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The incidence of cardiac failure and chronic renal failure is increasing and it has now
become clear that the co-existence of the two problems has an extremely bad
prognosis. We propose the severe cardiorenal syndrome (SCRS), a pathophysiological
condition in which combined cardiac and renal dysfunction amplifies progression of
failure of the individual organ, so that cardiovascular morbidity and mortality in
this patient group is at least an order of magnitude higher than in the general popu-
lation. Guyton has provided an excellent framework describing the physiological
relationships between cardiac output, extracellular fluid volume control, and blood
pressure. While this model is also sufficient to understand systemic haemodynamics
in combined cardiac and renal failure, not all aspects of the observed accelerated
atherosclerosis, structural myocardial changes, and further decline of renal function
can be explained. Since increased activity of the renin–angiotensin system, oxidative
stress, inflammation, and increased activity of the sympathetic nervous system seem
to be cornerstones of the pathophysiology in combined chronic renal disease and heart
failure, we have explored the potential interactions between these cardiorenal con-
nectors. As such, the cardiorenal connection is an interactive network with positive
feedback loops, which, in our view, forms the basis for the SCRS.
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Introduction

Cardiovascular disease is a profound problem in chronic
renal failure (CRF), with 43.6% of all deaths in patients
with end-stage renal disease (ESRD) due to cardiac
causes.1 Death from cardiac causes is 10–20 times more
common in patients with CRF than in matched segments
of the general population.2 In ESRD, the prevalence of
left ventricular hypertrophy (LVH) and coronary artery
disease are �75 and 40%, respectively.3 About half of
ESRD-patients will suffer from myocardial infarction

(MI) within 2 years after initiating dialysis therapy, and
mortality in these patients is high.4 Even a slightly
decreased kidney function correlates with a substantial
increase in cardiovascular disease risk and higher mor-
tality, independently of other known risk factors.5–10

A recent statement from the American Heart
Association11 determined that both proteinuria and a
decline in glomerular filtration rate (GFR) are indepen-
dent risk factors for the development of cardiovascular
disease, and highlighted our lack of knowledge on the
pathophysiology of this syndrome. Impaired renal func-
tion is also associated with adverse outcomes after
acute coronary syndromes,12 percutaneous coronary
intervention,13 coronary artery bypass surgery,14 or
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fibrinolytic therapy.15 The incidence of heart failure as
cause of death was inversely related to GFR.16,17

Another major concern is the incipient epidemic of
CRF.18 Not only the prevalence of ESRD increases, but
also the number of patients with moderate renal
dysfunction.19 An epidemic of heart failure is also in pro-
gress, due to increasing age and better survival after
MI.20 The risk for developing CRF in heart failure has
not been defined clearly, but renal dysfunction is often
observed in heart failure patients,21 and is associated
with adverse prognosis.22 The frequency of the combi-
nation of heart failure and CRF will thus increase and
inescapably come with high morbidity and mortality.
The mechanisms that cause decline of kidney function
and its repercussions are, however, still poorly under-
stood. In this review, we would like to explore potential
pathophysiological interactions that lead to strong inter-
actions between cardiovascular and renal disease.

The severe cardiorenal syndrome

The strong connection between renal and cardiovascular
disease has revived interest in the complex interactions
between heart and kidneys. The late Arthur Guyton
extensively described normal physiological interactions
between the control of extracellular fluid volume by
the kidney and the systemic circulation by the heart
(Figure 1 ). The framework of reasoning about the
control of extracellular fluid volume (ECFV) and systemic
haemodynamics, the concept of total body autoregula-
tion, as well as the renal control mechanisms for
sodium excretion with their ‘infinite gain’,23 are of
invaluable importance. A recent monograph on volume
control in haemodialysis treatment has applied the

Guytonian rules to explain and treat cardiovascular
disease.24 Nevertheless, pathophysiological mechanisms
underlying this reciprocal relationship between the
heart and kidneys are still enigmatic. We propose the
severe cardiorenal syndrome (SCRS), a pathophysiologi-
cal condition in which combined cardiac and renal
dysfunction amplifies progression of failure of the individ-
ual organ to lead to astounding morbidity and mortality
in this patient group.25 SCRS is a syndrome with acceler-
ated and extensive cardiovascular disease that has dis-
tinct properties not occurring in conditions that affect
either organ alone.
In the heart, the consequence of the SCRS is in part due

to the described accelerated atherosclerosis in the form of
coronary artery stenosis.26–28 Similarly, LVH is an almost
invariable finding, in both clinical and experimental
uraemia, in the absence of significant haemodynamic
stimuli.29,30 Rather, the interplay between renal failure
and cardiovascular disease reflects an inappropriate remo-
delling process. The SCRS also involves myocardial
micro-angiopathy, manifested in the intramyocardial
arterioles by wall thickening and reduced lumen diameter
as a consequence of hypertrophy of smooth muscle cells.31

Clinically, the narrowed lumen diameter may interfere
with the already reduced coronary perfusion reserve.
The intramyocardial capillaries of uraemic rats exhibit
decreased capillary density,32 which increases the oxygen
diffusion distance and may further impair the ability of the
myocardium to withstand episodes of hypoxia.
Pulse wave velocity (PWV) is a reflection of the elastic

properties of ‘windkessel’ arteries and a high PWV has
been recognized as a prognostic factor for cardiovascular
events. Uraemia affects PWV by functional (angiotensin,
volume expansion)33 and structural (vascular calcifica-
tion) derangements. The aggressiveness of the calcifica-
tion process is almost exclusively observed in severe
CRF and ESRD,34 and is present not only in the large
arteries but also in coronary plaques of CRF patients.35–37

Finally, heart failure can lead to excessive and inap-
propriate activation of the renin–angiotensin system
(RAS),38 which has been implicated in many ways in the
progression of renal disease.39 Thus, combined renal and
cardiac disease invokes a number of forces that are
specific for this combination and synergistically aggravate
renal and cardiac disease.

Components of the cardiorenal connection
contributing to the SCRS

Central in Guyton’s model are the kidney, as regulator of
ECFV, and the RAS with its corresponding extensions
(aldosterone, endothelin) and its antagonists [natriuretic
peptides, nitric oxide (NO)]. The model is sufficient to
explain the changes in ECFV, blood pressure, and
cardiac output in combined heart and renal failure.
However, can we also explain the accelerated athero-
sclerosis, cardiac remodelling and hypertrophy, and pro-
gression of renal disease observed in the SCRS (Figure 1 )?
In this respect, we have recently proposed an exten-

sion to the Guytonian model of volume and blood

Figure 1 Pathophysiological basis of the severe cardiorenal syndrome.
The model of Guyton explains heart–kidney interaction with respect to
extracellular fluid volume, cardiac output, and mean arterial pressure.
When one of these organs fails, a vicious circle develops in which the
renin–angiotensin system, the NO–ROS balance, the sympathetic nervous
system, and inflammation interact and synergize, here called the cardio-
renal connection.
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pressure control called the Cardiorenal Connection
(CRC).25 Over the past decades, actions have been
described by the regulators central in Guyton’s model
which do not directly control haemodynamics, but
affect other aspects of cardiac and renal function. In dis-
secting the pathophysiological events in the SCRS, we try
to couple actions of the regulators of Guyton’s model to
their extended actions on structure and function of
heart and kidney. We propose the RAS, the balance
between NO and reactive oxygen species (ROS), inflam-
mation, and the sympathetic nervous system (SNS) as
actual connectors in the CRC (Figure 1 ). We envisage
that derangement of one connector of the CRC leads to
a vicious circle in which the other connectors become dis-
turbed as well and synergize, ultimately resulting in
cardiac and renal functional derangement and structural
damage. Accordingly, renal failure and heart failure
would lead to the SCRS via common pathophysiological
mechanisms: the CRC. The following sections describe
evidence on the pathophysiological mechanisms and
interactions between connectors of the CRC.

The RAS

Activation of the RAS by low renal perfusion pressure or
blood flow serves as a defence against under-perfusion
of vital organs, such as in haemorrhage. In heart
failure, this response can take a devastating downhill
course: volume retention due to the haemodynamic and
reabsorptive actions of angiotensin II (Ang II) develops40

with further congestive heart failure as a consequence.
Unfortunately, inappropriate activation of the RAS is
also one of the characteristics of renal failure.41

Besides the (dys)regulation of ECFV and vasoconstric-
tion, one of the most deleterious actions of the RAS in
the CRC is activation of NADPH-oxidase by Ang II, result-
ing in formation of ROS.42 This has been documented in
endothelial cells, vascular smooth muscle cells,43 renal
tubular cells,44 and cardiomyocytes.45 Interesting obser-
vations in this context are raised NADPH-oxidase activity
in hearts of patients with end-stage heart failure46 and
increased NADPH-oxidase-mediated ROS release in
glomeruli of Dahl salt-sensitive rats with heart failure,
which could be attenuated by angiotensin-converting
enzyme (ACE) inhibition.47 Moreover, ACE inhibition has
been shown to increase NO bioavailability in patients
with coronary artery disease, possibly related to reduced
vascular oxidative stress or increased extracellular super-
oxide dismutase (SOD) activity.48

Ang II, potentially acting via changes in the cellular redox
state, is implicated in vascular inflammation via the
nuclear factor kappa B (NF-kB) pathway, which induces
production of chemotactic and adhesion molecules.49,50

The RAS interacts with the SNS by complex
mechanisms.51 It has been found that the stimulus for
the sympathetic hyperactivity observed in renal failure
arises from the failing kidneys52 and that increased sym-
pathetic outflow in CRF could be controlled with
ACE-inhibition.53,54 Blocking Ang II signalling reduced
SNS hyperactivity after MI in rats, attenuating ensuing
development of heart failure.55 Interactions of the RAS

with the other cardiorenal connectors are shown in
Figure 2A.

The balance between NO and ROS

NO is important in renal control of ECFV and blood press-
ure by causing vasodilation, natriuresis, and desensitiza-
tion of tubuloglomerular feedback.56 There are now
many indications that superoxide has the opposite
effect on ECFV control and can contribute to high blood
pressure.57–60 In the SCRS, the balance between NO and
the ROS is skewed towards the latter by increased pro-
duction of ROS, a low anti-oxidant status, and lower
availability of NO. Increased levels of different oxidative
stress markers, like F2-isoprostane

61 and antibodies
against oxidized LDL,62 have been found in dialysis
patients. A low antioxidant status is caused by oxidative
inactivation, decreased availability of antioxidant
vitamins, and removal of water-soluble antioxidants

Figure 2. (A ) Angiotensin II (Ang II) affects the other cardiorenal con-
nectors: SNS activation in kidney failure, generation of ROS, and NF-kB
mediated pro-inflammatory gene expression. (B ) Imbalance between
NO and ROS is a central event in cardiovascular diseases. In the cardior-
enal connection, this balance may influence sympathetic nervous activity,
release of renin and angiotensin, and promote inflammation by oxidative
modification of substances. (C ) Persistent inflammation has been found in
both renal and heart failure. By altering ROS functioning, and promoting
ROS and noradrenaline (NA) formation, inflammation contributes to the
positive feedback loops in the cardiorenal connection. (D ) Sympathetic
nervous activity is increased in both renal and heart failure. By affecting
the other cardiorenal connectors it can play a significant role in the SCRS.
It stimulates renin release from the kidneys, generates ROS, and induces
inflammation. NPY: neuropeptide Y.
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through the dialysis membrane.63 Oxidative stress is
further increased by interplay between the uraemic
state and inflammatory reactions on the dialysis mem-
brane. A relative NO-deficiency in renal failure is
caused by reaction of NO with oxygen radicals, as well
as by high concentrations of circulating asymmetric
di-methyl arginine (ADMA), an endogenous NOS
inhibitor.64 In heart failure, increased oxidative stress
has also been demonstrated46 and decreased antioxidant
status was found in rat myocardium after MI, which was
associated with progression to heart failure.65 Interest-
ingly, haemodynamic improvement by captopril and pra-
zosin led to enhanced antioxidant status.66 Kielstein
et al.67 also showed a relationship between reduced
renal perfusion, impaired NO-mediated endothelial vaso-
dilation and high concentrations of ADMA in patients with
normotensive heart failure, markedly resembling the
situation in CRF patients.

Additional potential interactions between the NO–ROS
imbalance and other cardiorenal connectors in the SCRS
are depicted in Figure 2B. Oxidative stress by hydrogen
peroxide (H2O2) has been shown to increase activity of
pre-ganglionic sympathetic neurons in vivo and in vitro
in rats, raising mean arterial pressure and heart rate.68

Also, renal sympathetic nervous activity in spontaneously
hypertensive rats was found to be regulated by vascular
superoxide concentrations.69

In renal failure, oxidative stress imposes damage on
DNA (8-oxo-OH-deoxyguanosine), proteins (carbonyl
compounds,70 advanced oxidation protein products71),
carbohydrates (advanced glycation end-products72), and
lipids (oxidized LDL62). These substances have
pro-inflammatory effects by attracting and activating
leukocytes,73,74 but they can also damage endothelial
cells.75 Oxidative stress is a major initiator of an inflam-
matory response, resulting in a shift towards production
(and activation) of pro-inflammatory cytokines, in par-
ticular IL-1, IL-6, and tumour necrosis factor alpha (TNFa).

Although as yet not completely resolved, oxidative
damage to the renal tubular or interstitial cells may
interfere with feedback systems involved in renin
secretion and angiotensin formation in the SCRS.
Chronic inhibition of NO synthesis causes upregulation
of cardiac ACE and Ang II receptors, possibly mediating
inflammatory changes.76

Himmelfarb et al.77 have termed oxidative stress the
‘elephant’, or key-point, in uraemia. Treatments that
decrease superoxide production (such as NADPH-oxidase
inhibitors), aid in scavenging ROS, or support the function
of NO, are intriguing clues that support our concept. One
relatively small trial has reported a positive effect of
antioxidant therapy on cardiovascular endpoints in
patients with renal failure,78 but more evidence is
needed.

Inflammation

Together with increased oxidative stress, inflammation
has been designated the other common denominator in
uraemia.79 The combined occurrence of chronic renal
insufficiency and high C-reactive protein (CRP) levels

has a more than additive effect on the incidence of MI
and death.80 In CRF, circulating levels of CRP81 and
several pro-inflammatory cytokines such as IL-1b, IL-6,
and TNFa, are predictors of atherosclerosis.82,83

It has been suggested that inflammation will aggravate
heart failure. In patients with heart failure, elevated
levels of TNF-a and IL-6 have been found in both
plasma and myocardium, and are related to progression
of the disease.84,85 Interleukin-18 has also been associ-
ated with cardiac dysfunction after MI.86 The exact role
of the activation of inflammatory cells is as yet far
from clear; however, in both CRF and heart failure a
state of chronic inflammation is present.
This low-grade inflammation can cause ROS production

by activating leukocytes to release their oxidative
contents.87 In cultured rat vascular smooth muscle cells,
IL-6 induced upregulation of the AT1 receptor and Ang-II
mediated production of ROS, providing evidence for
a possible link between inflammation and RAS
activation.88 Cytokines may stimulate renin secretion as
a component of the systemic stress response, and tubu-
lointerstitial inflammation may have effects on adaptive
responses of glomerular haemodynamics to impaired
renal function.89 After MI, IL-1b is produced,90,91 which
has been shown to stimulate noradrenaline release from
sympathetic neurons.92 Interactions between inflamma-
tory factors and the other connectors are depicted in
Figure 2C.

SNS

By stimulating renin release via renal sympathetic
neurons, the SNS contributes to long-term regulation of
ECFV and blood pressure. Converse et al.52 were the
first to report increased peripheral sympathetic nerve
activity in ESRD, which was corrected when the diseased
kidneys were removed. The SNS is initially activated in
heart failure by the baroreflex to provide inotropic
support and preserve cardiac output. However, excessive
sympathetic activity can induce cardiomyocyte apopto-
sis, hypertrophy, and focal myocardial necrosis.93

Cardiac hypertrophy is partly due to direct actions of cat-
echolamines, as several studies have shown that nor-
adrenaline induces hypertrophy of cultured
cardiomyocytes.94,95 Interestingly, this action involves
induction of superoxide.94,95 Chronically, sympathetic
over activity causes beta-adrenoceptor insensitivity in
both renal failure96 and heart failure.97,98 This can lead
to a disturbed baroreceptor reflex, reduction in heart
rate variability, and increased susceptibility to arrhyth-
mia. Whether the atherosclerotic process is associated
with increased sympathetic activation is unclear.
However, sympathetic over-activity can affect lipid
metabolism, and beta-blockers have been shown to have
anti-atherosclerotic properties.99,100 There are several
indications that the SNS affects the other connectors of
the CRC, for instance RAS activation, production of ROS
by sympathetic neuroactive substances, and activation
of the immune system (Figure 2D ).
Next to direct sympathetic innervation of the kidneys,

renin release can be enhanced because prolonged SNS
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over-activity has a growth-promoting effect on the wall
of intrarenal blood vessels.101 This effect has recently
been found to be mediated by ROS production.102 In
ischaemia/reperfusion damage in the kidney, H2O2

formation by monoamine oxidase enzymes induced a
pro-apoptotic cascade in proximal tubular cells.103 The
SNS may induce inflammation by noradrenaline-mediated
cytokine production from liver104 and heart,105 and
beta-blockade after experimental MI diminished myocar-
dial cytokine gene expression.106 Neuropeptide Y (NPY)
is a neurohormone released by sympathetic activation
that is involved in the prolonged vasoconstriction associ-
ated with stress. It can act as a vascular growth promoter,
leading to neo-intima formation and has been associated
with carotid artery atherosclerosis.107 Thirdly, it affects
the immune response by altering cytokine release and
immune cell function.108,109 High levels of NPY have
been demonstrated after MI and in patients with heart
failure.110 Thus, the SNS can modulate the other cardio-
renal connectors.

Conclusion

In this review, we extend the solid framework of Guyton
for extracellular fluid volume and blood pressure regu-
lation. Epidemiological data point towards reciprocal
connections between the heart and kidneys in disease,
encompassed in the SCRS. This connection is, in our
opinion, more elaborate than the haemodynamic model
of Guyton alone. With the model of the CRC, we hope
to unravel the interactions underlying the deleterious
consequences of the SCRS by taking into account the
extended cardiorenal effects of the RAS, the balance
between NO and ROS, inflammation, and the SNS. Oxi-
dative stress and inflammation have been strongly impli-
cated in the SCRS. Although several interventions (e.g.
blockade of the RAS and the SNS or physical exercise)
have been shown to be effective in reducing oxidative
stress and inflammation, at present no effective strategy
to directly influence these factors has been devised.
Since interactions in the CRC induce positive feedback
loops at many points, it is considered likely that multiple
interventions are needed to stop the vicious circle.
Ideally, when all four factors are taken into account,
we will be able to predict the clinical course of most
patients with SCRS. Taken further, if all four factors
were to be corrected, we would stand a better chance
to control the progression of the SCRS more effectively.
Because only fragmentary data exist on interactions
between the cardiorenal connectors in the setting of
the SCRS, experimental and clinical studies are needed
to test this model.
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