic potential, and is also predicted by numerical
simulations.

We use Bayesian model selection with Bayes Factors to anal-
yse mass segregation. We prefer to remain in the domain of direct
observables and study potential differences in the parameters
of the spatial distribution as a function not of mass, but of the
apparent J-band magnitude. The Bayes Factors show strong evi-
dence in favour of the luminosity segregated models, and against
the simpler biaxially symmetric ones. We interpret this result as
strong evidence for mass segregation.
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The above conclusions heavily depend on the sample of
Pleiades members selected for the analysis. In our probabilis-
tic analysis we took into account the possibility that our sample
is contaminated, but a J-band-dependent contamination rate (J-
band contamination gradient) could mimic a mass segregation
such as the one observed here. In addition, the halos and arte-
facts in the images of the central and bright stars can induce a
spatial incompleteness that could also artificially enhance the
slope of the luminosity segregation. Thus, our results must be
taken with care. In the near future, we expect to conduct similar
studies given the more homogenous and well characterised data
sets (e.g. new releases of Gaia’s data).

Although the GKing and OGKing models introduced here
have greater evidences and fitting properties than the classical
King’s profile, there is no strong evidence supporting an aban-
donment of the latter. Nevertheless, the GKing profile is a good
alternative to the King’s classical profile and should be compared
with it in light of new and more complete data sets.

From the model selection process, we can conclude that
the classical King’s profile extended to include biaxial sym-
metry and mass/luminosity segregation should be the starting
point in future analyses of the spatial distribution of open
clusters.

Finally, we use the posterior distributions of the parameters
in King’s model family to obtain rough estimates of the total
mass and number of systems in the cluster. We observe that
even the largest census of candidate members (Bouy et al. 2015;
Olivares et al. 2017) may lack up to 20% of the predicted num-
ber of stellar systems. The probability distribution function of
the cluster total mass, which is determined using approximations
of the tidal force exerted by the galactic and cluster potentials,
reveals that it is highly unlikely that the true cluster total mass
lays below the 1000 M⊙ limit.

The results of this work suggest that, although the Pleiades
cluster is one of the most studied in the literature, the daughters
of Atlas still keep many of their secrets within the oceans of the
sky; probably awaiting the arrival of the final Gaia’s data.
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Appendix A: Effects of truncation on King’s

profile

Fig. A.1. Mixture of the ten posterior distributions of the core and tidal
radius (rc and rt, respectively) inferred under different sample sizes (line
styles) and truncation radii (colours). The true parameter values are
shown with the vertical grey lines.

Fig. A.2. Mean relative error (rc and rt, respectively) of the MAP statis-
tic inferred from ten random realisations of different sample sizes (line
styles) and truncation radii (colours). The uncertainties correspond to
the standard deviation of the ten inferred MAPs.

Statistical truncation occurs when an unknown number of
sources lay beyond a threshold value. This threshold value can
originate in the measuring process or in the post-processing of
the data. The resulting data set does not contain any information
about objects beyond the threshold.

Performing inference on truncated data can bias the recov-
ered parameters if the truncation mechanism is not included in
the analysis. Nevertheless, bias can still appear if poor statis-
tics are used to summarise the results. Practically speaking, if
the truncation is too restrictive it could also lead to bias due to
a reduced sample size. To estimate the impact of these effects,
we generated synthetic data sets from the King’s profile, at true
values of rc = 2.0 pc and rt = 20.0 pc, and infer the parameters
under different sample sizes (1000, 2000, and 3000 objects) and
truncation radii (5, 10, 15, 20 pc). We repeat each estimation ten
times to account for randomness in the sample. Figure A.1 shows
the posterior distributions inferred at each sample size and trun-
cation radius. As can be seen, accounting for truncation results in
posterior distribution that correctly recovers the true parameter

Fig. A.3. Mixture of the ten posterior distributions of the core and tidal
radius (rc and rt, respectively) inferred under different sample sizes (line
styles) and truncation radii (colours) without correcting for truncation.
The true parameter values are shown with the vertical grey lines.

values. However, due to the large asymmetry in the posterior dis-
tributions of the tidal radius at the lower truncation radius (5 pc),
the MAP statistic can be severely biased. Figure A.2 shows the
mean relative error of this statistic as a function of the trun-
cation radius. As can be seen, the larger biases appear at the
extreme case where the truncation radius is only one fourth of
the true tidal radius. We note that although the MAP estimates
of each of the ten realisations are biased, estimates are made
in a similar way above and below the true value; except at the
truncation radius of 5 pc, where they slightly over estimate the
value. Also, the MAP is unbiased above truncation radii of half
the tidal radius, in spite of the number of stars (at least for the
tested values).

This example shows that the inference of the parameters
in the King’s profile can be biased even after truncation has
been accounted for. In particular, the tidal radius can be severely
affected by truncation radius below one half of the tidal radius.
Since this phenomenon is observed under the weakly informative
priors used (half-Cauchy centred at zero and scale parameter of
100), this effect can be generalised to any maximum-likelihood
estimator, the χ2 statistic particularly.

Finally, as can be seen in Fig. A.3, inferring King’s profile
parameters without properly accounting for truncation leads to
even larger biases.

Appendix B: Posterior distributions

This appendix contains the details of the inference performed
for each of the models and extensions presented in Sect. 3. It is
structured in the same way as that section. It starts with the radial
models, then continues with the biaxial extensions, and finishes
with the luminosity segregated ones. For each extension we give:
(i) the uncertainties of the MAP for each model, and (ii) figures
depicting: (a) the number surface density (i.e. the number of stars
per square parsec), and (b) the univariate and bivariate marginal
posterior distributions obtained from PyMultiNest in the form of
a corner plot (Foreman-Mackey 2016). Since the MAP is com-
puted in the joint posterior, it does not necessarily coincides with
the modes of the marginal distributions.

The MAP uncertainties and correlations are summarised by
covariance matrices. These are computed using the 68.2% of
samples from the MCMC that were the closest to the MAP
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Table B.1. Covariance matrix of the radially symmetric EFF model.

αc [◦] δc [◦] rc [pc] γ

αc [◦] 0.007 0.000 0.000 0.000
δc [◦] 0.000 0.006 0.001 0.000
rc [pc] 0.000 0.001 0.058 0.030
γ 0.000 0.000 0.030 0.027

Table B.2. Covariance matrix of the radially symmetric GDP model.

αc [◦] δc [◦] rc [pc] α β γ

αc [◦] 0.012 0.000 0.004 0.000 0.002 0.000
δc [◦] 0.000 0.012 0.006 0.002 0.006 −0.001
rc [pc] 0.004 0.006 0.589 0.062 0.330 0.004
α 0.000 0.002 0.062 0.046 0.059 −0.016
β 0.002 0.006 0.330 0.059 0.256 −0.028
γ 0.000 −0.001 0.004 −0.016 −0.028 0.028

Table B.3. Covariance matrix of the radially symmetric GKing model.

αc [◦] δc [◦] rc [pc] rt [pc] α β

αc [◦] 0.022 0.001 0.002 −0.021 0.001 −0.000
δc [◦] 0.001 0.019 0.007 0.046 −0.004 0.005
rc [pc] 0.002 0.007 1.376 1.469 0.126 0.317
rt [pc] −0.021 0.046 1.469 19.684 −0.214 1.139
α 0.001 −0.004 0.126 −0.214 0.364 0.027
β −0.000 0.005 0.317 1.139 0.027 0.141

value. They represent the 2σ uncertainties and correlations of
the parameters at the vicinity of the MAP.

For the biaxial and luminosity segregated models we also
give the ellipticity distributions computed a posteriori from the

Table B.4. Covariance matrix of the radially symmetric King model.

αc [◦] δc [◦] rc [pc] rt [pc]

αc [◦] 0.018 0.001 0.001 −0.001
δc [◦] 0.001 0.017 0.002 0.021
rc [pc] 0.001 0.002 0.144 −0.945
rt [pc] −0.001 0.021 −0.945 37.437

Table B.5. Covariance matrix of the radially symmetric OGKing model.

αc [◦] δc [◦] rc [pc] rt [pc]

αc [◦] 0.011 0.001 −0.001 −0.003
δc [◦] 0.001 0.010 −0.000 −0.000
rc [pc] −0.001 −0.000 0.054 −0.100
rt [pc] −0.003 −0.000 −0.100 1.951

Table B.6. Covariance matrix of the radially symmetric RGDP model.

αc [◦] δc [◦] rc [pc] α β

αc [◦] 0.014 0.000 0.003 −0.000 0.001
δc [◦] 0.000 0.012 0.006 0.000 0.005
rc [pc] 0.003 0.006 0.804 0.089 0.466
α −0.000 0.000 0.089 0.051 0.061
β 0.001 0.005 0.466 0.061 0.311

core and tidal (when available) semi-major and semi-minor axes
resulting from the PyMultiNest samples.

Finally, this appendix also contains the distributions of the
total mass of the cluster derived from the radial and biaxial
models in the King’s family.
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Table B.7. Covariance matrix of the biaxially symmetric EFF model.

αc [◦] δc [◦] φ [rad] rca [pc] rcb [pc] γ

αc [◦] 0.007 −0.000 −0.001 0.000 0.000 0.000
δc [◦] −0.000 0.006 0.001 0.000 0.001 0.001
φ [rad] −0.001 0.001 0.063 0.000 −0.002 −0.000
rca [pc] 0.000 0.000 0.000 0.131 0.056 0.049
rcb [pc] 0.000 0.001 −0.002 0.056 0.093 0.047
γ 0.000 0.001 −0.000 0.049 0.047 0.040

Table B.8. Covariance matrix of the biaxially symmetric GDP model.

αc [◦] δc [◦] φ [rad] rca [pc] rcb [pc] α β γ

αc [◦] 0.007 −0.001 −0.001 0.002 0.000 −0.001 0.000 0.001
δc [◦] −0.001 0.005 0.001 0.005 0.005 0.002 0.005 −0.001
φ [rad] −0.001 0.001 0.185 0.051 0.031 0.008 0.043 −0.010
rca [pc] 0.002 0.005 0.051 1.204 0.801 0.101 0.547 −0.006
rcb [pc] 0.000 0.005 0.031 0.801 0.788 0.074 0.480 −0.009
α −0.001 0.002 0.008 0.101 0.074 0.044 0.070 −0.016
β 0.000 0.005 0.043 0.547 0.480 0.070 0.363 −0.033
γ 0.001 −0.001 −0.010 −0.006 −0.009 −0.016 −0.033 0.025

Table B.9. Covariance matrix of the biaxially symmetric GKing model.

αc [◦] δc [◦] φ [rad] rca [pc] rta [pc] rcb [pc] rtb [pc] α β

αc [◦] 0.013 −0.001 −0.004 0.001 −0.004 −0.002 −0.015 0.002 −0.001
δc [◦] −0.001 0.010 0.001 −0.002 0.014 0.004 0.005 −0.002 0.002
φ [rad] −0.004 0.001 0.256 −0.029 0.205 0.058 −0.003 −0.022 0.027
rca [pc] 0.001 −0.002 −0.029 1.587 −0.041 0.379 0.437 0.194 0.131
rta [pc] −0.004 0.014 0.205 −0.041 25.850 0.956 5.304 −0.227 0.677
rcb [pc] −0.002 0.004 0.058 0.379 0.956 0.433 0.575 0.031 0.144
rtb [pc] −0.015 0.005 −0.003 0.437 5.304 0.575 6.150 0.015 0.436
α 0.002 −0.002 −0.022 0.194 −0.227 0.031 0.015 0.291 0.028
β −0.001 0.002 0.027 0.131 0.677 0.144 0.436 0.028 0.076

Table B.10. Covariance matrix of the biaxially symmetric King model.

αc [◦] δc [◦] φ [rad] rca [pc] rta [pc] rcb [pc] rtb [pc]

αc [◦] 0.019 −0.000 −0.004 0.002 −0.057 0.002 0.001
δc [◦] −0.000 0.015 0.007 −0.010 0.094 0.001 −0.001
φ [rad] −0.004 0.007 0.359 −0.124 1.582 0.010 −0.190
rca [pc] 0.002 −0.010 −0.124 1.428 −6.175 0.074 −1.548
rta [pc] −0.057 0.094 1.582 −6.175 371.812 −1.108 23.841
rcb [pc] 0.002 0.001 0.010 0.074 −1.108 0.154 −1.157
rtb [pc] 0.001 −0.001 −0.190 −1.548 23.841 −1.157 53.033

Table B.11. Covariance matrix of the biaxially symmetric OGKing model.

αc [◦] δc [◦] φ [rad] rca [pc] rta [pc] rcb [pc] rtb [pc]

αc [◦] 0.009 −0.001 −0.000 −0.001 −0.006 −0.001 −0.002
δc [◦] −0.001 0.007 0.002 −0.004 0.011 0.001 −0.002
φ [rad] −0.000 0.002 0.194 −0.031 0.166 0.009 −0.121
rca [pc] −0.001 −0.004 −0.031 0.248 −0.462 0.011 −0.080
rta [pc] −0.006 0.011 0.166 −0.462 14.223 −0.095 −0.391
rcb [pc] −0.001 0.001 0.009 0.011 −0.095 0.059 −0.176
rtb [pc] −0.002 −0.002 −0.121 −0.080 −0.391 −0.176 3.509
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Fig. B.1. Inferred density of the radially symmetric profiles shown by means of the MAP value (red line) and 100 samples from the posterior
distribution (grey lines). For comparison the data has been binned with Poissonian uncertainties (black dots).
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A&A 612, A70 (2018)

Fig. B.2. Projections of the posterior distribution for the radially symmetric EFF model.

Table B.12. Covariance matrix of the biaxially symmetric RGDP model.

αc [◦] δc [◦] φ [rad] rca [pc] rcb [pc] α β

αc [◦] 0.010 −0.001 −0.003 0.003 −0.000 −0.000 −0.000
δc [◦] −0.001 0.008 0.001 0.006 0.005 0.001 0.004
φ [rad] −0.003 0.001 0.208 0.037 0.030 0.001 0.029
rca [pc] 0.003 0.006 0.037 1.320 0.864 0.115 0.590
rcb [pc] −0.000 0.005 0.030 0.864 0.823 0.084 0.507
α −0.000 0.001 0.001 0.115 0.084 0.045 0.062
β −0.000 0.004 0.029 0.590 0.507 0.062 0.355
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J. Olivares et al.: The seven sisters DANCe. III.

Fig. B.3. Projections of the posterior distribution for the radially symmetric GDP model.

Table B.13. Covariance matrix of the luminosity segregated EFF model.

αc [◦] δc [◦] φ [rad] rca [pc] rcb [pc] γ κ [pc mag−1]

αc [◦] 0.007 −0.001 −0.000 0.001 −0.001 −0.000 −0.000
δc [◦] −0.001 0.006 0.002 0.001 0.002 0.001 0.001
φ [rad] −0.000 0.002 0.085 0.009 0.002 0.005 0.001
rca [pc] 0.001 0.001 0.009 0.151 0.078 0.060 0.008
rcb [pc] −0.001 0.002 0.002 0.078 0.126 0.061 0.012
γ −0.000 0.001 0.005 0.060 0.061 0.048 0.004

κ [pc mag−1] −0.000 0.001 0.001 0.008 0.012 0.004 0.006

A70, page 17 of 39

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731996&pdf_id=0


A&A 612, A70 (2018)

Fig. B.4. Projections of the posterior distribution for the radially symmetric GKing model.

Table B.14. Covariance matrix of the luminosity segregated GDP model.

αc [◦] δc [◦] φ [rad] rca [pc] rcb [pc] α β γ κ [pc mag−1]

αc [◦] 0.010 −0.001 0.000 −0.000 −0.003 −0.001 −0.003 0.001 −0.001
δc [◦] −0.001 0.008 0.002 0.003 0.004 0.000 0.004 −0.001 0.001
φ [rad] 0.000 0.002 0.321 0.102 0.064 0.010 0.071 −0.012 0.014
rca [pc] −0.000 0.003 0.102 1.122 0.789 0.092 0.506 −0.003 0.061
rcb [pc] −0.003 0.004 0.064 0.789 0.828 0.072 0.472 −0.011 0.069
α −0.001 0.000 0.010 0.092 0.072 0.051 0.068 −0.019 0.004
β −0.003 0.004 0.071 0.506 0.472 0.068 0.354 −0.040 0.040
γ 0.001 −0.001 −0.012 −0.003 −0.011 −0.019 −0.040 0.031 −0.003

κ [pc mag−1] −0.001 0.001 0.014 0.061 0.069 0.004 0.040 −0.003 0.016
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J. Olivares et al.: The seven sisters DANCe. III.

Fig. B.5. Projections of the posterior distribution for the radially symmetric King’s model.
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A&A 612, A70 (2018)

Fig. B.6. Projections of the posterior distribution for the radially symmetric OGKing model.
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J. Olivares et al.: The seven sisters DANCe. III.

Fig. B.7. Projections of the posterior distribution for the radially symmetric RGDP model.
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A&A 612, A70 (2018)

Fig. B.8. Inferred density of the biaxially symmetric profiles shown by means of the MAP value (red line) and 100 samples from the posterior
distribution (grey lines). For comparison the data has been binned with Poissonian uncertainties (black dots).
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J. Olivares et al.: The seven sisters DANCe. III.

Fig. B.9. Projections of the posterior distribution for the biaxially symmetric EFF model.

A70, page 23 of 39

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731996&pdf_id=0


A&A 612, A70 (2018)

Fig. B.10. Projections of the posterior distribution for the biaxially symmetric GDP model.
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J. Olivares et al.: The seven sisters DANCe. III.

Fig. B.11. Projections of the posterior distribution for the biaxially symmetric GKing model.
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A&A 612, A70 (2018)

Fig. B.12. Projections of the posterior distribution for the biaxially symmetric King’s model.

A70, page 26 of 39

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731996&pdf_id=0


J. Olivares et al.: The seven sisters DANCe. III.

Fig. B.13. Projections of the posterior distribution for the biaxially symmetric OGKing model.
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A&A 612, A70 (2018)

Fig. B.14. Projections of the posterior distribution for the biaxially symmetric RGDP model.
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J. Olivares et al.: The seven sisters DANCe. III.

Fig. B.15. Ellipticity distributions of the biaxially symmetric models. The numbers shown in brackets represent the 16th percentile, the mode, and
the 84th percentile (also shown by means of vertical grey lines).

A70, page 29 of 39

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731996&pdf_id=0


A&A 612, A70 (2018)

Table B.15. Covariance matrix of the luminosity segregated GKing model.

αc [◦] δc [◦] φ [rad] rca [pc] rta [pc] rcb [pc] rtb [pc] α β κ [pc mag−1]

αc [◦] 0.015 −0.001 −0.003 0.002 −0.054 −0.007 −0.032 0.003 −0.003 −0.002
δc [◦] −0.001 0.012 0.006 0.004 0.076 0.017 0.033 −0.000 0.007 0.003
φ [rad] −0.003 0.006 0.306 0.060 0.406 0.186 0.138 −0.017 0.067 0.027
rca [pc] 0.002 0.004 0.060 4.645 1.703 2.322 1.919 0.388 0.563 0.167
rta [pc] −0.054 0.076 0.406 1.703 85.273 4.036 19.497 −0.637 2.217 0.511
rcb [pc] −0.007 0.017 0.186 2.322 4.036 2.409 2.465 0.135 0.632 0.226
rtb [pc] −0.032 0.033 0.138 1.919 19.497 2.465 17.347 −0.149 1.308 0.292
α 0.003 −0.000 −0.017 0.388 −0.637 0.135 −0.149 0.342 0.023 −0.003
β −0.003 0.007 0.067 0.563 2.217 0.632 1.308 0.023 0.232 0.067

κ [pc mag−1] −0.002 0.003 0.027 0.167 0.511 0.226 0.292 −0.003 0.067 0.037

Table B.16. Covariance matrix of the luminosity segregated King model.

αc [◦] δc [◦] φ [rad] rca [pc] rta [pc] rcb [pc] rtb [pc] κ [pc mag−1]

αc [◦] 0.018 −0.001 −0.003 0.015 −0.105 0.002 −0.019 −0.000
δc [◦] −0.001 0.014 0.004 −0.009 0.123 −0.001 0.010 0.000
φ [rad] −0.003 0.004 0.328 −0.118 1.317 −0.005 −0.064 0.004
rca [pc] 0.015 −0.009 −0.118 1.547 −5.348 0.110 −1.293 0.002
rta [pc] −0.105 0.123 1.317 −5.348 220.118 −1.423 16.847 −0.041
rcb [pc] 0.002 −0.001 −0.005 0.110 −1.423 0.192 −1.046 0.014
rtb [pc] −0.019 0.010 −0.064 −1.293 16.847 −1.046 32.386 −0.069

κ [pc mag−1] −0.000 0.000 0.004 0.002 −0.041 0.014 −0.069 0.004

Table B.17. Covariance matrix of the luminosity segregated OGKing model.

αc [◦] δc [◦] φ [rad] rca [pc] rta [pc] rcb [pc] rtb [pc] κ [pc mag−1]

αc [◦] 0.009 −0.000 −0.002 0.002 −0.010 −0.000 −0.005 −0.001
δc [◦] −0.000 0.006 0.002 −0.002 0.013 0.002 −0.005 0.001
φ [rad] −0.002 0.002 0.176 −0.019 0.137 0.008 −0.104 0.008
rca [pc] 0.002 −0.002 −0.019 0.175 −0.381 0.025 −0.080 −0.002
rta [pc] −0.010 0.013 0.137 −0.381 10.973 −0.093 −0.386 0.009
rcb [pc] −0.000 0.002 0.008 0.025 −0.093 0.070 −0.186 0.008
rtb [pc] −0.005 −0.005 −0.104 −0.080 −0.386 −0.186 2.807 −0.023

κ [pc mag−1] −0.001 0.001 0.008 −0.002 0.009 0.008 −0.023 0.005

Table B.18. Covariance matrix of the luminosity segregated RGDP model.

αc [◦] δc [◦] φ [rad] rca [pc] rcb [pc] α β κ [pc mag−1]

αc [◦] 0.010 −0.000 −0.000 0.002 0.001 −0.000 0.001 −0.001
δc [◦] −0.000 0.008 0.003 0.006 0.009 0.001 0.006 0.002
φ [rad] −0.000 0.003 0.237 0.078 0.056 0.003 0.046 0.012
rca [pc] 0.002 0.006 0.078 1.481 1.074 0.125 0.667 0.081
rcb [pc] 0.001 0.009 0.056 1.074 1.078 0.090 0.609 0.088
α −0.000 0.001 0.003 0.125 0.090 0.050 0.062 0.005
β 0.001 0.006 0.046 0.667 0.609 0.062 0.390 0.047

κ [pc mag−1] −0.001 0.002 0.012 0.081 0.088 0.005 0.047 0.016
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J. Olivares et al.: The seven sisters DANCe. III.

Fig. B.16. Inferred density of the luminosity segregated models. The data are binned in three bins of the J band: J < 12, 12 . J . 15, and 15 < J
(with colours green, cyan and magenta, respectively). The MAP is shown by means of three coloured solid lines, the colours correspond to those
of the J band bins. In these MAPs, the core radius is increased accordingly to Eq. (13) using the mean value of the J band in each bin. Also shown
are 100 samples from the posterior distribution (grey lines).
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A&A 612, A70 (2018)

Fig. B.17. Projections of the posterior distribution for the luminosity segregated EFF model.
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J. Olivares et al.: The seven sisters DANCe. III.

Fig. B.18. Projections of the posterior distribution for the luminosity segregated GDP model.
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A&A 612, A70 (2018)

Fig. B.19. Projections of the posterior distribution for the luminosity segregated GKing model.
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J. Olivares et al.: The seven sisters DANCe. III.

Fig. B.20. Projections of the posterior distribution for the luminosity segregated King’s model.
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A&A 612, A70 (2018)

Fig. B.21. Projections of the posterior distribution for the luminosity segregated OGKing model.
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J. Olivares et al.: The seven sisters DANCe. III.

Fig. B.22. Projections of the posterior distribution for the luminosity segregated RGDP model.
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A&A 612, A70 (2018)

Fig. B.23. Ellipticity distributions of the luminosity segregated models. The numbers shown in brackets represent the 16th percentile, the mode,
and the 84th percentile (also shown by means of vertical grey lines).
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J. Olivares et al.: The seven sisters DANCe. III.

Fig. B.24. Distribution of the total mass of the cluster derived from each
radially symmetric model of the King’s family.

Fig. B.25. Distribution of the total mass of the cluster derived from each
biaxially symmetric model of the King’s family.
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