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Résumé — Forme et stabilité de gouttelettes de liquide sur des fibres — La forme d’une petite goutte
de liquide sur une fibre de petit diametre peut étre décrite soit par une allure en tonneau axé symétrique,
soit par une allure en perle (cloche). Les expériences montrent que lorsque le volume réduit, défini par le
rapport entre le volume de la goutte et le rayon de la fibre, est grand, la configuration préférée est celle en
tonneau. Lorsque le volume réduit est petit, une transition se produit vers la forme en perle. Le volume
correspondant a cette transition dépend de 1’angle de contact d’équilibre.

Dans cet article, nous considérons la solution connue de 1’équation de Laplace pour la forme en tonneau.
Nous étudions le lien entre le profil, le point d’inflexion dans le profil et la stabilité de la goutte. Dans le
cas de la forme en cloche, il n’existe pas de solution connue de 1’équation de Laplace. Nous développons
ici une approche en éléments finis pour déterminer le profil d’une goutte sur une fibre et présentons des
résultats numériques pour la forme en cloche. Les énergies de surface pour ces deux types de goutte sur
une fibre sont calculées pour plusieurs volumes de goutte et angles de contact. Les implications
correspondantes pour la stabilité de ces gouttes sont alors discutées.

Mots-clés : fibre, angle de contact, mouillage, stabilité, forme de goutte.

Abstract — The Shape and Stability of Small Liquid Drops on Fibers — The shape of a small liquid
drop on a small diameter fiber may be either an axisymmetric barrel shape or it may be a non-
axisymmetric clam-shell shape. Experiments show that when the reduced volume, given by the volume of
droplet divided by the fiber radius, is large the barrel shape is the preferred conformation, but that as the
volume reduces a transition to a clam-shell (pearl) shape occurs. The volume at which this stability
transition occurs depends upon the equilibrium contact angle.

In this work we review the known solution to Laplace’s equation for the barrel shape and consider the
link between the profile, the inflexion in the profile and the stability of the droplet. No known solution of
Laplace’s equation exists for the clam-shell shape droplet. We therefore consider a finite element
approach to determining the possible shapes of a droplet on a fiber and give numerical results for the
clam-shell profile. The surface free energies for the two types of droplet conformation on a fiber are
computed for several droplet volumes and equilibrium contact angles and the implications of this for
droplet stability are discussed.
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INTRODUCTION

In equilibrium a small droplet placed on a flat solid surface
adopts a spherical cap shape with an equilibrium contact
angle, 6, given by Young’s equation cos 6, = (Yg;, — Yg) /
Yv» Where Y, ¥, and v, are the solid-vapor, solid-liquid
and liquid-vapor interfacial tensions (Adamson and Gast,
1997). Thus information about the solid-liquid interaction
can be gained by measurement of the contact angle provided
the surface is one that is only partially wet by the liquid. In
the case that the spreading power, S = Y, — (Yo, + ¥p)» 18
positive no equilibrium contact angle exists and the liquid
spreads to form a thin film (de Gennes, 1985; Léger and
Joanny, 1992). Chemically altering the solid surface will
modify the interfacial tensions and can be used to control
wetting. However, wetting of a flat surface can also be
modified by control of the local geometry of the solid
surface. Wenzel (1936) argued that surface roughness would
alter the equilibrium contact angle. Richard and Quéré (1999)
have recently demonstrated experimentally that modifying
the local geometry, together with the surface chemistry, can
enable control of the equilibrium wetting.

The influence of the geometry of a surface on its wetting
properties is not restricted to ideas of local geometry as used
in rough or patterned surfaces. A common shape of material
is that of a fiber, i.e. a solid cylinder. The coating and wetting
of fibers is important to many industries (Quéré, 1999).
However due to the global geometry of the fiber shape, the
wetting of a material in the form of a fiber is quite different
to that of the same material in the form of a flat surface
(McHale et al., 1997). A small droplet placed on a fiber can
adopt one of two conformations (Figs. la and 1b): an
axisymmetric barrel shape or a non-axisymmetric clam-shell
shape (also known as a “pearl”). For larger volumes and
smaller contact angles a barrel shape is preferred over the
clam-shell shape. In detergency, the removal of oily soil in
the form of a barrel is more difficult as it involves a larger
solid-liquid interfacial area. Reducing the volume of a barrel
shape leads to a stability transition resulting in the clam-shell
shape. This is known as the roll-up process (Adam, 1937); a
sequence of images showing this transition during a solu-
bilization experiment is given by Carroll (Fig. 2 of Carroll,
1986). The fiber shape also results in other differences

compared to the wetting of a flat surface. A vanishing contact
angle, as defined by Young’s equation, will on a flat surface
give a film, but on a fiber it is possible that a macroscopic
barrel shape will still exist (McHale et al., 1997; Carroll,
1976). A vanishing contact angle does not guarantee film
formation on a fiber. The condition for film formation is no
longer that the spreading power should simply be positive,
but that it should be greater than some critical value
(Brochard-Wyart et al., 1990; Brochard, 1986). In addition, a
barrel-shape profile also involves a point of maximum slope,
an inflexion, that can be quite different from the contact
angle and which can occur close to the contact line. This can
make it difficult to accurately measure the contact angle
(McHale et al., 1997, 1999).

In this work we consider the influence of the fiber’s global
geometry on its wetting. In particular, we focus on the roll-up
transition from a barrel shape to a clam-shell shape. The
solution for the profile of a barrel is discussed in relation to
minimizing the Laplace excess pressure. The consequences of
this for the stability diagram are indicated and it is conjectured
that an inflexion in the profile of a barrel shape is required for
the droplet to be stable. As no known solution exists for the
profile of a clam-shell shape, a finite element approach is
developed. Preliminary results are presented giving the
surface profiles and surface free energies for barrel shapes and
clam-shell shapes of identical volume and contact angle.

1 GLOBAL GEOMETRY VERSUS SURFACE CHEMISTRY

On a flat surface a vanishing equilibrium contact angle
indicates film formation. The energy per unit area for a vapor
directly in contact with a solid is Y. If some of the vapor
now condenses into an infinitely thin film intercalated
between the solid and the bulk vapor the energy will become
(Ys, *+ Vpy) due to the two interfacial areas. This latter
situation is energetically preferred when § = yg, — (Yo, + V)
is positive; S is the spreading power. Rearranging shows that
if (Vg — Yg) / Yy > 1 a film forms. However, the left-hand
side of this inequality is simply Young’s equation for cos 6,
and so film formation is preferred once the equilibrium
contact angle vanishes; indeed it is no longer correct to refer
to equilibrium contact angles. This concept of film formation

Figure 1
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The two preferred conformations on a fiber are (a) the barrel shape, and (b) the clam-shell (pearl) shape.



G McHale et al./ The Shape and Stability of Small Liquid Drops on Fibers 49

can be related to the Laplace excess pressure across the
liquid-vapor surface of a small drop of liquid resting on a flat
solid surface. The Laplace pressure is given by:

AP = yLv[L+iJ ()
R R

where R, and R, are the two principal radii of curvature at a
point in the surface. If we now reduce the contact angle, but
maintain the spherical cap shape, both radii of curvature will
increase; this can be seen by considering the radii at either
the apex of the droplet or the contact line. A film will form
because the curvature will vanish at all points in the liquid-
vapor surface; the Laplace pressure will be reduced towards
zero. The vanishing contact angle is consistent with a
vanishing pressure (here we are only concerned with classical
capillarity and so ignore van der Waals forces) and film
formation. Importantly this argument is consistent with
conserving the fluid volume.

On a fiber, film formation is inhibited. A vanishing
equilibrium contact angle is not sufficient for film formation.
A thin sheathing film around a fiber must be consistent with
fluid volume being conserved. However, if we spread the
fluid along the fiber we necessarily reduce the radius of the
film about the fiber axis. At the contact line one principal
radius will increase whilst the other will decrease to maintain
fluid volume. Physically, it seems clear that the way to
minimize the Laplace excess pressure is to make one radius
of curvature negative rather than positive at the contact line.
Since the apex of the barrel must have both radii positive this
means an inflexion angle must exist in the profile. For a
vanishing equilibrium angle it is therefore possible to have a
macroscopic barrel shape with a finite Laplace excess
pressure. Thus, although the chemistry may determine the
contact angle through Young’s equation, the wetting of the
fiber surface is strongly influenced by the global geometry of
the cylindrical shape.

2 PROFILE SOLUTION FOR A BARREL SHAPE

The solution of Equation (1), subject to the boundary
condition of a specific contact angle and axial symmetry, was
given by Carroll (1976). This barrel-shape solution involves

transforming the Laplace excess pressure using:
Rdp=dxsec¢o and: R,=xcscod 2)

and then imposing the boundary conditions:

¢:§ at x=x, 3)
¢:__9 atx:xf “)

where X is the fiber radius and x, is the maximum drop radius
about the fiber. The solution is derived in terms of elliptic
integrals and can be used to evaluate volume, pressure and
surface areas, and hence the surface free energy (McHale et
al., 1997). Measurement of drop shape parameters, such as
wetted length and drop thickness, can then be used to estimate
the contact angle (McHale et al., 1997, 1999; Carroll, 1976).
Re-examining the solution we can understand the link to
the idea of a change in sign of one of the radii of curvatures at
the contact line. Equation (2) is not simply a coordinate trans-
formation, but involves a path in the ¢-parameter space. For
any value of x, the angle ¢ is 90° minus the slope of the
profile. In principle, two possible paths in the ¢-parameter
space exist as shown in Figure 2. In the first case the angle ¢
changes in a single-valued and monotonic manner from the
first boundary condition (Egq. (3)) to the second (Eq. (4)). In
the second case the angle ¢ is no longer single-valued, but
starts at the first boundary condition (Egq. (3)), reduces by a
maximum angle of 0, and then increases back again to reach
the second boundary condition (Eq. (4)). Whilst the same end-
points are reached in both cases the effect in Case 2 of
approaching the end-point from an anticlockwise direction
results in a change of sign for R, compared to R,. This change
in sign was argued earlier as being necessary to minimize the
Laplace excess pressure. Of course, these two paths do not
correspond to the same volume of fluid, but it is the case that
the elliptic solution for the barrel-shape profile appears to pick
out the second path rather than the first. Physically, the second
path corresponds to a profile that has an inflexion angle, 0,

X=X
A

Path 2

Path 1 Path 1
Ry >0
R,>0
Path 2
Ry <0
R, >0

Figure 2

Two possible paths in the parameter space for the solution
giving a barrel shape. The first path retains positive radii of
curvature at all points whilst the second involves a change in
relative sign between the two radii.
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with the contact angle occurring numerically once above this
point and once below this point (i.e. at the contact line with
the fiber).

3 THE ROLL-UP TRANSITION

Physically, a large volume droplet in a barrel shape without
distortion due to gravity can be obtained using an oil drop on
a fiber in an aqueous solution. Roll-up, the transition from a
barrel shape to a clam-shell shape, can then be induced by
solubilization of the oil drop using a surfactant. The drop
volume then slowly reduces whilst maintaining an almost
constant contact angle. Data from such experiments has been
published in the literature and this is reproduced in Figure 3
together with a stability criterion suggested by Carroll (1986).
This diagram shows the maximal drop thickness in reduced
coordinates, n = xz/xf, and the contact angle, 6, at which the
barrel shape is lost and the clam-shell shape forms. From
Figure 3 it is clear that the stability criterion given by the solid
line mirrors the trend in the data. However, the agreement is
far from satisfactory as the difference in maximal droplet
thickness observed for a transition compared to the prediction
can be more than a factor of two. At present, it is not clear
why such a discrepancy should exist. The experiments
themselves clearly have limited accuracy, as shown by the
scatter in the data. This is not a surprise as the solubilization
process is difficult to control and may involve non-
equilibrium effects such as concentration and surface tension
gradients. However, it is also possible that the stability
condition itself may involve an invalid assumption.

To derive a stability condition for the barrel shape, Carroll
(1986) first re-wrote the Laplace excess pressure in terms of
the barrel parameters, 7 and 0 :

AP =y | b L] o P (_"—20059«) 5)
R R Xy n” -1

He then argued that the two principal radii of curvature
were therefore known at the apex of a drop (i.e. at x = x,)
since:

I Xy
& ©)

Equation (5) requires that the second radii of curvature be
given by:

1 1 n* —2ncos, +1 o
Rz Xg n(nz—l)

Carroll’s argument was then to consider a perturbation of
the shape (Fig. 4), using a change &n, whilst maintaining a
constant volume. This type of perturbation will increase R,

0 25 50 75
Contact angle

Figure 3

Literature data giving the contact angle and drop thickness at
which a change of conformation of a drop on a fiber occurs
(data is from Carroll, 1986). The solid line is Carroll’s stability
criterion and the dotted line shows the condition for the
inflexion point to reach the contact line at the fiber surface.

At the apex
R, decreases
R, increases

Figure 4

An initially barrel-shaped droplet (solid line) is perturbed by
increasing its maximal thickness such that at the apex, R,
increases and R, decreases (dashed line).

whilst decreasing R, and will therefore change the Laplace
excess pressure calculated from Equation (1). The change in
pressure due to this perturbation is:

2n° cos 0, - 3n? +1 )

0(AP)=-2
(AP) Yy n2(n2 - 1)2

and this changes sign at specific values of n and 6,. If we
imagine the upper half of a drop increasing in volume and the
lower half decreasing in volume, then for one sign of
Equation (8) fluid will be driven back into the lower half thus
restoring the shape, but for the other sign of pressure change
fluid will be further driven into the top thus resulting in a
destabilization of the barrel shape and the formation of a
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clam-shell shape. The stability condition given by the solid
line in Figure 4 is therefore simply the condition for the sign
change in Equation (8).

The stability argument is attractive, but there are several
possible problems. The first is that an unphysical assumption
may have implicitly occurred in the argument. A second
possibility is that the condition does not refer to the absolute
equilibrium as defined by a minimum in the surface free
energy.

4 CONJECTURE ON STABILITY

Consider the second of the parameterized paths shown in
Figure 2. This path describes a barrel shape with an inflexion
angle in the profile. By moving the inflexion angle a
perturbation of Path 2 would be possible whilst maintaining
the equilibrium contact angle, and hence boundary
conditions. For the barrel shape described by Path 2, a
perturbation of the inflexion angle would not alter the relative
signs between the two principal radii of curvature at the
contact line. However, as the volume of a barrel-shaped drop
reduces, the inflexion angle also reduces towards the value of
the contact angle. Eventually Path 2 apparently becomes the
same as Path 1, but in the limit there is a difference between
approaching the end-point of the path from the anticlockwise
and the clockwise directions. In the former case, the radii of
curvature have opposite signs whilst in the latter case the
signs are the same. Changing from Path 2 to Path 1 involves
a singularity. For Path 1, we no longer have an inflexion
point on the physical profile of the drop to perturb. This may
indicate that the stability argument is correct in predicting
stability, but only in the restricted range of the parameter
space corresponding to Path 2. Whilst it is not clear that this
is indeed a flaw in the stability argument its consequences,
should it be true, can be evaluated.

The condition for the angle of inflexion to become the
same as the contact angle is known (McHale et al., 1997) and
depends upon the contact angle and the volume (through the
drop thickness):

n _ 1+sm6€ (9)

™ cos®,

Equation (9) is plotted as the dotted curve in Figure 3. The
trend of the curve again mirrors that of the experimental data.
Exact numerical agreement is not obtained, but it is closer
than the previous stability condition (solid curve). All points
above the dotted curve lie on Path 2 and correspond to barrel
shapes with inflexions in their profiles. According to
Carroll’s stability argument these points correspond to barrel
shapes that are also stable against perturbations in their
profiles. Points in Figure 3 that are between the solid and the
dotted curves correspond to hypothetical barrel shapes using
Path 1 and they have therefore no inflexion in their profiles.

In this approach, the question of stability is therefore
converted into a question of whether such barrel shapes can
exist. We offer no definite answer to this question. The
conjecture for stability, and hence the roll-up transition, can
be phrased as the following, stability of a barrel shape is lost
when the reduction in volume causes the inflexion point to
touch the fiber surface. Mathematically, this conjecture is
given by Equation (9).

5 SURFACE FREE ENERGY CONSIDERATIONS

The surface free energy of a droplet on solid system can be
calculated from the interfacial areas, provided the shape is
known. For the axisymmetric barrel shape the profile
solution is known in terms of elliptic integrals and surface
free energy calculations are possible (McHale et al., 1997). A
similar calculation cannot be performed for a clam-shell-
shaped drop as no solution to this non-axisymmetric shape
is known. To determine which of the two conformations is
energetically preferred it is necessary to calculate the
equilibrium shape of both droplets. The completion of such
calculations would enable the condition for absolute stability
to be determined, at least numerically. We have therefore
begun preliminary calculations of the equilibrium shape of
clam-shell type droplets subject to a specified fluid volume
and equilibrium contact angle. The numerical approach is to
apply finite element computations using the public domain
Surface Evolver package (Brakke, 2000), which was
developed as part of an NSF (National Science Foundation)
funded geometry supercomputing project. In this method
surfaces are modeled as unions of triangles and vertices are
iteratively moved from an initial trial shape until a minimum
energy configuration is obtained. In our case, the energy is
given solely by surface tension and constraints are imposed
on the volume, contact angle and the cylindrical shape of the
solid surface. Surface Evolver is particularly flexible and
allows energies and coordinate profiles to be extracted from
the evolved shape. However, movement of vertices, edges
and facets on constrained faces can be problematic. The
energy of a facet on a constrained face is therefore converted
to a line integral around the boundary. One potential problem
for small diameter fibers is that spurious reductions in energy
can be generated by lines short-circuiting the fiber cross-
section, although we did not find this to be a problem.

Figure 5 shows the starting shape and the finite-element-
evolved shapes for four barrel type droplets (Figs. Sa-5d).
The first two of these droplets correspond to an equilibrium
contact angle of 0° and reduced volumes (i.e. volume/xf3) of
208.8 and 53.75 respectively. The second uses a higher
contact angle of 60°, but with the same reduced volumes.
Using 1056 vertices, the surface free energies normalized by
Y,y predicted from these shapes are 122.3, 40.8, 152.6 and
60.09. These results are close to the values of 122.2, 40.5,
152.6 and 60.08 obtained by using the elliptic integral
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Finite element starting approximation for an axisymmetric drop. Finite-element-evolved shapes for contact angles and reduced volumes of

(a) 0° and 208.8, (b) 0° and 53.75, (c) 60° and 208.8 and (d) 60° and 53.75.

solutions for the profiles'; Figures 5-7 are plotted using less
vertices. The good agreement for the surface free energy
between the two numerical approaches provides confidence
that the finite element method is working correctly. Figures 6
and 7 show the finite element calculations using the same
liquid volumes and contact angles, but with a starting shape
that is appropriate to a non-axisymmetric solution. Figure 6a
shows a view down the axis of the fiber for the large droplet
with a vanishing contact angle. This shape does not evolve to
a clam-shell equilibrium because further iterations lead to the
lower part of the shape joining; physically this corresponds to
the formation of a barrel shape. Figure 6b shows the axial
and side views of the smaller droplet with a zero contact
angle. In this case the lower parts have not joined, but the
surface free energy of 42.12 is larger than that for the barrel
shape (Fig. 5b). The angular shape of lower part of the side
view indicates that further improvements in the finite element
shape can be expected with an increase in the number of ver-
tices. For the larger contact angle of 60°, shown in Figures 7a
and 7b, we find the large volume drop evolves to a shape
where the two sides of the drop join in the same manner as in
Figure 6a. In the last case of a contact angle of 60° and a
reduced volume of 53.75 (Fig. 7b) the shape evolves to a
clam-shell type shape similar to Figure 6b. However, in this

(1) A number of programs for calculating the contact angle and surface
free energy for a barrel shape from measurements of barrel parameters
are available from the corresponding author.
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Figure 6

Finite element starting approximation for a clam-shell-shaped
drop. Finite-element-evolved shapes for a contact angle of 0°
and reduced volumes of (a) 208.8 and (b) 53.75 (axial and
side views).
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Figure 7

Finite element starting approximation for a clam-shell-shaped drop. Finite element results for a contact angle of 60° and reduced volumes of

(a) 208.8 and (b) 53.75 (axial and side views).

case the predicted energy is 56.75, which is less than for the
equivalent barrel shape. Refinements of the finite element
mesh would be expected to further reduce the predicted
energy and would therefore confirm that the clam-shell is the
preferred conformation for the parameters in Figure 5c.

These finite element calculations are only preliminary, but
they suggest that it will be possible to determine numerically
the shape of clam-shell drops and their surface free energy.
The construction of a diagram showing absolute stability
should then be possible. However, absolute stability may not
be appropriate for describing the roll-up transition. The finite
element approach should allow a direct test of the stability of
an equilibrium clam-shell-shaped droplet by numerically
perturbing the coordinates of the vertices. Further evolving of
the perturbed shape may then lead to either a barrel shape or,
alternatively, restore the clam-shell shape. One limitation of
the finite element approach and the previous analytical
stability arguments in this work is that they rely purely on
classical capillary considerations and ignore van der Waals
forces and microscopic films that can exist in practice. To
overcome these limitations, numerical simulations of wetting
on fibers, using for example molecular dynamics as
previously applied to wetting on flat surfaces (de Ruijter et
al., 1999), or numerical evaluation of free energy functionals
(Bauer and Dietrich, 2000), could be used to provide an
alternative approach to the assessment of the stability of the
conformations and the roll-up process.

CONCLUSION

The global geometric shape of a solid surface as well as the
surface chemistry can substantially alter the wetting
properties of the surface. On a fiber this is apparent from the
behavior of drops with a vanishing equilibrium contact angle,
the formation of films and the existence of two
conformations of droplets. Stability of a barrel-shape drop
may be perturbed by reducing the drop volume or increasing
the contact angle and this is described as the roll-up process.

The validity of the existing criteria for roll-up has been
considered and it has been conjectured that stability may be
lost when the drop volume is reduced to such an extent that
the inflexion in the profile of the drop reaches the fiber
surface. A finite-element-based approach to examining the
absolute stability of the two conformations based on
minimum surface free energy has been outlined. Initial
results are promising and suggest both clam-shell profiles
and the absolute stability diagram can be constructed.
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