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The Shannon Cipher System
with a Guessing Wiretapper

Neri Merhav, Fellow, IEEE and Erdal Arikan,Senior Member, IEEE

Abstract—The Shannon theory of cipher systems is combined because there are no known procedures of performing them
with recent work on guessing values of random variables. The \ithin reasonable amount of computation time.

security of encryption systems is measured in terms of moments Ever since these two pioneering papers of Shannon [10]
of the number of guesses needed for the wiretapper to uncover

the plaintext given the cryptogram. While the encrypter aims at and Diffie and Hellman [5] have been published, thgre has
maximizing the guessing effort, the wiretapper strives to minimize been a vast amount of research work on both theoretical and
it, e.g., by ordering guesses according to descending order of practical aspects of cryptography, which has been summarized
pOSterior probabilities of plaintexts giVen the cryptogram. For in several excellent tutorial papers (See’ e.g., [7], [8], and

a memoryless plaintext source and a given key rate, a single- 197 The ynjversal assumption in most of these works is that,
letter characterization is given for the highest achievable guessing

exponent function, that is, the exponential rate of theoth moment  regardless of the computational resources that the enemy may
of the number of guesses as a function of the plaintext messagehave, s/he has exactly one chance to estimate the plaintext
length. Moreover, we demonstrate asymptotically optimal strate- message or the key based on cryptogram (and perhaps also
gieenssfeoro?otfgir?nci%)éiOgn?jg?]tggfstﬁ?gs’tgggzsag ltjr?ievi?l?rlcig t2‘_‘aeother side information that might be available). Success or
guessing expognent is then investigated as a function of the keyfa'u‘Ire are then determined bY Some measure of .quallj[y of this
rate and related to the large-deviations guessing performance. ~ €stimator, such as the probability of error or the distortion. The
rationale behind this assumption is that in certain instances of
the secure communications problem, the enemy may not have
the chance to verify whether the estimated message is correct
and to improve it if not.
. INTRODUCTION But in other instances of the problem, the enemy eavesdrop-
N the classical Shannon-theoretic approach to cryptolo§¢r might have a testing mechanism by which s/he can know
[10], the security of cipher systems is traditionally measuradhether the estimate was correct, and then more chances to
in terms of the equivocation, that is, the conditional entropguess the message in case of failure. For example, the enemy
of the plaintext (or the key) given the cryptogram. As ignay wish to break an encrypted version of a secret personal
well known (see, e.qg., [8]), this conditional entropy can peerification information and/or an encrypted password into
at most as large as the rate of the purely random key stre@mcomputer account, or a bank account contacted via the
Thus perfecttheoretical secrecys attainable if and only if Internet, or any other classified database that consists of
the key rate is at least as large as the message rate. Heigsitive information. Here it is clear that upon the first
pessimistic result stimulated Shannon to also establish i¢ccessful estimate, or guess, the system becomes accessible
notion of practical secrecywhich is measured by the averag&nd hence the above mentioned testing mechanism naturally
amount of work required to break the key given a certai@xists. In such cases, the enemy has the option to sequentially
amount of ciphertext. Diffie and Hellman [5] were the firssubmit multiple estimates, oguesseswhere at each trial,
to show that practical secrecy (epbmputational securityn the fact that all previous guesses have failed, serves as an
their terminology) is possible without any transfer of secreétdditional side information for the next guess. The work of
key between the sender and the legitimate receiver. THellman [6] can be considered as one step in this direction of
notion of computational security relies on the fact that certamultiple guessing. Hellman proposed to measure the degree
computational tasks (such as factoring, or taking discreté security of a cryptosystem in terms of the expected number
logarithms of very large numbers) are considered difficultf spurious messaggse., the expected number of plaintext-
key combinations that may explain the given cryptogram. The
assumption in [6] is that the number of meaningful messages
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recent work on guessing values of random variables [Hnd

[2]. Assuming that the generation of each guess demands E*(R, p) = limsupsup %ng{GN(XIY)”} 2

a certain amount of computational burden on the wiretap- Neoo  fu

per's part, this gives an alternative notion of computationgl,a e hoth limits are taken under the regimay _oo K/N =

security. , R. Our main result is thal™ (R, p) and E~ (R, p) are equal
We consider Shannon’s model of a secrecy system [1@le thelim inf and limsup are in fact limits) and both are

where a messagX = (Xi,---, Xy) is to be communicated . o by the single-letter expression

as securely as possible from a transmitter to a Iegitima%e A

receiver. The transmitter and receiver have access to a common E(R,p) = IHSX[Ph(Q R) = D(Q||P)] 3)

key string of K purely random bitd/ = (I/;,---,Uk) that A
is independent off. The transmitter generates a cryptogratwhere h(Q,R) = min{H(Q),R}, P is the memoryless
Y = fy(X,U) and sends it over a public channel to theource that governs the plaintext messadggy) is the entropy
receiver. The cryptogrark’ is a string (possibly, of variable associated with a memoryless sou@eand D(Q||P) is the
length) over an alphabet that is not necessarily the same asitiiermation divergence between and P. Moreover,E(R, p)
source alphabet. The encryption function is invertible givea attainable by encryption and guessing strategies that are
the key in the sense that there exists an inverse, decryptigriversal in the sense of being independenoénd p.
function X = fy'(Y,U) to be used by the legitimate We also investigate the guessing exponent funcloR, p)
receiver who observes boi andU. An enemy wiretapper, and examine its behavior as a function Bf for fixed p.
who knows the encryption functioriy (and hence also the This study reveals thakb(R, p) exhibits different behavior in
decryption functionfy') and the statistics of the plaintextthree different regions. For rates smaller than the entropy of
source, but not the key itself, aims at decryptig from the sourceH(P), the guessing exponent grows linearly as
the observed cryptogrark only. The wiretapper has a testE(R, p) = pR, which means that the key space is sufficiently
mechanism by which s/he can identify whether any givesmall that exhaustive search over aft = 2%% possible
candidate messagdg€ is the true message. Given the encryptiokey strings is the best thing to do, regardless of the statistics
function f» and the probability mass function of the plaintexof the message source. On the other extreme, for key rates
message®’(X), the posterior probabilities of all hypothesizedbeyond a certain threshold that is larger th&i{P), the
plaintexts given the cryptogran?(X|Y") are all completely amount of randomness introduced by the key is so large
determined. Then, it is clear that the best guessing stratabqt the cryptogram becomes virtually useless for the purpose
(in any reasonable sense) is to first guess the most likalf guessing. In this case, the wiretapper may ignore the
X givenY, then try the second most likely guess, and soryptogram altogether and submit “blind” guesses that are
on, until eventually, the correct message is found. For k@sed only upon prior knowledge &t The value ofE(R, p)
given sequentialguessing strategyi.e., an ordered list of coincides, in this range, with the guessing exponent without
guessen = {Z:(y),z2(y), -} for any giveny, let the side information [1]. The threshold rate beyond whighR, p)
random variableZx (X|Y') denote the number of guesses oéxhibits this plateau behavior is given by the entrépy?,) of
the wiretapper until identification of the true messafieln an auxiliary memoryless sourde, whose letter probabilities
other words,Gn(X]Y) is the smallest integei such that are proportional to those of the original souré® raised
Z;(Y) = X. The degree of security can now be measured the power ofl/(1 + p). Since H(P,) is never smaller,
by the expected number of guesEB$G ~(X|Y)}, or more and normally strictly larger, tharH (P), this is a rather
generally, by arbitrary positive momentE{Gx(X|Y)”}, unexpected result. The reason is that, as mentioned earlier,
p>0. R = H(P) is well known to suffice for perfect secrecy
The goal is to investigate performance limits of such s@a the traditional Shannon-theoretic sense. The explanation
quentially guessing wiretappers. For a memoryless plaintegt this more demanding requirement on the key rate, lies
source, we study the highest asymptotic exponential growiththe fact that guessing performance is determined by the
rate of the momenE{Gx (X|Y)"}, asN — oo, attainable by large deviations (atypical) behavior of the source, whereas
the encrypter for a givekey rateK /N — R. This exponential the more familiar equivocation criterion has to do with the
growth rate of E{Gx(X|Y)”}, as a function ofR andp, is typical behavior. For key rates in the intermediate range
henceforth referred to as tlgriessing exponeriinction. H(P)< R< H(P,), it turns out that optimal guessing should
More precisely, leff1, f2,- - -, denote a sequence of encryptarget both the key and message statistics simultaneously.
tion functions, forV = 1,2, - - -, to be chosen by the encrypterwe describe such a guessing strategy and give an explicit
Since the wiretapper is assumed to know the encryptiexpression fotF(R, p) for this range of key rates as well.
function fiy for every N and the plaintext message soue  Finally, we relate the guessing expond#(ti, p) to the best
we assume that the guessing wiretapper would always emplayainable large deviations performance defined as the proba-
the best guessing strategy ff¢ and P, that is, order guesseshility of the eventGx(X|Y) > 2NL (L positive constant)
according to descending posterior probabilities as explaingd a function ofL and R. It is shown that the exponential
above. Under this assumption, we define rate of this probability as a function df for fixed R is the
1 Fenchel-Legendre transform &f( R, p) as function ofp.
E7(R, p) =liminfsup — log B{GN(X|Y)"} (1) The outline of the paper is as follows. In the next section, we
N=oo fy define the notation and give some definitions. In Section IlI, we
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give a single-letter characterization of the guessing exponent I1l. THE GUESSING EXPONENT FUNCTION

funct'lon and in Sectlon. IV, we myesugate this fur'lct.lon. IN" Our main result in this section is the following.
Section V, we characterize the attainable large deviations per-

formance of the guessing wiretapper, and show that the correTheorem 1:For every DMSP and everyp >0

sponding rate function is related to the guessing exponent func- T o _

tion via the Fenchel-Legendre transform. Finally, in Section ET(R,p) = E7(R,p) = E(R, p) (7)
VI, we summarize the results and state some open problemgere E(R, p) is defined as in (3).

The remaining part of this section is devoted to the proof
II. DEFINITIONS AND NOTATION CONVENTIONS of Theorem 1 along with a description of optimum strategies

Throughout the paper, scalar random variables will J8r both parties.
denoted by capital letters while their sample values will  proof: Since E-(R, p) clearly cannot be strictly larger
be denoted by the respective lower case letters. A similgyan E+(R, p), it is sufficient to prove that
convention will apply to random vectors and their sample
values, which will be denoted by boldface letters. Thus for EY(R,p) < E(R,p) < E~(R,p). (8)

example, ifX denotes a random vectdX,---, Xy), then ) o ) .
z = (z1,--,2x) would designate a specific realization Xt The left inequality is a converse theorem from the viewpoint

The plaintext message will be assumed to be drawn frdth CryPtography and a direct theorem from the viewpoint of
a discrete memoryless source (DMS) with a finite alphabet cryptanalysis, whereas the right inequality is the other way
and probability mass function (PMR = {P(x),z € A'}. around.

The probability of a vector will be denotedP(x), which is ~ We start from the proof of the left inequality. For the
given byIIY | P(z;). The Nth-order Cartesian power GE, sake of simplicity, we will present a suboptimal (but asymp-

that is, the space of alV-vectors over, will be denoted by totically optimal) guessing strategy that is easy to analyze.
AN, The probability of an eventt € AN will be denoted Consider first a guessing strategy that ignores the cryptogram
by P(A) or Pr{A}. We shall use the lette® to denote a altogether: L]%ta;l,zg,--- c_onsist of an enur_n_eration of _aII
generic DMS over the alphabat, and use the same notational/€Ctors of X in ascending order of empirical entropies,
conventions as fo. e, HQg ) < H(Qg) < ---. More precisely, suppose

For a DMSQ, we recall that the Shannon entropy is giveQn€ first lists all elements of the type clagy with the
minimum entropy H(Q), then those of the type class with

b
y the second smallest entropy, and so on. (The ordering within
H@Q) =—-)_ Q(z)logQ(x) (4)  each type class is immaterial.) Now, if the messadeelongs
reX to 1, then the number of guesses is clearly upper-bounded

by S0 (o< q) | Te|- Since|Ty | < 2790 [4, p. 30]
and the number of type classes is bounded polynomially in
N, the total number of guesses is further upper-bounded by

where logarithms throughout the sequel are taken to the b
2. The relative entropy betweeap and P is defined as pt

Q(x) oNH(Q)+o(N)
DQ|P) = Q(x)log . 5 .
@I#) x; (=)o P(z) ©) Consider next, an exhaustive key-search attack defined by
. . using the following guessing lisffy' (¥, 1), fr' (¥, u2), -,
\TJ&E Rar;;n ;;EL%%y 6[12] of ordetx (>0, o # 1) associated wherew,us, - -- is an arbitrary ordering of all possible key
@ 1 streams of lengtl = N R. Clearly, this guessing list finds
H,(Q) = : log Z Q(x)* (6) any message_using no more thargV 2 guesses. _Finally, to _
- T gain the benefits of both lists, let us examine the interlaced list
with H1(Q) being interpreted as the Shannon entrdp§(?). Gy = {&1, 7 (o), o, Fy (g u2). -}

For a given source vectarc¢ X%, the empirical probability
mass function (EPMF) is the vect@), = {Qx(a),a € X}, which needs no more than twice the number of guesses of
where Qz(a) = Ng(a)/N, Ng(a) being the number of the better of the two original lists for any given message
occurrences of the letter in the vectorz. The set of all Thus for anyz € 1y, the corresponding number of guesses
EPMF's of vectors inx", that is, rational PMF's with is upper-bounded by
denominatorV, will be denoted byQ . The type clasq; of a ] . . .
vectorz is the set of all vectors’ € X such thatRy = Q.. Gy (zly) < 2-minf2" 7, 2V (@Fo(Ny
When we need to attribute a type class to a certain rational = N min{ R H(Q)}+o(N) — oNMQ.R)+e(N) — (g)
PMF @ € Qn rather than to a sequence &Y, we shall use
the notatiorily. It is well known [4] that the number of type
classes ofV-vectors is bounded byV + 1)I¥1-1, where|X|
denotes the cardinality ¢t'. The standard reference about the e
method of types is the book by Csiszand Korner [4]. Finally, o .
throughout the sequeh(/N) designates a quantity that grows < 2N maxe (@ B =DQIIPIHo(N) (11)
sublinearly with N, i.e., o(N)/N — 0 asN — oc. = gNE(Rp)+o(N) (12)

Since P(Ty) < 2~ NVP@IP) [4, p. 32], we obtain

E{GL(X|Y)} < Z 2  ND@IIP)9pNR(Q.B)+o(N) - (10)
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Since the last inequality holds for every encryption functiowhere B=*(y) = {z: y € B(z)} and equalitya) follows from
fn, then by the definition o5+ (R, p), we get the fact thatn(z) is constant within a type class.
Now, sinceP(z|y,z € Tg) is a uniform PMF over a set

E*(R, p) < limsup ilogE{GRr(X|Y)p} < E(R,p) of M(y) elements, then for any guesser that is informed of
- N B the type of X, we have
(13)

N—oo

E{GN(X]Y)|X € Tp,Y =y}

completing the proof of the left inequality in (8). — Z P(zly, z € To)G n (z|y)”

To prove the right inequality in (8), consider the following 2CTonB-1(y)

encryption functioryy;. Given a source vecter € 15, we first

compress it losslessly into a codewarg@) of the following _ 1 Mz%) i

structure. The first field of, () = [log|Qx|] bits describes M(y)

the index of the type clas$y = 1. The second field of 1 M(y)

lo(z) = [log [Tg[] bits gives the index of within T,. Now, > / u” du

assume thatVR is an integer and consider the two cases M(y) Jo

NR< log|Ty| and NR > log|Ty|. If NR< log|Tg| then _ My (15)
the second field of the code is in turn implemented in two o 1+4p

parts. We partitiorily, into n = ||15|/2V | disjoint subsets
14,13, -, T3, each of size™ ", and perhaps an additional
remainder subseT;™ of size at mos2¥® — 1. Now, the NR > log|1Tg|

first part of the second field encodes the indexX the subset = o
T}, that containsz, whereas the second part, 8fR bits, thenZon B~ (y) =1q and so.M(y) = [Ig|. Otherwise, if
encodes the_mdex af within 77, Hgvmg compressed in the NR< log|Tg|

above described manner, encryption is carried out as follows.

If NR > log |Iy|, then the cryptogramg is the codeword(z) andy falls in Té for somel < i < n,thenTpNB~(y) = Té,
with the last/y(x) bits encrypted using simple bit-by-bit XORbecause any contents of the Ia§tR bits form an existing
with the bits of U. (Note, that sinceV R is assumed integer, codeword of some: € T, and so,M (y) = 2VE. Finally, if
NR > log |Tp| actually impliesNR > [log|Tg|] = l2(x).)

Otherwise, only the lasV R bits of the codeword (that is, the NE < log|Tg)|

i;e;:r?::r part of the second field) are encrypted in the aboé’r?dm c T5+1* then Ty, N B~1(y) = T5+1 which might be

For the purpose of obtaining a lower bound Ogmall, but this happens with probability

E{GN(X]Y)"}, we may assume that the guesser is in- |T5+1|/|TQ| < (ZNR—l)/|TQ| <1/2

formed of the typel; of the messager. Obviously, any

lower bound onE{G x(X|Y)”} for such an informed guesser(even ifn is as small as 1). Therefore, to summarize all three
is also a lower bound for the original, uninformed guessegases, we have the following:

pecause the class of guessing strateg|es with s@e mfprmatlpn E{GN(X|Y)|X € T}

is a superset of the class of guessing strategies without it. ,

Since P is assumed memoryless, then for any givén E{MY)'|X € T}

Now there are three cases: If

the conditional PMFP(x|z € Ty) is uniform within T - I+p
independently ofP. Due to the above described encryption =~ 11 [min{2V? 1Tl
mechanism, the conditional probability gfgivena in T, is “21+4p ’
given by P(y|x) = 2~ for y € B(x) and zero elsewhere, _ b oNpmin{RH@—0(V))
wherem(z) = min{NR, [log|Zy|]} and B(z) is the set of 2(1 4+ p)
y-vectors that can be obtained as cryptograms,of.e., all S 1 N pI(Q.R)—o(N) 16
y-vectors of the same length a&e), which agree withe(z) = 2(1+4p) ) (16)
except perhaps for the last(z) bits. By the Bayes rule, it _ ] ) -
now follows that forz € T, andy € B(z) Emally, by averaging with respect to (w.r.t.) the probabili-
ties of {I}, taking advantage of the fact thir {Tgo} >
Plely.x € To) = P(z|x € To)P(ylx) 2-ND@IP)—o(N) 'and using the method of types, we conclude
Ty,x < lq)= Plele e To)Plale that for the above described encryption scheme, and for any
Y P@a € To)P(yla) :
guessing strategy
:L‘,ETQ
|TQ|—12—rn(a:) o 1
= 1 f —logE{GN(X|Y)"} > E(R, p). 17
S gl iminf — log B{G N (X|Y)"} > E(R, p) a7
) “"ETQﬂffl(y) Since we have considered a specific encryption scheme, the
a A

4 2 (14) left-hand side is clearly a lower bound &1 (R, p), and this
TN B~'(y)| M(y) completes the proof of the right inequality in (8). O
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It is interesting to note that both the guessing stratedlge equationd (Fy) = R that achieves the minimum. These
and the encryption strategy described in the above proof anay be summarized as follows.
universally asymptotically optimum in the sense of being
independent of the underlying memoryless souftand the
moment orderp. Recall, that the strictly optimum guessing
strategy depends ofiP(z|y)} and hence also ofiP(z)}.

Proposition 1: The guessing exponent for a DMS is given

R, R<H(P
E(R p) — (p - 93)R + HRHI/(1+9H)(P)7
IV. A M ORE EXPLICIT EXPRESSION ’

In this section, we give a more explicit expression for PHL 40 (D), R>H(FP,)

the guessing exponent functidfi(R, p) and investigate its
behavior as a function aoR for fixed p.
First observe that

(25)
wherefr is the unique solution of the equatidd = H(FP)
for R in the rangeH (P) < R < H(FP,).

Thus for low rates, i.e.R < H(P), the guessing exponent
E(R,p) is just pR, which can be interpreted as a situation

PU(Q, R) = pmin{H(Q), R} where the key rate is so small that it pays off just to make

= min [0H(Q)+(p—0)F].  (18) an exhaustive search over all possible key sequences, namely,
- examinefy(y,u;), for all i = 1,2,---,2¥% and essentially
Substituting this into (3), we obtain all of them will be examined (in the exponential sense).

On the other extreme of high key ratBs> H(F,), we have

E(R,p) = max min [0H(Q)+ (p— )R- D(Q|P)]  E(R,p)=pHy a4, (P) (@plateau region), which means that
Q 0O=b=p the cryptogram is so “noisy” that it is effectively useless

(19)  for guessingX and the wiretapper might as well ignore it

= 01<1%il<1pmgx[9H(Q) + (p— R — D(Q||P)] and guess afX directly_ only from _knowledge of the prior

- = (20) probabilities { P(2)}. It is not surprising then, that the term
pH1/14,)(P) coincides with the guessing exponent without

gje information studied in [1].

For key rates betweeH (P) and H(P,), corresponding to
the curvy part of the functioE (R, p), the optimal guessing
strategy can be thought of as a combination of exhaustive
search for the key and the message (in the spirit of the first
part of the proof of Theorem 1).

where the maximization and minimization are interchangeabsi
because the bracketed expression is concaw@ and affine
in 6.

Let P; = {P;(z),z € X} denote an auxiliary DMS with
letter probabilities given by

P+ () Next consider the slope oE(R, p) as a function ofR
Py(z) = . (21) for a fixed p. The partial derivativedE(R, p)/OR equalsp
> PYa+)(a) for R<H(P), and equals zero forR>H(P,). For
@' eX H(P)< R< H(P,), we have
It is easy to show (see, e.g., [1]) that fer-0 OE(R, p) don  dor d
“or 77T RUR YR e
max[sH(Q) — D(Q|P)] = sHiya45)(P)  (22) "
Q e [BrH /w40 (P) (26)
and that the maximum is achieved = P;,. Thus we have =p—0p— Rcff—; + C?—;H(PgR) (27)
. =p—0Og. (28)
E(R.p) = min [0H/040)(P)+ (p = O)F. (29 #
, The function #r is increasing in R in the range
It is also easy to check that H(P)< R< H(P,), which starts a#r = 0 for R = H(P)
d and monotonically increases & = p at R = H(F,). Thus
7 0H1/110)(P)] = H(Fy). (24) p — 0g is decreasing ink, and hencefF(R, p) is concave in

R > 0 for any fixedp > 0. The typical shape oE(p, R) as
Thus the derivative of bracketed term in (23) w.it.is @ function of B is shown in Fig. 1.
H(P;) — R. Since H(P,) is nondecreasing i > 0 (as can
be easily shown using (22)), the bracketed term in (23) has a
nondecreasing slope and hence is conveX in0. So, for the V. LARGE DEVIATIONS PERFORMANCE
minimum in (23) we have three cases:HYFy) — R >0 for Moments of the number of guesses are intimately re-
all 0 < 8 < p, or equivalently,H(P) > R, and the minimum lated to the large deviations performance of the guesser
is achieved atl = 0; ii) H(FPy) — R<O0forall 0 < 6 < p, (see also [2], [3]), i.e., the best attainable exponential rate
or equivalently,H(P,) < R, and the minimum is achieved atof Pr{Gx(X|Y) > 2V"} for some positive constant.
8 = p; and iii) there exists a unique solutidh< g < p to Analogously to the definitions regarding the guessing exponent
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less than2™V &

E(R,r)
0, |T| < 2NE
T > ]\rL = 2]\rL T
Pr{Gy(X|Y)>2""XeTg} 1— . |To| = 2VF.
15|
rHI/(]+r)(P) ................... " (33)
TH(P) v S On the other hand, for type classes whose §Izg is larger
P than 2VR
PI’{GN(X|Y) > oNL X € TQ}
0 2N < N
>4q 1 2Nt NR < onL  (34)
Lo . {§<1—2A—,R>, QNR > oNL
H(P) H(P,) . .
These two equations can be unified to
Fig. 1. Guessing exponent functidi(R, r) versusR. PF{GN(X|Y) > oNL|x c TQ}
_ . 0, min{2VR, |Tp[} <2V
function, let us define U 9NL . ' .
= <1 - T), min{2VE |To|} = 2N,
NI 2 min{2N 8, | Ty}
F~(R,L)= 1}\111};10&}15 —— log P{Gn(X|Y) > 27"} (35)
(29) Thus
; > oNL
and, similarly, PGV (X]Y) 2 277} ]
> Y P(Ty) PHGN(X|Y) > 2V X € T}
FT(R,L) =limsup 1fnf [—— logPH{GN(X]|Y) > 2NL}} Qe )
N—oo [N
(30) = > P(Tq)
{Q: min{2V 5, |Tq [} >2NLT1}
where the assumptions on the guessing strategy and on the > Z 9—ND(Q|IP?)—o(N)
asymptotic key rate are as above. Our next result is the {Q: W(Q,R)>L—o(N)}
following. > 9~ NF(R.L)=o(N) (36)
Theorem 2: For every DMSP and everyL >0 This completes the proof of Theorem 2. O
FY(R,L)=F (R,L)=F(R,L) Note that the same encryption and guessing strategies of
A min D@Q||P). (31) the proof pf Theorem 1, are also asymptotically optimal in the
{Q:h(Q,R)>L} large deviations sense.

We next show that’( R, p) and F'(R, L) are related via the

Note thatF(R, L) is infinite for L > R, and given by the Fenchel-Legendre transform.
source-coding exponent [4, p. 45hin(q. r(@)>ry D(Q|P),  Theorem 3:For a DMS P and every key rat&k

for L < R.
- E(R,p) = sup[pL — F(R,L)]= sup [pL - F(R,L)]
Proof: The proof is similar to the proof of Theorem 1. L>0 O<LzR
Again, it is sufficient to prove that 37)
and
F¥(R,L) < F(R.L) < F~(R,L). (32)

For the left inequality, consider again the guessing strategy F(R,L) = sup[pL — E(R, p)]. (38)
described in the proof of Theorem 1. Since p>0

G (zly) < 2min{2VE 2NVH(@=)) — 9. gNh(Qs. 1) . . _ .
Proof: The first equality of (37) is obtained as follows:

the probability thatGy(X[Y) would exceed2™" cannot be gy [,L — F(R,L)] = sup[pL —  min _ D(Q||P)]
larger than the probability of the evehtQx, R)+1/N > L, L>0 L>0 {Q:h(Q,R)>T}
which is easily shown (using the method of types) to decay = sup max  [pL — D(Q||P)]
exponentially at the rate of'(R, L). L>0{Q:h(@.R2L}

To prove the right inequality in (32), consider again the = max [L:L%?@R)}[PL— D(Q||P)]
encryption schemgy, described in the proof of Theorem 1. — max|ph(Q, R) — D(Q||P)]

Using the same considerations as in the proof of Theorem 1,
we have the following. For type classes whose giZg| is = E(R, p). (39)
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The second equality of (37) follows from the fact that?,.(N), which is still subexponential and hence would not

F(R,L) = o0 for L > R. As for (38), we have the following: affect the exponenf (R, p).
We would like to mention some extensions of the present

sup{pL — E(R, p)] problem setting, which might be interesting to consider for
p>0 future research. First, it should be stressed that the Shannon ci-
= Sli%[PL - IHSX[Ph(Q R) — D(Q[|P)]} pher system that we have considered here allows for variable-
/7 .
_ ) length cryptograms, and our results hold for an encryption of
- mén[pL — M@, B) + D(Q||P)] a single block or under the assumption that the wiretapper is

= min sup[pL — ph(Q, R) + D(Q||P)] (40) synchronized First, _|t would be of interest to generalize the
Q p>o0 results to sources with memory, such as Markov sources, that

= min D(Q||P) can model natural languages. Secondly, one might consider the
{Q: (@ R)2L} case in which the wiretapper is not required to reconstruct the
=I(R,L) (41) messageX exactly, but allowed some reconstruction error.

In other words, as soon as the wiretapper provides a guess
where the interchangeability of minimization and maximizagithin distortion level D from the true message [2], we
tion is justified by the fact that the bracketed expression jigight regard the cipher as broken. The problem then is to
affine in p and concave ). This is true becausk(Q, R) is  determine the guessing and large deviations exponents. This
the minimum between a constant and a concave functiontphe of reconstruction with some distortion has been studied

Q. This completes the proof of Theorem 3. U py Yamamoto [12] in the ordinary paradigm of the Shannon
cipher system. Another extension that might be considered is
VI. CONCLUSION AND FURTHER RESEARCH the case where the wiretapper observes a noisy version of

In this paper, we introduced measures of cryptographic sedjje cryptogram, &.g. aftdf passes.through a noisy channe,l.
rity that are based on the notion of guessing, and gave formufadvould be of interest to determine how the wiretapper's
for computing them. To this end, we have combined earli@frformance would be degraded in that case.
works on guessing with Shannon-theoretic cryptography.

One important comment is in order: The Shannon cipher
system that we have considered here allows for variablgi] E. Arikan, “An inequality on guessing and its application to sequential

length cryptograms. Therefore, strictly speaking, our results —decoding,"IEEE Trans. Inform. Theoryol. 42, pp. 99-105, Jan. 1996.
hold f tion of a sinale block or. equivanent] nder{Z] E. Arikan and N. Merhav, “Guessing subject to distortiol5EE Trans.
ola for encrypt Ing » equiv y, u Inform. Theory vol. 44, pp. 1041-1056, May 1998.

the assumption that the wiretapper knows (or is able tgs] , “Joint source-channel coding and guessing with application

determine) the boundaries between the encrypted words given t1°7536e_ql“766”$iaggscofgig%*"EEE Trans. Inform. Theoryvol. 44, pp.
their concatenation. The natural question that arises here [i§ |. csisar and J. Krner, Information Theory: Coding Theorems for

what happens if this assumption is relaxed. The lower bound Discrete Memoryless SystemdNew York: Academic, 1981.
E(R, p) to any moment of the number of guesses continueé?] W. Diffie and M. E. Hellman, “New directions in cryptographyEEE

- - . Trans. Inform. Theoryvol. IT-22, pp. 644-654, Nov. 1976.
of course, to hold because without the boundary informatioris] M. E. Hellman, “An extension of the Shannon theory approach to
the expected number of guesses can only grow. The upper cryptography,"IEEE Trans. Inform. Theoryvol. IT-23, pp. 289-294,
. . May 1977.
bound remains valid as well as long as the length.(V) [7] A. Lempel, “Cryptology in transition,"Comput. Sury.vol. 11, no. 4,
of the longest cryptograny = fn(2,u) (over all 2 and ) pp. 285-303, Dec. 1979.
is a subexponential function a¥ (normally it is linear). If (8 ]]Eé_é ’\\’I'glssfg' pg”sg‘sfr_%iuga'&g;olgggtemporary cryptologyetoc.
this is the case, the guesser can synchronize to the encrypt@fl o. Rényi, “On measures of entropy and information,” frroc. 4th

bitstream by scannin@ (N) hypotheses corresponding to Berkeley Symp. Math. Statist. Probabili(erkeley, CA), 1961, vol.

11ax

: ; ; i 1, pp. 547-561.
llna.x(N) consecutive possible locations of the beginning of th[?0] C. FI)Ep Shannon, “Communication theory of secrecy systeiBe|l’ Syst.

next encrypted word, timeg,...(N) possible word lengths, Tech. J, vol. 28, no. 3, pp. 565-715, Oct. 1949.

and interlace the Corresponding guesses according to fh’g H. Yamamoto, “Information theory in cryptologyJEICE Trans, vol.
h described in the proof of Theorem 1. The total num E 74, no. 9, pp. 2456-2464, Sept. 1991 ,

scheme I I p. : u t{?ﬁ] __, “Rate-distortion theory for the Shannon cipher systetREE

of guesses would thereby increase by a factor of no more than Trans. Inform. Theoryvol. 43, pp. 827-835, May 1997.
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