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Abstract The supertranslated black hole proposed by
Hawking, Perry, and Strominger might provide a resolution
to the information paradox, which is usually defined by a
complicated space-time metric. In this paper, we figure out
the shadow for the supertranslated black hole by making use
of supertranslated 4-velocities and the trajectories of the light
rays. Based on this approach, although the photon sphere
gets distorted and the position of the shadow on the projec-
tion plane is shifted by the supertranslation vector due to
the supertranslation hairs, the size and shape of the shadow
remain the same as those of bald black hole. However, the
shift of the position of shadow should be understood by the
choice of coordinate and then we conclude that there are no
distinguishable effects for the supertranslated black hole.

1 Introduction

In 1975, Hawking pointed out that black holes will end theirs
lives with evaporation [1], which significantly supported the
picture of the Bekenstein entropy, that a black hole can be
reckon as a thermodynamic system [2]. However, a question
soon arose, due to its breaking the law of information con-
servation in conflict with the quantum theory, which is the
so-called black hole information paradox. About a half cen-
tury passed, in 2016, Hawking, Perry, and Strominger (HPS)
revisited this problem, and proposed soft hairy black hole
that might provide a resolution to the information paradox
[3,4].

The studies on the soft hairy black hole would involve
the global spacetime structure from the event horizon to the
asymptotically flat zone. Therefore, it is interesting to exam-
ine whether the influence from the soft hair can be observed.
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Recently, it becomes possible, because Event Horizon Tele-
scope (EHT) presented the images of the black holes in M87
[5–10], and just recently in our galaxy [11], and opened a
new way to investigate the physics in strong field regime of
gravity for the black holes.

A black hole can not only bend lights but also swallow
them. As a result, a shaded zone exists in the field of vision
of an observer, and is thus called the black hole shadow. It
is the interpretation for the images of the black holes. Orig-
inally, it was developed based on the theoretical works of
Synge [12] and Bardeen [13]. By extracting information of a
black hole from its shadow, one can tell the difference of the
spacetime geometry for different black holes, and provide a
way to explore properties of the black hole, such as reflection
coefficients on the horizon [14], quantum structure [15,16]
and naked singularity [17], or test general relativity [18–21]
and the No-hair theorem [22–25].

Due to the interests of information paradox, the shadow of
the soft hairy black hole has been explored in Refs. [25,26].
The supertranslation hair, as a type of soft hair, is of great
interesting, because it was suggested that the supertranslated
black hole carries conservation charges at classical level [4],
and thus might have observable effect in classical physics.
Ref. [26] investigated the photon sphere of the supertrans-
lated Vaidya black hole in the equatorial plane, which sug-
gested that the changes of the photon sphere might lead to a
distinguishable shadow. Since the supertranslated black hole
has less space-time symmetries compared to the parame-
terized Kerr black hole, in Ref. [25], the authors simulated
the light rays for calculating the shadow of the supertrans-
lated black holes. Both of them argued that the supertrans-
lation hair could be observable. However, in our point of
view, the supertranslation hair was implanted by introducing
a diffeomorphism to a black hole [4], which might suggest
no observed effects. In this paper, we will clarify this point
according to some explicit calculations.
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The rest of the paper is organized as follows. In Sect. 2, we
calculate the shadow of the supertranslated Schwarzschild
black hole. Differed from previous studies, we obtain 4-
velocities and trajectories of the bending light rays around the
supertranslated Schwarzschild black hole by making use of
diffeomorphism. In Sect. 3, we give a general derivation for
the shadow of a supertranslated black hole in asymptotically
flat space-time. In Sect. 4, the conclusions and discussions
are summarized.

2 The shadow of Schwarzschild black hole with
supertranslation hair

In this section, we would briefly list results of supertranslated
Schwarzschild black hole proposed by HPS, and then show
the procedure for obtaining the shadow of the supertranslated
Schwarzschild black holes.

2.1 Schwarzschild black hole with supertranslation hair

As proposed by HPS [4], the supertranslation hair on
Schwarzschild black hole is given by introducing the super-
translations,

g(hairy)
μν = g(bald)

μν + Lζ g
(bald)
μν , (1)

which is also the procedure of implanting supertranslation
hair on Schwarzschild black hole. The quantities in Eq. (1)
will be illustrated in the following part of this paper. The
metric of bald Schwarzschild black hole g(bald)

μν in advanced
Bondi coordinate (v,r ,θ ,φ) is given by

ds2 = −
(

1 − 2M

r

)
dv2 + 2dvdr + r2γABd�Ad�B, (2)

where M is the mass of the black hole,�A denotes the angular
coordinates θ or φ. The Lζ is the Lie derivative along the
supertranslation vector ζ that is formulated as [4,27,28],

ζ = f (θ, φ)∂v − 1

2
D2 f (θ, φ)∂r + 1

r
DA f (θ, φ)∂A. (3)

where D is the covariant derivative with respect to the met-
ric on the unit two sphere, and the f (θ, φ) is an arbitrary
function that is proportional to the first order weak-field
expansion. Here, the ζ is also the asymptotical Killing vec-
tor in Schwarzschild space-time. Expanding the f (θ, φ) into
spherical harmonics,

f (θ, φ) =
∑
lm

almYlm(θ, φ), (4)

one can find infinite number of choices of l and m that can
give different asymptotical Killing vectors. In particular, in
the case of l = 0, ζ is generator of the temporal translation.
And in the case of l = 1 and m = −1, 0, 1, ζ are generators

of the three spatial translations, respectively. Finally, on the
left hand side of Eq. (1), the supertranslated Schwarzschild
metric g(hairy)

μν in advanced Bondi coordinate takes the form
of

ds2 = −
(

1 − 2M

r
− M

r2 D
2 f

)
dv2 + 2dvdr

−DA

(
2 f − 4M

r
f + D2 f

)
dvd�A

+(r2γAB + 2r DADB f − rγABD
2 f )d�Ad�B,

(5)

in which the metric depends on the angular coordinates θ and
φ due to the function f (θ, φ). It seems to bring complexity
in the calculation of the propagation of light.

2.2 Propagation of light and photon sphere

In order to calculate shadow of a black hole, one should obtain
solutions of null geodesic equations at first. From complexity
of the metric shown in Eq. (5), it seems to be a tough task
to deal with the geodesic equations. In this section, we will
show that the 4-velocities and the trajectories of light rays
can be obtained by using diffeomorphism, namely, the proce-
dure of implanting the supertranslation hair. Directly solving
the geodesic equations for the supertranslated Schwarzschild
black hole is not necessary.

First of all, one should work out the 4-velocities of light
rays for the bald Schwarzschild black hole in the Bondi coor-
dinate. Based on the Hamilton–Jacobi method for geodesic
equations [29], we obtain 4-velocities of light rays in static
coordinates (t, r, θ, φ) for the bald Schwarzschild black hole
(see Eqs. (10)–(13) in ref. [30]). And then the 4-velocities in
static coordinates are transformed into Bondi coordinate by
using v = t + r + 2M log(r/2M − 1), namely

pv,(bald) = E

(
r

r − 2M

) ⎛
⎝1 +

√
r3 + 2Mκ − rκ

r3

⎞
⎠ , (6a)

pr,(bald) = E

√
r3 + 2Mκ − rκ

r3 , (6b)

pθ,(bald) = E

r2

√
κ − λ2

sin2 θ
, (6c)

pφ,(bald) = Eλ

r2 sin2 θ
, (6d)

where E , κ ≡ K/E2 and λ ≡ L/E are three integral con-
stants corresponding to the energy, the total angular momen-
tum, and the angular momentum with respect coordinate φ

for a light ray at infinity.
According to the above arguments, the 4-velocities of light

rays around the supertranslated Schwarzschild black hole can
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be obtained by using the supertranslations,

pμ,(hairy) = pμ,(bald) + Lζ p
μ,(bald), (7)

where the ζ is the supertranslation vector given in Eq. (3), and
the components of the 4-velocities pμ,(hairy) are presented as
follows,

pv,(hairy) = E

2r3

⎛
⎜⎜⎝ 1

(r − 2M)2
√

2κM+r3−κr
r3

×
⎛
⎝
⎛
⎝−2κM2+2Mr3

⎛
⎝
√

2κM+r3−κr

r3 +1

⎞
⎠+3κMr−κr2

⎞
⎠ ,

(
∂2
θ f + cot θ∂θ f +csc2 θ∂2

φ f
)⎞

⎠ − 2r∂θ f
√

κ−λ2 csc2 θ−2λr csc2 θ∂φ f +
2r4

(√
2κM+r3−κr

r3 +1

)

r−2M

⎞
⎟⎟⎠, (8a)

pr,(hairy) = 1

r2

(
2
√

κ − λ2 csc2 θ

×
(
−∂3

θ f − cot θ∂2
θ f + csc2 θ∂θ f

− csc2 θ∂θ∂
2
φ f +2 cot θ csc2 θ∂2

φ f
))

+2λ csc2 θ

r2

(
∂2
θ ∂φ f +cot θ∂θ∂φ f +csc2 θ∂3

φ f
)

+4

√
2κM + r3 − κr

r3 , (8b)

pθ,(hairy) = E

r3

(
− r∂2

θ f
√

κ − λ2 csc2 θ

+λ2r cot θ csc2 θ∂θ f√
κ − λ2 csc2 θ

− λr csc2 θ∂θ∂φ f

+
√

κ−λ2 csc2 θ
(
∂2
θ f +cot θ∂θ f +csc2 θ∂2

φ f
)

+r
√

κ − λ2 csc2 θ

)
, (8c)

pφ,(hairy) = E csc2 θ

r3

(
− r

√
κ − λ2 csc2 θ∂θ∂φ f

+2r cot θ
√

κ−λ2 csc2 θ∂φ f

−2λr cot θ∂θ f +λ (1 − r) csc2 θ∂2
φ f +λ∂2

θ f

+λ cot θ∂θ f + λr

)
. (8d)

Based on the diffeomorphism, it is not difficult to find that
the 4-velocities of the light rays in Eq. (8) are exactly the
solutions of geodesic equations with respect to the metric in
Eq. (5).

From the 4-velocities given in Eq. (8), the worldlines of
the light rays γ μ(λ) in supertranslated Schwarzschild space-
time can also be obtained by using diffeomorphism. The
geodesic equations for the worldlines of light rays γ̄ μ in

bald Schwarzschild space-time are given by

dγ̄ μ

dλ
= pμ,(bald). (9)

After implanting the supertranslation hair, the geodesic equa-
tions take the form of

d

dλ
(γ̄ μ + δγ μ) = pμ,(bald) + Lζ p

μ,(bald), (10)

where δγ μ indicates a small change for the γ̄ ascribed
from the supertranslation hair. Using Eqs. (9) and (10), we
obtain the solution δγ μ = ζμ. Therefore the worldline of
a light ray around the supertranslated Schwarzschild black
hole is formulated as

γ μ = γ̄ μ + ζμ. (11)

It shows that each event on the null geodesic is shifted by
the supertranslation vector. Since a finite ζμ can not shift
the “endpoint” of a null geodesic from the singularity inside
the black hole to spatial infinity, the fact that the light rays
finally escape away from or fall into the black hole will not
be changed after implanting supertranslation hair.

The photon sphere for Schwarzschild black hole is the
assemble of the unstable circle orbits of the light rays, which
determines whether a bending light ray approaching the black
hole can escape to infinity again. In this sense, it describes
critical escape orbits for a light ray. Since implanting super-
translation hair does not change whether a light ray can
escape to infinity or not, the 4-velocities of the light rays in
critical escape orbits for the supertranslated Schwarzschild
black hole can be formulated as

pμ,(hairy)
c = pμ,(bald)|κ=27M2 + Lζ (p

μ,(bald)|κ=27M2), (12)

where the subscript ‘c’ denotes the light rays in the critical
escape orbits.

We will further illustrate Eq. (12) with ray-trace simula-
tions. In Fig. 1, we show the trajectories of the light rays
γ μ in Eq. (11) for the supertranslated Schwarzschild black
hole by numerically solving the Eq. (7), and then asso-
ciating it with Eq. (11). It shows that the photon sphere,
which locates at r = 3M (the black circle) for the bald
black hole, is distorted (the red circle) for the supertrans-
lated Schwarzschild black hole. The orange curves represent
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Fig. 1 Ray-tracing simulations for the light rays (blue and orange
curves) around a supertranslated Schwarzschild black hole with
f (θ, φ) = M

5 Y20(θ, φ) (left panel), and f (θ, φ) = M
5 Y30(θ, φ) (right

panel), respectively. The black circle represents the photon sphere for

the bald black hole, and the red circle represents the photon sphere for
the supertranslated Schwarzschild black hole. The orange curves rep-
resent the light rays that are almost tangent to the photon sphere, which
determine the edge of the shadow on observers’ projection plane

Fig. 2 Distorted photon
spheres of the supertranslated
Schwarzschild black holes
described by Eq. (3) and (4)
with alm = M

5 . For comparison,
the photon sphere of the bald
Schwarzschild black hole is
plotted in the translucent sphere

the light rays that are almost tangent to the photon sphere.
One can observe that these light rays are determined by inte-
grating constant κ = 27M2, which are the same as those in
bald Schwarzschild space-time.

Based on Eq. (11), one can also obtain the distorted photon
sphere for other types of supertranslation hairs. In Fig. 2,
we plot the distorted photon spheres for selected l and m in

Eq. (4). It shows that the photon sphere get more distorted
for the larger l. Because the positive and negative m in Eq. 4
share the same shape of the photon sphere, we only show the
cases of m ≥ 0 for illustration.
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2.3 The shadow of a supertranslated Schwarzschild black
hole

For the supertranslated Schwarzschild black hole, it was
suggested that the distorted photon sphere might lead to a
distinguishable shadow [26]. In this section, we will calcu-
late the shadow in details. For distant observers, the shadow
described by the coordinates (α, β) on the observers’ projec-
tion plane is given by [12,13]

α ≡ −r sin θdφ

dr

∣∣∣∣
xiobs

= −ro sin θo
pφ,(hairy)
c

pr,(hairy)
c

∣∣∣∣
xiobs

= −λ + ∂φ f (θo, φo)

ro sin θo
, (13)

β ≡ rdθ

dr

∣∣∣∣
xiobs

= ro
pθ,(hairy)
c

pr,(hairy)
c

∣∣∣∣
xiobs

=
√

κ − λ2 csc2 θo + ∂θ f (θo, φo)

ro
, (14)

where xiobs = (ro, θo, φo) is the location of an observer,
and we have used Eq. (12) for evaluating the 4-velocities
pμ,(hairy)
c . Here, the κ and λ are determined by the critical

escape orbits, and the values of them are exactly the same
as those for bald Schwarzschild space-time as discussed in
Eq. (12).

Based on Eqs. (13) and (14), the shape and size of the
shadow remain the same as those for bald Schwarzschild
black hole, but the position of the shadow is shifted by
δα = −∂φ f/(r0 sin θ0) and δβ = ∂θ f/r0 on the projec-
tion plane. It can be clearly shown by eliminating the λ in
Eqs. (13) and (14), and then one can obtain the curve equation
in coordinates (α, β),

(
α + ∂φ f

ro sin θo

)2

+
(

β − ∂θ f

ro

)2

= κ

r2
o
. (15)

The curve equation represents a circle with radius
√

κ/r0

and centre (−∂φ f/(r0 sin θ0), ∂θ f/r0) on projection plane.
For illustrations, we plot the shadows of the supertranslated
Schwarzschild black hole with f (θ, φ) = M

5 Y33(θ, φ) and
f (θ, φ) = M

5 Y31(θ, φ) for observers at equatorial plane
θ0 = π

2 in Figs. 3 and 4, respectively. For observers located
at different φ ranged from 0 to 2π , the center positions of
the shadows would move from the red point to the other
one shown in the plots. Comparing the two examples, one
might find that the positions of the shadows with supertrans-
lation hair f (θ, φ) = M

5 Y33(θ, φ) is shifted by a larger dis-
tance than that with f (θ, φ) = M

5 Y13(θ, φ). In Fig. 5, we
plot the shadows of the supertranslated Schwarzschild black
hole with f (θ, φ) = M

5 Y32(θ, φ) for observers at equa-
torial plane. In addition, the positions of the shadows for
f (θ, φ) = M

5 Y30(θ, φ) are fixed at the origin of the coordi-

Fig. 3 The shadow of supertranslated Schwarzschild black hole with
f (θ, φ) = M

5 Y33(θ, φ) for distant observers at equatorial plane θ0 = π
2 ,

and at different φo ranged from 0 to 2π , respectively. The photon rings
on the projection plane are presented in the black circles, and red point–
dashed line–red point represents the the centre of the shadows

Fig. 4 The shadow of supertranslated Schwarzschild black hole with
f (θ, φ) = M

5 Y31(θ, φ) for distant observers at equatorial plane θ0 = π
2 ,

and at different φo ranged from 0 to 2π , respectively. The photon rings
on the projection plane are presented in the black circles, and red point–
dashed line–red point represents the the centre of the shadows

nate (α, β) on projection plane. Thus, we did not show the
these here. Generally, for arbitrary types of supertranslation
hairs described in Eqs. (3) and (4), the shadows on projec-
tion plane are completed described by Eq. (15). Here, we
only showed the supertranslated Schwarzschild black hole
with l = 3 for examples.

Although, the photon sphere get highly distorted, the
supertranslation only leads to the shifted positions of the
shadows on the projection plane.
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Fig. 5 The shadow of supertranslated Schwarzschild black hole with
f (θ, φ) = M

5 Y32(θ, φ) for distant observers at equatorial plane θ0 = π
2 ,

and at different φo ranged from 0 to 2π , respectively. The photon rings
on the projection plane are presented in the black circles, and red point–
dashed line–red point represents the the centre of the shadows

3 A general derivation for the shadow of
supertranslated black hole

Because the supertranslated black hole was implanted based
on the diffeomorphism, we could extend the above calcula-
tion to an arbitrary asymptotically flat spacetime. For the
shadow of a stationary black hole in the view of distant
observers, the 4-velocities of light rays from the photon
sphere can be generally expanded as

pμ = Aμ(θ, φ) + 1

r
Bμ(θ, φ) + 1

r2C
μ(θ, φ) + O

(
1

r3

)
,

(16)

where Aμ, Bμ and Cμ are the expansion coefficients. Due to
the asymptotically flat space-time, the leading order of the
4-velocities are proportional to the O(1), and the space-time
are exactly the Minkowski space-time in the null infinity.
Therefore, the motion of a photon formulated by Eq. (16)
should obey the conservation laws, namely,

E = p0 =
√

(pr )2 + r2(pθ )2 + r2 sin2 θ(pφ)2, (17)

J = r2
√

(pθ )2 + sin2 θ(pφ)2, (18)

where E and J are constants describing total energy and
angular momentum of a photon, respectively. By making use
of Eq. (18), the spatial components of the 4-velocities of the
light rays in Eq. (16) reduce to

pr = Ar (θ, φ) + 1

r
Br (θ, φ) + 1

r2C
r (θ, φ) + O

(
1

r3

)
,

(19a)

pθ = 1

r2C
θ (θ, φ) + O

(
1

r3

)
, (19b)

pφ = 1

r2C
φ(θ, φ) + O

(
1

r3

)
. (19c)

In the leading order, it seems reasonable that pA is propor-
tional to O(r2), and pr is proportional to O(1).

Based on Eq. (7), the supertranslated 4-velocities can be
obtained by substituting the bald velocities with Eq. (19). It
describes the motions of light in the space-time of a super-
translated black hole. For given coordinate conditions from
the asymptotic symmetries [27], the supertranslated vectors
with respect to an arbitrary supertranslated black hole could
different from the form in Eq. (3), while it could be generally
expressed in an asymptotic expansion [4], namely

ζ = f (θ, φ)∂v +
(

ζ r,(0)(θ, φ) + 1

r
ζ r,(1)(θ, φ) + O

(
1

r2

))
∂r

+
(

1

r
ζ A,(1) (θ, φ) + 1

r2 ζ A,(2)(θ, φ) + O
(

1

r3

))
∂A (20)

For different black holes, the coefficients ζ r,(0), ζ r,(1), ζ A,(2)

and ζ A,(2) should be different.
In order to obtain the influence of the supertranslation on

the shadow of a black hole, we evaluate the (α,β) with the
supertranslated 4-velocities by making use of Eqs. (7), (19)
and (20), namely,

αhairy = −ro sin θo
pφ,(hairy)
c

pr,(hairy)
c

∣∣∣∣
r→∞

= −ro sin θo

⎛
⎝

1
r2 C

φ + 1
r2 A

rζφ,(1) + O
(

1
r3

)
Ar + O ( 1

r

)
⎞
⎠

= − sin θo

ro

(
Cφ

Ar
+ ζφ,(1)

)
+ O

(
1

r2
o

)
(21a)

βhairy = ro
pθ,(hairy)
c

pr,(hairy)
c

∣∣∣∣
r→∞

= 1

ro

(
Cθ

Ar
+ ζ θ,(1)

)
+ O

(
1

r2
o

)
, (21b)

Since we have known ζ A,(1) → DA f (θ, φ) with r → ∞,
one might find that the results in Eq. (21) are consistent
with that for supertranslated Schwarzschild black holes in
Eqs. (13) and (14). At least for distant observers, the super-
translation can only affect the positions of the shadows on the
projection plane. It is noted that the results can be reproduced
by choosing different coordinate systems in Minkowski
space-time (at null infinity). Therefore, no observed effect
on the shadow of a supertranslated black hole can be given.
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4 Conclusions and discussions

We investigate the shadow for supertranslated Schwarzschild
black hole proposed by Hawking, Perry and Strominger
[3]. The calculation on the shadow of supertranslated
Schwarzschild black hole turns to be much easier, if the
supertranslated 4-velocities and the trajectories of the light
rays are used. Based on this approach, we showed that the
photon sphere gets distorted due to the supertranslation hairs,
the position of the shadow on the projection plane is shifted
by the supertranslation vector and depends on the location
of the observer, and the size and shape of the shadow are
the same as those of bald black hole. For the shifted position
of the shadows, it can be originated from different choice
of coordinate systems in Minkowski space-time. Therefore,
there is no observed effect on the shadow of a supertranslated
black hole.

This paper is partly inspired by pioneers’ studies [25,26]
that suggests observable effects from the supertranslated
black holes by observing its shadow. We clarified that the
shadow can not be used as an observable for indicating the
soft hairs. Perhaps, the supertranslated black holes could have
possible observed effects at quantum level.
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