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The Shannon Cipher System
with a Guessing Wiretapper
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Abstract—The Shannon theory of cipher systems is combined
with recent work on guessing values of random variables. The
security of encryption systems is measured in terms of moments
of the number of guesses needed for the wiretapper to uncover
the plaintext given the cryptogram. While the encrypter aims at
maximizing the guessing effort, the wiretapper strives to minimize
it, e.g., by ordering guesses according to descending order of
posterior probabilities of plaintexts given the cryptogram. For
a memoryless plaintext source and a given key rate, a single-
letter characterization is given for the highest achievable guessing
exponent function, that is, the exponential rate of the�th moment
of the number of guesses as a function of the plaintext message
length. Moreover, we demonstrate asymptotically optimal strate-
gies for both encryption and guessing, which are universal in the
sense of being independent of the statistics of the source. The
guessing exponent is then investigated as a function of the key
rate and related to the large-deviations guessing performance.

Index Terms—Cryptanalysis, cryptography, guessing, Shannon
cipher system.

I. INTRODUCTION

I N the classical Shannon-theoretic approach to cryptology
[10], the security of cipher systems is traditionally measured

in terms of the equivocation, that is, the conditional entropy
of the plaintext (or the key) given the cryptogram. As is
well known (see, e.g., [8]), this conditional entropy can be
at most as large as the rate of the purely random key stream.
Thus perfecttheoretical secrecyis attainable if and only if
the key rate is at least as large as the message rate. This
pessimistic result stimulated Shannon to also establish the
notion of practical secrecy, which is measured by the average
amount of work required to break the key given a certain
amount of ciphertext. Diffie and Hellman [5] were the first
to show that practical secrecy (orcomputational securityin
their terminology) is possible without any transfer of secret
key between the sender and the legitimate receiver. The
notion of computational security relies on the fact that certain
computational tasks (such as factoring, or taking discrete
logarithms of very large numbers) are considered difficult
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because there are no known procedures of performing them
within reasonable amount of computation time.

Ever since these two pioneering papers of Shannon [10]
and Diffie and Hellman [5] have been published, there has
been a vast amount of research work on both theoretical and
practical aspects of cryptography, which has been summarized
in several excellent tutorial papers (see, e.g., [7], [8], and
[11]). The universal assumption in most of these works is that,
regardless of the computational resources that the enemy may
have, s/he has exactly one chance to estimate the plaintext
message or the key based on cryptogram (and perhaps also
other side information that might be available). Success or
failure are then determined by some measure of quality of this
estimator, such as the probability of error or the distortion. The
rationale behind this assumption is that in certain instances of
the secure communications problem, the enemy may not have
the chance to verify whether the estimated message is correct
and to improve it if not.

But in other instances of the problem, the enemy eavesdrop-
per might have a testing mechanism by which s/he can know
whether the estimate was correct, and then more chances to
guess the message in case of failure. For example, the enemy
may wish to break an encrypted version of a secret personal
verification information and/or an encrypted password into
a computer account, or a bank account contacted via the
Internet, or any other classified database that consists of
sensitive information. Here it is clear that upon the first
successful estimate, or guess, the system becomes accessible
and hence the above mentioned testing mechanism naturally
exists. In such cases, the enemy has the option to sequentially
submit multiple estimates, orguesses, where at each trial,
the fact that all previous guesses have failed, serves as an
additional side information for the next guess. The work of
Hellman [6] can be considered as one step in this direction of
multiple guessing. Hellman proposed to measure the degree
of security of a cryptosystem in terms of the expected number
of spurious messages, i.e., the expected number of plaintext-
key combinations that may explain the given cryptogram. The
assumption in [6] is that the number of meaningful messages
of a given length within the language of the source, is
very small compared to the total number of possible-
vectors.

In this paper, we aim at characterizing more directly the
best attainable moments of the number of guesses that the
eavesdropper may have to submit before success. To this
end, the Shannon theory of cipher systems is combined with
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recent work on guessing values of random variables [1],
[2]. Assuming that the generation of each guess demands
a certain amount of computational burden on the wiretap-
per’s part, this gives an alternative notion of computational
security.

We consider Shannon’s model of a secrecy system [10],
where a message is to be communicated
as securely as possible from a transmitter to a legitimate
receiver. The transmitter and receiver have access to a common
key string of purely random bits that
is independent of The transmitter generates a cryptogram

and sends it over a public channel to the
receiver. The cryptogram is a string (possibly, of variable
length) over an alphabet that is not necessarily the same as the
source alphabet. The encryption function is invertible given
the key in the sense that there exists an inverse, decryption
function to be used by the legitimate
receiver who observes both and An enemy wiretapper,
who knows the encryption function (and hence also the
decryption function ) and the statistics of the plaintext
source, but not the key itself, aims at decrypting from
the observed cryptogram only. The wiretapper has a test
mechanism by which s/he can identify whether any given
candidate message is the true message. Given the encryption
function and the probability mass function of the plaintext
messages , the posterior probabilities of all hypothesized
plaintexts given the cryptogram are all completely
determined. Then, it is clear that the best guessing strategy
(in any reasonable sense) is to first guess the most likely

given , then try the second most likely guess, and so
on, until eventually, the correct message is found. For a
given sequentialguessing strategy, i.e., an ordered list of
guesses for any given , let the
random variable denote the number of guesses of
the wiretapper until identification of the true message In
other words, is the smallest integer such that

The degree of security can now be measured
by the expected number of guesses or more
generally, by arbitrary positive moments

The goal is to investigate performance limits of such se-
quentially guessing wiretappers. For a memoryless plaintext
source, we study the highest asymptotic exponential growth
rate of the moment , as , attainable by
the encrypter for a givenkey rate This exponential
growth rate of , as a function of and , is
henceforth referred to as theguessing exponentfunction.

More precisely, let denote a sequence of encryp-
tion functions, for to be chosen by the encrypter.
Since the wiretapper is assumed to know the encryption
function for every and the plaintext message source,
we assume that the guessing wiretapper would always employ
the best guessing strategy for and , that is, order guesses
according to descending posterior probabilities as explained
above. Under this assumption, we define

(1)

and

(2)

where both limits are taken under the regime
Our main result is that and are equal

(i.e., the and are in fact limits) and both are
given by the single-letter expression

(3)

where , is the memoryless
source that governs the plaintext message, is the entropy
associated with a memoryless source, and is the
information divergence between and Moreover,
is attainable by encryption and guessing strategies that are
universal in the sense of being independent ofand

We also investigate the guessing exponent function
and examine its behavior as a function of for fixed
This study reveals that exhibits different behavior in
three different regions. For rates smaller than the entropy of
the source , the guessing exponent grows linearly as

, which means that the key space is sufficiently
small that exhaustive search over all possible
key strings is the best thing to do, regardless of the statistics
of the message source. On the other extreme, for key rates
beyond a certain threshold that is larger than , the
amount of randomness introduced by the key is so large
that the cryptogram becomes virtually useless for the purpose
of guessing. In this case, the wiretapper may ignore the
cryptogram altogether and submit “blind” guesses that are
based only upon prior knowledge of The value of
coincides, in this range, with the guessing exponent without
side information [1]. The threshold rate beyond which
exhibits this plateau behavior is given by the entropy of
an auxiliary memoryless source whose letter probabilities
are proportional to those of the original source, raised
to the power of Since is never smaller,
and normally strictly larger, than , this is a rather
unexpected result. The reason is that, as mentioned earlier,

is well known to suffice for perfect secrecy
in the traditional Shannon-theoretic sense. The explanation
for this more demanding requirement on the key rate, lies
in the fact that guessing performance is determined by the
large deviations (atypical) behavior of the source, whereas
the more familiar equivocation criterion has to do with the
typical behavior. For key rates in the intermediate range

, it turns out that optimal guessing should
target both the key and message statistics simultaneously.
We describe such a guessing strategy and give an explicit
expression for for this range of key rates as well.

Finally, we relate the guessing exponent to the best
attainable large deviations performance defined as the proba-
bility of the event ( positive constant)
as a function of and It is shown that the exponential
rate of this probability as a function of for fixed is the
Fenchel–Legendre transform of as function of

The outline of the paper is as follows. In the next section, we
define the notation and give some definitions. In Section III, we



1862 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 6, SEPTEMBER 1999

give a single-letter characterization of the guessing exponent
function and in Section IV, we investigate this function. In
Section V, we characterize the attainable large deviations per-
formance of the guessing wiretapper, and show that the corre-
sponding rate function is related to the guessing exponent func-
tion via the Fenchel–Legendre transform. Finally, in Section
VI, we summarize the results and state some open problems.

II. DEFINITIONS AND NOTATION CONVENTIONS

Throughout the paper, scalar random variables will be
denoted by capital letters while their sample values will
be denoted by the respective lower case letters. A similar
convention will apply to random vectors and their sample
values, which will be denoted by boldface letters. Thus for
example, if denotes a random vector then

would designate a specific realization of
The plaintext message will be assumed to be drawn from

a discrete memoryless source (DMS) with a finite alphabet
and probability mass function (PMF)
The probability of a vector will be denoted , which is
given by The th-order Cartesian power of ,
that is, the space of all -vectors over , will be denoted by

The probability of an event will be denoted
by or We shall use the letter to denote a
generic DMS over the alphabet, and use the same notational
conventions as for

For a DMS , we recall that the Shannon entropy is given
by

(4)

where logarithms throughout the sequel are taken to the base
. The relative entropy between and is defined as pt

(5)

The Rényi entropy [9] of order associated
with is defined as

(6)

with being interpreted as the Shannon entropy
For a given source vector , the empirical probability

mass function (EPMF) is the vector
where being the number of
occurrences of the letter in the vector The set of all
EPMF’s of vectors in , that is, rational PMF’s with
denominator , will be denoted by The type class of a
vector is the set of all vectors such that
When we need to attribute a type class to a certain rational
PMF rather than to a sequence in , we shall use
the notation It is well known [4] that the number of type
classes of -vectors is bounded by , where
denotes the cardinality of The standard reference about the
method of types is the book by Csiszár and K̈orner [4]. Finally,
throughout the sequel, designates a quantity that grows
sublinearly with , i.e., as

III. T HE GUESSING EXPONENT FUNCTION

Our main result in this section is the following.

Theorem 1: For every DMS and every

(7)

where is defined as in (3).

The remaining part of this section is devoted to the proof
of Theorem 1 along with a description of optimum strategies
for both parties.

Proof: Since clearly cannot be strictly larger
than , it is sufficient to prove that

(8)

The left inequality is a converse theorem from the viewpoint
of cryptography and a direct theorem from the viewpoint of
cryptanalysis, whereas the right inequality is the other way
around.

We start from the proof of the left inequality. For the
sake of simplicity, we will present a suboptimal (but asymp-
totically optimal) guessing strategy that is easy to analyze.
Consider first a guessing strategy that ignores the cryptogram
altogether: Let consist of an enumeration of all
vectors of in ascending order of empirical entropies,
i.e., More precisely, suppose
one first lists all elements of the type class with the
minimum entropy , then those of the type class with
the second smallest entropy, and so on. (The ordering within
each type class is immaterial.) Now, if the messagebelongs
to , then the number of guesses is clearly upper-bounded
by Since [4, p. 30]
and the number of type classes is bounded polynomially in

, the total number of guesses is further upper-bounded by

Consider next, an exhaustive key-search attack defined by
using the following guessing list:
where is an arbitrary ordering of all possible key
streams of length Clearly, this guessing list finds
any message using no more than guesses. Finally, to
gain the benefits of both lists, let us examine the interlaced list

which needs no more than twice the number of guesses of
the better of the two original lists for any given message
Thus for any , the corresponding number of guesses
is upper-bounded by

(9)

Since [4, p. 32], we obtain

(10)

(11)

(12)
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Since the last inequality holds for every encryption function
, then by the definition of , we get

(13)

completing the proof of the left inequality in (8).
To prove the right inequality in (8), consider the following

encryption function Given a source vector , we first
compress it losslessly into a codeword of the following
structure. The first field of bits describes
the index of the type class The second field of

bits gives the index of within Now,
assume that is an integer and consider the two cases

and If then
the second field of the code is in turn implemented in two
parts. We partition into disjoint subsets

each of size and perhaps an additional
remainder subset of size at most Now, the
first part of the second field encodes the indexof the subset

that contains , whereas the second part, of bits,
encodes the index of within Having compressed in the
above described manner, encryption is carried out as follows.
If , then the cryptogram is the codeword
with the last bits encrypted using simple bit-by-bit XOR
with the bits of (Note, that since is assumed integer,

actually implies )
Otherwise, only the last bits of the codeword (that is, the
second part of the second field) are encrypted in the above
manner.

For the purpose of obtaining a lower bound on
, we may assume that the guesser is in-

formed of the type of the message Obviously, any
lower bound on for such an informed guesser
is also a lower bound for the original, uninformed guesser,
because the class of guessing strategies with side information
is a superset of the class of guessing strategies without it.
Since is assumed memoryless, then for any given,
the conditional PMF is uniform within
independently of Due to the above described encryption
mechanism, the conditional probability ofgiven in , is
given by for and zero elsewhere,
where and is the set of

-vectors that can be obtained as cryptograms of, i.e., all
-vectors of the same length as , which agree with

except perhaps for the last bits. By the Bayes rule, it
now follows that for and

(14)

where and equality follows from
the fact that is constant within a type class.

Now, since is a uniform PMF over a set
of elements, then for any guesser that is informed of
the type of , we have

(15)

Now there are three cases: If

then and so, Otherwise, if

and falls in for some then
because any contents of the last bits form an existing
codeword of some and so, Finally, if

and , then which might be
small, but this happens with probability

(even if is as small as 1). Therefore, to summarize all three
cases, we have the following:

(16)

Finally, by averaging with respect to (w.r.t.) the probabili-
ties of , taking advantage of the fact that

, and using the method of types, we conclude
that for the above described encryption scheme, and for any
guessing strategy

(17)

Since we have considered a specific encryption scheme, the
left-hand side is clearly a lower bound on , and this
completes the proof of the right inequality in (8).



1864 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 6, SEPTEMBER 1999

It is interesting to note that both the guessing strategy
and the encryption strategy described in the above proof are
universally asymptotically optimum in the sense of being
independent of the underlying memoryless sourceand the
moment order Recall, that the strictly optimum guessing
strategy depends on and hence also on

IV. A M ORE EXPLICIT EXPRESSION

In this section, we give a more explicit expression for
the guessing exponent function and investigate its
behavior as a function of for fixed

First observe that

(18)

Substituting this into (3), we obtain

(19)

(20)

where the maximization and minimization are interchangeable
because the bracketed expression is concave inand affine
in

Let denote an auxiliary DMS with
letter probabilities given by

(21)

It is easy to show (see, e.g., [1]) that for

(22)

and that the maximum is achieved by Thus we have

(23)

It is also easy to check that

(24)

Thus the derivative of bracketed term in (23) w.r.t. is
Since is nondecreasing in (as can

be easily shown using (22)), the bracketed term in (23) has a
nondecreasing slope and hence is convex in So, for the
minimum in (23) we have three cases: i) for
all , or equivalently, , and the minimum
is achieved at ; ii) for all ,
or equivalently, , and the minimum is achieved at

; and iii) there exists a unique solution to

the equation that achieves the minimum. These
may be summarized as follows.

Proposition 1: The guessing exponent for a DMS is given
by

(25)
where is the unique solution of the equation
for in the range

Thus for low rates, i.e., , the guessing exponent
is just , which can be interpreted as a situation

where the key rate is so small that it pays off just to make
an exhaustive search over all possible key sequences, namely,
examine for all and essentially
all of them will be examined (in the exponential sense).

On the other extreme of high key rates , we have
(a plateau region), which means that

the cryptogram is so “noisy” that it is effectively useless
for guessing and the wiretapper might as well ignore it
and guess at directly only from knowledge of the prior
probabilities It is not surprising then, that the term

coincides with the guessing exponent without
side information studied in [1].

For key rates between and , corresponding to
the curvy part of the function , the optimal guessing
strategy can be thought of as a combination of exhaustive
search for the key and the message (in the spirit of the first
part of the proof of Theorem 1).

Next consider the slope of as a function of
for a fixed The partial derivative equals
for , and equals zero for For

, we have

(26)

(27)

(28)

The function is increasing in in the range
, which starts at for

and monotonically increases to at Thus
is decreasing in , and hence, is concave in
for any fixed The typical shape of as

a function of is shown in Fig. 1.

V. LARGE DEVIATIONS PERFORMANCE

Moments of the number of guesses are intimately re-
lated to the large deviations performance of the guesser
(see also [2], [3]), i.e., the best attainable exponential rate
of for some positive constant
Analogously to the definitions regarding the guessing exponent
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Fig. 1. Guessing exponent functionE(R; r) versusR.

function, let us define

Pr

(29)

and, similarly,

Pr

(30)

where the assumptions on the guessing strategy and on the
asymptotic key rate are as above. Our next result is the
following.

Theorem 2: For every DMS and every

(31)

Note that is infinite for , and given by the
source-coding exponent [4, p. 45], ,
for

Proof: The proof is similar to the proof of Theorem 1.
Again, it is sufficient to prove that

(32)

For the left inequality, consider again the guessing strategy
described in the proof of Theorem 1. Since

the probability that would exceed cannot be
larger than the probability of the event ,
which is easily shown (using the method of types) to decay
exponentially at the rate of

To prove the right inequality in (32), consider again the
encryption scheme described in the proof of Theorem 1.
Using the same considerations as in the proof of Theorem 1,
we have the following. For type classes whose size is

less than

(33)

On the other hand, for type classes whose size is larger
than

Pr

(34)

These two equations can be unified to

Pr

(35)

Thus

Pr

Pr

(36)

This completes the proof of Theorem 2.

Note that the same encryption and guessing strategies of
the proof of Theorem 1, are also asymptotically optimal in the
large deviations sense.

We next show that and are related via the
Fenchel–Legendre transform.

Theorem 3: For a DMS and every key rate

(37)

and

(38)

Proof: The first equality of (37) is obtained as follows:

(39)
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The second equality of (37) follows from the fact that
for As for (38), we have the following:

(40)

(41)

where the interchangeability of minimization and maximiza-
tion is justified by the fact that the bracketed expression is
affine in and concave in This is true because is
the minimum between a constant and a concave function of

This completes the proof of Theorem 3.

VI. CONCLUSION AND FURTHER RESEARCH

In this paper, we introduced measures of cryptographic secu-
rity that are based on the notion of guessing, and gave formulas
for computing them. To this end, we have combined earlier
works on guessing with Shannon-theoretic cryptography.

One important comment is in order: The Shannon cipher
system that we have considered here allows for variable-
length cryptograms. Therefore, strictly speaking, our results
hold for encryption of a single block or, equivanently, under
the assumption that the wiretapper knows (or is able to
determine) the boundaries between the encrypted words given
their concatenation. The natural question that arises here is
what happens if this assumption is relaxed. The lower bound

to any moment of the number of guesses continues,
of course, to hold because without the boundary information,
the expected number of guesses can only grow. The upper
bound remains valid as well as long as the length
of the longest cryptogram (over all and )
is a subexponential function of (normally it is linear). If
this is the case, the guesser can synchronize to the encrypted
bitstream by scanning hypotheses corresponding to

consecutive possible locations of the beginning of the
next encrypted word, times possible word lengths,
and interlace the corresponding guesses according to the
scheme described in the proof of Theorem 1. The total number
of guesses would thereby increase by a factor of no more than

, which is still subexponential and hence would not
affect the exponent

We would like to mention some extensions of the present
problem setting, which might be interesting to consider for
future research. First, it should be stressed that the Shannon ci-
pher system that we have considered here allows for variable-
length cryptograms, and our results hold for an encryption of
a single block or under the assumption that the wiretapper is
synchronized First, it would be of interest to generalize the
results to sources with memory, such as Markov sources, that
can model natural languages. Secondly, one might consider the
case in which the wiretapper is not required to reconstruct the
message exactly, but allowed some reconstruction error.
In other words, as soon as the wiretapper provides a guess
within distortion level from the true message [2], we
might regard the cipher as broken. The problem then is to
determine the guessing and large deviations exponents. This
type of reconstruction with some distortion has been studied
by Yamamoto [12] in the ordinary paradigm of the Shannon
cipher system. Another extension that might be considered is
the case where the wiretapper observes a noisy version of
the cryptogram, e.g., after passes through a noisy channel.
It would be of interest to determine how the wiretapper’s
performance would be degraded in that case.
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