
Int J Comput Vis

DOI 10.1007/s11263-013-0669-1

The Shape Boltzmann Machine: A Strong Model of Object Shape

S. M. Ali Eslami · Nicolas Heess ·

Christopher K. I. Williams · John Winn

Received: 4 February 2013 / Accepted: 11 October 2013

© Springer Science+Business Media New York 2013

Abstract A good model of object shape is essential in

applications such as segmentation, detection, inpainting and

graphics. For example, when performing segmentation, local

constraints on the shapes can help where object boundaries

are noisy or unclear, and global constraints can resolve ambi-

guities where background clutter looks similar to parts of

the objects. In general, the stronger the model of shape, the

more performance is improved. In this paper, we use a type of

deep Boltzmann machine (Salakhutdinov and Hinton, Inter-

national Conference on Artificial Intelligence and Statistics,

2009) that we call a Shape Boltzmann Machine (SBM) for the

task of modeling foreground/background (binary) and parts-

based (categorical) shape images. We show that the SBM

characterizes a strong model of shape, in that samples from

the model look realistic and it can generalize to generate sam-

ples that differ from training examples. We find that the SBM

learns distributions that are qualitatively and quantitatively

better than existing models for this task.
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1 Introduction

Models of the shape of an object play a crucial role in

many imaging algorithms, such as those for object detec-

tion and segmentation (e.g. Borenstein et al. 2004; Winn and

Jojic. 2005; Alexe et al. 2010a; Eslami and Williams 2011),

inpainting (e.g. Chan and Shen 2001; Bertozzi et al. 2007;

Shekhovtsov et al. 2012) and graphics (e.g. Anguelov et al.

2005). In object segmentation, local constraints on the shape,

such as smoothness and continuity, can help provide correct

segmentations where the object boundary is noisy or lost in

shadow. More global constraints, such as ensuring the correct

number of parts (legs, wheels, etc.), can resolve ambiguities

where background regions look similar to an object part (e.g.

Jojic et al. 2009). Shape also plays an important role in gen-

erative models of images (e.g. Frey et al. 2003; Williams

and Titsias 2004; Le Roux et al. 2011; Eslami and Williams

2011). In general, the better the model of object shape, the

more performance will be improved in these applications.

This paper addresses the question of how to build a strong

probabilistic model of object shapes. We define a strong

model as one which meets two requirements:

1. Realism—samples from the model look realistic;

2. Generalization—the model can generate samples that dif-

fer from training examples.

The first constraint ensures that the model captures shape

characteristics at all spatial scales well enough to place prob-

ability mass only on images that belong to the ‘true’ shape

distribution. The second constraint ensures that there are no

gaps in the learned distribution, i.e. that it also covers novel

unseen but valid shapes.

There have been a wide variety of approaches to mod-

eling 2D shape. The most commonly used models are
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grid-structured Markov random fields (MRFs) or conditional

random fields (CRFs, e.g. Boykov and Jolly 2001). In such

models, the pairwise potentials connecting neighboring pix-

els impose very local constraints like smoothness but are

unable to capture more complex properties such as convex-

ity or curvature, nor can they account for longer-range prop-

erties. Carefully designed high-order potentials (e.g. Kohli

2007; Komodakis 2009; Rother et al. 2009; Kohli et al. 2009;

Nowozin and Lampert 2009) allow particular local or longer-

range shape properties to be modeled within an MRF, but

these potentials fall short of capturing all such properties so

as to make realistic-looking samples. For example, a strong

shape model of horses would know that horses have legs,

heads and tails, that these parts appear in certain positions

consistent with a global pose, that there are never more than

four legs visible in any given image, that the legs have to

support the horse’s body, along with many more properties

that are difficult to express in words but necessary to make

the shape look plausible.

Other approaches represent shape using a level set or para-

meterized contour. These have different strengths and weak-

nesses, but all share the fundamental challenge of imposing

sufficient constraints to limit the model to valid shapes while

allowing for the right degree of flexibility to capture all pos-

sible shapes. For example, a common approach when using a

contour (or an image) is to use a mean shape in combination

with some principal directions of variation, as captured by

a principal components analysis (Cootes et al. 1995) or fac-

tor analysis (Cemgil et al. 2005; Eslami and Williams 2011).

Such models capture the typical global shape of an object and

global variations on it (such as changes in the aspect ratio of

a face). However, they cannot capture multimodal distribu-

tions, and tend to be poor at learning about local variations

which affect only part of the shape (e.g. the angle of a horse’s

front legs).

Non-parametric approaches employ what is effectively a

large database of template shapes (Gavrila 2007) or shape

fragments (Borenstein et al. 2004; Kumar and Torr 2005). In

the former case, because no attempt is made to understand

the composition of the shape, it is impossible to generalize

to novel shapes not present in the database. In the latter case,

the challenge lies in how to compose the shape fragments to

form valid shapes. We are not aware of any method which

can generate a variety of realistic looking whole shapes by

composing fragments. Table 1 and Fig. 1 illustrate why these

existing approaches do not meet the criteria for a strong shape

model.

In this paper, we consider a class of models from the learn-

ing community, known as deep Boltzmann machines (DBMs,

Salakhutdinov and Hinton 2009). The main contribution of

this paper is to show how a strong model of binary shape can

be constructed using a form of DBM with a set of carefully

chosen capacity constraints, which we call the Shape Boltz-

Table 1 Comparison of a number of different shape models

Realism Generalization

Globally Locally

Mean e.g. Jojic and Caspi

(2004)

� – –

Deformation field e.g. Winn

and Jojic. (2005)

– � �

Factor analysis e.g.

Cemgil et al. (2005)

� – �

Fragments e.g.

Borenstein et al. (2004)

– � �

Grid MRFs/CRFs e.g.

Rother et al. (2004)

– � �

High-order potentials e.g.

Nowozin and Lampert (2009)

Limited � �

Database e.g. Gavrila (2007) � � –

Shape Boltzmann Machine � � �

(a) (b) (c)

Fig. 1 Samples generated by (a) a mean-only model of horse shapes,

(b) a Markov random field model, (c) discrete factor analysis as defined

in Eqs. 18, 19

mann Machine (SBM). The model is a generative model of

object shape and can be learned directly from training data.

The capacity constraints allow training on relatively small

training sets as are common e.g. for segmentation datasets.

Due to its generative formulation the SBM can be used very

flexibly, not just as a shape prior in segmentation tasks but

also, for instance, to synthesize novel shapes in graphics

applications, or to complete partially occluded shapes. We

learn SBM models from several challenging shape datasets

and evaluate them on a range of shape synthesis and comple-

tion tasks. We demonstrate that, despite the relatively small

sizes of the training datasets, the learned models are both

able to generate realistic samples and to generalize to gen-

erate samples that differ from images in the training dataset.

We provide a detailed discussion of the roles played by the

different capacity constraints in making the SBM work. We

finally present an extension of the SBM that also allows it

to simultaneously model the shape of multiple dependent

regions such as the parts of an object, which can in turn

be used, for instance, as a prior in parts-based segmentation

tasks.

The remainder of the paper is structured as follows. In

Sect. 2 we review several families of probability distributions

that have been used in the literature to model object shape.
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(a) (b) (c) (d) (e)

Fig. 2 Models of shape. (a) 1D slice of a mean model, (b) Markov random field in 1D, (c) Restricted Boltzmann machine in 1D, (d) Deep

Boltzmann machine in 1D, (e) Shape Boltzmann Machine in 1D

In Sects. 3 and 4 we present the SBM and describe efficient

inference and learning schemes for the model. We provide an

extensive experimental evaluation in Sect. 5, and conclude

with a discussion in Sects. 6 and 7.

2 Related Work

In this section we will review several undirected models suit-

able for modeling binary shape images. We will start with

the commonly used grid-structured MRF and describe how

it can be modified to form an undirected model known as

the restricted Boltzmann machine (RBM). We then describe

how RBMs can be stacked to form the hierarchical structure

of the deep Boltzmann machine (DBM).

We will specify undirected models in terms of an energy

function E(x1, . . . , xN ) defined over the relevant set of ran-

dom variables x1, . . . , xN (image pixels, possibly latent vari-

ables). The associated Gibbs distribution is then given by:

p(x1, . . . , xN ) =
1

Z
exp {−E(x1, . . . , xN )} , (1)

where Z =
∑

x1,...,xN
exp {−E(x1, . . . , xN )} is the normal-

ization constant. We will further use vi to denote image pixel

i , and v = (vi )
T to denote a column-vector of image pixels.

The pixels are assumed to be binary (we consider categori-

cal pixels in Sect. 3.2). Similarly we use h j and h = (h j )
T

to refer to binary hidden variable j and a vector of hidden

variables respectively.

2.1 Grid Markov Random Fields

The simplest approach is to model each shape pixel vi inde-

pendently with categorical variables whose parameters are

specified by the object’s mean shape (Fig. 2a). Such a ‘mean

model’ can be expressed in terms of an energy function com-

prised of single-variable terms only:

E(v;Θ) =
∑

i

fi (vi ; bi ). (2)

For binary images, for instance, the fi might take the

form fi (vi ; bi ) = −bivi , specifying the unnormalized log-

probability of vi = 1 which results in the normalized proba-

bility being p(vi = 1; bi ) = exp(bi )/ (1 + exp(bi )).

A binary grid-structured MRF defines a distribution over

binary images v whose energy function is:

E(v;Θ) =
∑

i

fi (vi ; bi ) +
∑

(i, j)

fi j (vi , v j ;wi j ), (3)

where i ranges over image pixels, (i, j) ranges over grid

edges between pixels i and j and the potentials are para-

meterized by bi and wi j , again jointly denoted by Θ . The

grid structure of the MRF arises from the pairwise potentials

fi j shown in Fig. 2b. These potentials induce dependencies

between neighboring pixels that can favor local shape proper-

ties such as connectedness or smoothness, but it is commonly

accepted that grid-structured, pairwise MRFs are very limited

models of global shape (e.g. Morris et al. 1996; Tjelmeland

and Besag 1998).

In an attempt to capture more complex or global shape

properties, much recent research has therefore focused on

constructing higher-order potentials (HOPs), which take the

configuration of larger groups of image pixels into account

(i.e. their energy includes potentials f that depend on more

than two pixel variables). The maximum number of variables

per potential is referred to as the ‘order’ of the model. Since,

in general, the cost of naïve inference (e.g. finding the most

likely (MAP) configuration of the variables) in MRFs grows

exponentially in the model order, there has been a strong

emphasis on developing HOPs for which efficient inference

schemes can be devised.

The higher order potentials in Rother et al. (2009), for

instance, are defined in terms of a set of ‘reference patterns’

and penalize deviations of groups of pixels from these pat-

terns. Such HOPs can be considered to be introducing an aux-

iliary hidden variable connected through pairwise potentials

to multiple image pixels. The introduction of such hidden

variables provides a powerful way to capture and learn com-

plex properties of multiple image pixels. When such hidden

variables are marginalized out they induce high-order con-

straints amongst the image pixels. Yet, because the model

only contains pairwise potentials, both learning and infer-

ence remain tractable.
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2.2 Restricted Boltzmann Machines

One model that makes heavy use of hidden variables to intro-

duce dependencies between the observed variables is the

RBM (e.g. Freund and Haussler 1994). In an RBM, a number

of hidden variables h are used, each of which is connected to

all image pixels as shown in Fig. 2c. However, unlike a grid

MRF, there are no direct connections between the image pix-

els v. There are also no direct connections between the hidden

variables. Hence, the energy function takes the form:

E(v, h;Θ) =
∑

i

bivi +
∑

i, j

wi jvi h j +
∑

j

c j h j , (4)

where i now ranges over pixels and j ranges over hidden vari-

ables. The key points to note are that the potential functions

are all simple products and that the only pairwise potentials

are those between each visible and each hidden variable. By

learning the parameters of the potentials {wi j , bi , c j }, the

model can learn about high-order constraints in the data set.

The effect of the latent variables can be directly appreci-

ated by considering the marginal distribution over v which

is given by marginalizing over the hidden variables:

p(v;Θ) =
∑

h

1

Z(Θ)
exp{−E(v, h;�)}, (5)

where the normalization constant Z(Θ) is given by Z(Θ) =
∑

v,h exp{−E(v, h;Θ)}. This marginalization allows the

model to capture high-order dependencies between the vis-

ible units. In fact, the hidden units can be summed out ana-

lytically (e.g. Freund and Haussler 1994), giving rise to an

alternative formulation of the RBM in terms of high-order

potentials that no longer includes latent variables. The energy

of this marginal distribution is given by:

E(v;Θ) =
∑

i

fi (vi ; bi ) +
∑

j

g j (v; W· j ), (6)

where fi (vi ; bi ) = −bivi and g j (v) = − log(1 +

exp
(
∑

i wi jvi + c j

)

).

It is instructive to compare the form of Eq. 6 with the

energy of the grid-structured MRF in Eq. 3: whereas the

energy of the grid-structured MRF was comprised of unary

and pair-wise terms only ( fi (vi ) and fi j (vi , v j ) respec-

tively), the energy of the RBM involves unary potentials as

well as high-order potentials, each of which is defined over

all pixels v (the g j (v)). There is one such high-order poten-

tial for each hidden unit, and it is these high-order potentials

that allow the RBM to model considerably more complicated

dependencies than, for instance, pairwise MRFs.

Whilst marginalization over the latent variables makes the

high-order potentials explicit, the formulation that includes

latent variables suggests an efficient inference scheme (in

loose analogy to the use of latent variables for the HOPs

discussed in Sect. 2.1): When written as in Eq. 4 the RBM

forms a bipartite graph that has edges only between hidden

and visible variables. As a consequence all hidden units are

conditionally independent given the visible units—and vice

versa. This property can be exploited to make inference exact

and efficient. The conditional probabilities are:

p(vi = 1|h) = σ

⎛

⎝

∑

j

wi j h j + bi

⎞

⎠ , (7)

p(h j = 1|v) = σ

(

∑

i

wi jvi + c j

)

, (8)

where σ(y) = 1/(1+exp(−y)) is the sigmoid function. This

property allows for efficient implementations of block-Gibbs

sampling where all v and all h are sampled in parallel in an

alternating manner, which can be exploited during approxi-

mate learning (Hinton 2002; Tieleman 2008).

2.3 Deep Boltzmann Machines

RBMs can, in principle, approximate any binary distribution

(Freund and Haussler 1994; Le Roux and Bengio 2008), but

this can require an exponential number of hidden units and a

similarly large amount of training data. The DBM provides a

richer model by introducing additional layers of latent vari-

ables as shown in Fig. 2d. The additional layers capture high-

order dependencies between the hidden variables of previous

layers and so can learn about complex structure in the data

using relatively few hidden units. The energy of a DBM with

two layers of latent variables is given by:

E(v, h1, h2;Θ) =
∑

i

bivi +
∑

i, j

w1
i jvi h

1
j +

∑

j

c1
j h

1
j

+
∑

j,k

w2
jkh1

j h
2
k +

∑

k

c2
k h2

k . (9)

As for the RBM, the posterior distribution over the visibles

is obtained by marginalization, this time with respect to both

sets of hidden variables:

p(v;Θ) =
∑

h1,h2

1

Z(Θ)
exp{−E(v, h1, h2;Θ)}, (10)

and the normalization constant defined analogously: Z(Θ) =
∑

v,h1,h2 exp{−E(v, h1, h2;Θ)}.

Although exact inference is no longer possible in this

model, the conditional distributions p(v|h1), p(h1|v, h2),

and p(h2|h1) remain factorized due to the layering:

p(vi = 1|h1) = σ

⎛

⎝

∑

j

w1
i j h

1
j + bi

⎞

⎠ , (11)

p(h1
j = 1|v, h2) = σ

(

∑

i

w1
i jvi +

∑

k

w2
jkh2

k + c1
j

)

,

(12)
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p(h2
k = 1|h1) = σ

⎛

⎝

∑

j

w2
jkh1

j + c2
k

⎞

⎠ . (13)

This allows for computationally efficient inference, either

by layerwise block-Gibbs sampling from the posterior

p(h1, h2|v) (Fig. 4), or by using a mean field procedure

with a fully factorized approximate posterior as described

in Salakhutdinov and Hinton (2009). The layering further

admits a layer-wise pre-training procedure that makes it less

likely that learning will get stuck in local optima. Hence the

DBM is both a rich model of binary images and a tractable

one.

3 Model

RBMs and DBMs are powerful generative models, but also

have many parameters. Since they are typically trained on

large amounts of unlabeled data (thousands or tens of thou-

sands of examples), this is usually less of a problem than in

supervised settings. Segmented images, however, are expen-

sive to obtain and datasets are typically small (hundreds of

examples). In such a regime, RBMs and DBMs can be prone

to overfitting.

In this section we will describe how we can impose a

set of carefully chosen connectivity and capacity constraints

on a DBM to overcome this problem: the resulting SBM

formulation not only learns a model that accurately captures

the properties of binary shapes, but that also generalizes well,

even when trained on small datasets.

3.1 The Shape Boltzmann Machine

The SBM used below has two layers of latent variables: h1

and h2. The visible units v are the pixels of a binary image

of size N × M . In the first layer we enforce local receptive

fields by connecting each hidden unit in h1 only to a subset

of the visible units, corresponding to one of four rectangular

patches, as shown in Fig. 3. In order to encourage boundary

consistency each patch overlaps its neighbor by r pixels and

so has side lengths of N/2 + r/2 and M/2 + r/2. We fur-

thermore share weights between the four sets of hidden units

and patches, however the visible biases bi are not shared.

Similar constraints have previously been used in the litera-

ture (e.g. Desjardins and Bengio 2008; Raina et al. 2009; Lee

te al. 2009; Norouzi et al. 2009; Ranzato et al. 2010, 2011),

especially in convolutional and tiled-convolutional formula-

tions of RBMs and DBNs. In comparison, in the SBM the

receptive field overlap of adjacent groups of hidden units is

particularly small compared to their sizes.

Overall, these modifications reduce the number of first

layer parameters by a factor of about 16 which reduces the

amount of data needed for training by a similar factor. At the

Fig. 3 The Shape Boltzmann Machine in 2D. We enforce local recep-

tive fields by connecting each hidden unit in h1 only to one of four

rectangular patches

same time these modifications take into account two impor-

tant properties of shapes: first, the restricted receptive field

size reflects the fact that the strongest dependencies between

pixels are typically local, while distant parts of an object often

vary more independently (the small overlap allows boundary

continuity to be learned primarily at the lowest layer); second,

weight sharing takes account of the fact that many generic

properties of shapes (e.g. smoothness) are independent of the

image position.

For the second layer we choose full connectivity between

h1 and h2, but restrict the relative capacity of h2: we use

around 4 × 500 hidden units for h1 versus around 50 for h2

in our single class experiments. While the first layer is primar-

ily concerned with generic, local properties, the role of the

second layer is to impose global constraints, e.g. with respect

to the class of an object shape or its overall pose. The second

layer mediates dependencies between pixels that are far apart

(not in the same local receptive field), but these dependencies

will be weaker than between nearby pixels that share first-

level hidden units. Limiting the capacity of the second-layer

encourages this separation of concerns and helps to prevent

the model from overfitting to small training sets. Note that

this is in contrast to Salakhutdinov and Hinton (2009) who

use a top-most layer that is at least as large as all of the

preceding layers.

3.2 A Multi-region SBM

The SBM model described in the previous section repre-

sents shapes as binary images and can be used, for exam-

ple, as a prior when segmenting a foreground object from its
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background. While it is often sufficient to consider the fore-

ground object as a single region without internal structure,

there are situations where it is desirable to explicitly model

multiple, dependent regions, e.g. in order to decompose the

foreground object into parts (Winn and Jojic. 2005; Kapoor

2006; Thomas et al. 2009; Bo and Fowlkes 2011; Eslami and

Williams 2011).

In the SBM this can be achieved by using categorical vis-

ible units instead of binary ones: visible units with L + 1

different states (i.e. vi ∈ {0, . . . L}) allow the modeling of

shapes with L parts. The visible unit representing the i th

pixel then indicates which of the L parts or the background

the pixel belongs to (here we treat the background as part 0).

We use a ‘one-of-L + 1’ encoding for vi , i.e. we choose

vi to be L + 1 dimensional binary vectors and for vi = l we

set vil = 1 and vil ′ = 0, ∀l ′ �= l. The energy function of

this extended model is given by:

E(V, h1, h2|θ s) =
∑

i,l

blivli +
∑

i, j,l

w1
li jvli h

1
j +

∑

j

c1
j h

1
j

+
∑

j,k

w2
jkh1

j h
2
k +

∑

k

c2
k h2

k, (14)

where we use V to denote the the matrix with the L + 1

dimensional vectors vi in its rows.

This change in the nature of the visible units preserves

all of the appealing properties of the SBM. In particular

the conditional distributions over the three sets of variables

V, h1, and h2 remain factorial. The only change is in the spe-

cific forms of the two conditional distributions p(v|h1) and

p(h1|v, h2):

p(vi = l|h1) =
exp

(

∑

j w1
li j h

1
j + bli

)

∑L
l ′=0 exp

(

∑

j w1
l ′i j

h1
j + bl ′i

) , (15)

p(h1
j = 1|V, h2) = σ

⎛

⎝

∑

i,l

w1
li jvli +

∑

k

w2
jkh2

k + c1
j

⎞

⎠

(16)

where in the left-hand-side of Eq. 15 we use vi = l to denote

the fact that vil = 1 and vil ′ = 0, ∀l ′ �= l as explained

above.

Note that Eq. 16 is effectively the same as Eq. 13 except

that there are now L + 1 binary visible units per pixel. The

conditional distribution given in Eq. 15 implements the con-

straint that for each pixel only one of these L +1 binary units

can be active, i.e. only one of the parts can be present. Due

to the particular form of the conditional distribution (Eq. 15)

categorical visible units are often referred to as ‘softmax’

units (e.g. Bridle 1990). In our experiments below we explore

SBMs with six or seven parts.

It should be noted that the above formulation of the multi-

part SBM is especially suited to model the shapes of several

dependent regions such as non-occluding (or lightly occlud-

ing) object parts. For modeling the shapes of multiple inde-

pendent regions, as arise in the case of multiple occluding

objects, it might be more suitable to model occlusion explic-

itly, as in Le Roux et al. (2011).

4 Learning

Learning of the model involves maximizing log p(v;Θ) of

the observed data v with respect to its parameters Θ =

{b, W 1, W 2, c1, c2} (see Eqs. 5, 10). The gradient of the log-

likelihood of a single training image with respect to the para-

meters is given by:

∇Θ log p(v;Θ) = 〈∇Θ E(v′, h1, h2;Θ)〉pΘ (v′,h1,h2)

−〈∇Θ E(v, h1, h2;Θ)〉pΘ (h1,h2|v), (17)

and the total gradient is obtained by summing the gradients of

the individual training images (e.g. Ackley et al. 1985; Fre-

und and Haussler 1994; Salakhutdinov and Hinton 2009).

The first term on the right hand side is the expectation of the

gradient of the energy (see Eqs. 9, 14) where the expectation

is taken with respect to the joint distribution over v, h1, h2

defined by the model. The second term is also an expectation

of the gradient of the energy, but this time taken with respect

to the posterior distribution over h1, h2 given the observed

image v. Although the gradient is readily written out, maxi-

mization of the log-likelihood is difficult in practice. Firstly,

except for very simple cases it is intractable to compute as

both expectations involve a sum over a number of terms that

is exponential in the number of variables (visible and hidden

units). Secondly, gradient ascent in the likelihood is prone to

getting stuck in local optima.

In this work we closely follow the procedure proposed

in Salakhutdinov and Hinton (2009) which minimizes these

difficulties in three ways: (a) it approximates the first expec-

tation in Eq. 17 with samples drawn from the model distribu-

tion via MCMC; (b) it approximates the second expectation

using a mean-field approximation to the posterior; and (c) it

employs a pre-training strategy that provides a good initial-

ization to the weights W 1, W 2 before attempting learning in

the full model.

Learning proceeds in two phases. In the pre-training phase

we greedily train the model bottom up, one layer at a time.

The purpose of this phase is to find good initial values for all

parameters of the model. We begin by training an RBM on

the observed data. The likelihood gradient of an RBM takes a

form very similar to Eq. 17. Unlike for the DBM, for an RBM

the second expectation over the conditional distribution of the

hidden units h given the data is tractable and can be computed

exactly (see Eq. 8). The first expectation, taken with respect to

the full model distribution, however, remains intractable. We

therefore perform stochastic maximum likelihood learning
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(SML, also referred to as ‘persistent contrastive divergence’;

Neal 1992; Tieleman 2008; Salakhutdinov and Hinton 2009)

where this expectation is approximated using samples from

the model distribution obtained via MCMC. While a naïve

MCMC approximation of the expectation would be compu-

tationally very expensive, considerable computational sav-

ings can be obtained through a set of Markov chains that are

initialized at the beginning of learning and then maintained

over the course of learning (hence the adjunct ‘persistent’),

alternating updates of the model parameters Θ with Gibbs

sampling steps to update the sample approximation to the

model distribution. This algorithm is an instance of a sto-

chastic approximation scheme of the Robbins–Monro type

(Robbins and Monro 1951; Younes and Sud 1989; Younes

1999).

The number of hidden units of this RBM is the same as

the size of h1 in the full SBM model and it obeys the same

connectivity constraints as the SBM’s first layer. Once this

RBM is trained, we infer the conditional mean of the hidden

units using Eq. 8 for each training image. The resulting vec-

tors then serve as the training data for a second RBM with the

same number of hidden units as h2, which is trained using

SML.

We use the parameters of these two RBMs to initialize the

parameters of the full SBM model as described in Salakhutdi-

nov and Hinton (2009). Simply speaking, we use the weights

of the first RBM to initialize the parameters of the lower layer

of the SBM (b and W 1), and the parameters of the second

RBM to initialize the upper layer (W 2 and c2). As discussed

in detail in Salakhutdinov and Hinton (2009) special care

must be taken to account for the fact that in the full model h1

now receives input from both v and h2.

In the second phase we then perform approximate sto-

chastic gradient ascent in the likelihood of the full model to

fine-tune the parameters in an expectation-maximization-like

scheme. This involves the same sample-based approximation

to the gradient of the normalization constant used for learning

the RBMs (Tieleman 2008; Salakhutdinov and Hinton 2009),

as well as a fully factorized mean-field approximation to the

posterior p(h1, h2|v). This joint training is essential to sep-

arate out learning of local and global shape properties into

the two hidden layers.

5 Experiments

We performed an extensive experimental evaluation of the

SBM model on five datasets in total. The presentation of the

results is divided into four parts:

In Sect. 5.1 we focus on demonstrating that the SBM can

indeed act as a strong model of object shape. For this pur-

pose we perform qualitative and quantitative evaluations on

two challenging datasets: the Weizmann horse datasets and

motorbikes from Caltech-101. Despite both datasets being

relatively small we find that the learned models capture essen-

tial high- and low-level properties of the shapes in the training

data, producing realistic samples and generalizing to novel

shapes not present in the training data. Quantitatively we

find that the SBM outperforms several baseline models in a

difficult shape completion task.

The goal of Sect. 5.2 is to examine the contribution of the

various architectural choices detailed in Sect. 3 to the success

of the SBM. We address the impact of localized receptive

fields, weight-sharing, and of the hierarchical structure of

the model.

In many situations it is desirable or even necessary to

model not just a single but multiple object classes with the

same model. In Sect. 5.3 we therefore introduce an additional

dataset comprised of multiple object categories (Weizmann

horses and several animals from Caltech-101) and demon-

strate that the SBM, with a single set of parameters, can learn

a joint model of several categories from unlabeled data, gen-

eralizing reliably within each category.

Finally, in Sect. 5.4 we analyze the behavior of the multi-

part extension of the SBM introduced in Sect. 3.2 on two

multi-part datasets, the ETHZ cars dataset and the HumanEva

pedestrians dataset.

5.1 Generalization and Realism

In this section we demonstrate that the SBM can be trained

to be a strong model of object shape. For this purpose we

consider two challenging datasets: Weizmann horses and

Caltech-101 motorbikes.

Weizmann horse dataset The Weizmann horse dataset

(Borenstein et al. 2004) contains 327 images, all of horses

facing to the left, but in a variety of poses.1 The dataset is

challenging because in addition to their overall pose varia-

tion, the positions of the horses’ heads, tails and legs change

considerably from image to image.

The binary images are cropped and normalized to 32 ×

32 pixels (see Fig. 5a). We trained an SBM with overlap

r = 4, and 2,000 and 100 units for h1 and h2 respectively.

The first layer was pre-trained for 3,000 epochs (iterations)

and the second layer for 1,000 epochs. After pre-training,

joint training was performed for 1,000 epochs. Our Matlab

implementation completed training in around 4 h, running

on a dual-core, 3 GHz PC with 4GB of memory.

Caltech motorbikes dataset Our second dataset is based on

Caltech-101 (Fei-Fei et al. 2004), and consists of 798 motor-

bike silhouettes.2 These binary images are of higher reso-

1 http://msri.org/people/members/eranb.

2 http://vision.caltech.edu/Image_Datasets/Caltech101.
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Fig. 4 DBM MCMC.

Block-Gibbs MCMC sampling

scheme, in which v, h1 and h2

variables are sampled in turn.

Note that each sample of h1 is

obtained conditioned on the

current state of v and h2. For

sufficiently large values of n,

sample n will be uncorrelated

with the original image

lution than the horses and are cropped and normalized to

64 × 64 pixels (see Fig. 7a). We trained an SBM with over-

lap r = 4, and 1,200 and 50 units for h1 and h2 respectively,

using the same schedule as before.

It is noteworthy that for both datasets the number of train-

ing images is relatively small compared to the variability

present in the data and, in particular, compared to the size of

datasets that deep learning models are typically trained on.

Both datasets consist of significantly less than 1,000 train-

ing images which is in stark contrast to the several thou-

sand or, more often, tens of thousands of training images for

most applications of deep models in the literature. Salakhut-

dinov and Hinton (2009), for instance, use the 60,000 training

images from the MNIST dataset for their experiments.

Baseline models For comparison we considered two base-

line models: First, we trained a factor analysis (FA) model

with 10 latent dimensions. The FA model was modified to

work on discrete binary images. Similar to the clipped factor

analysis model described in Cemgil et al. (2005) the inde-

pendent Gaussian latent variables are mixed linearly and

then passed through a sigmoid to obtain binary observed

variables:

p(h) = N (0, I), (18)

p(vi = 1|h) = σ

⎛

⎝

∑

j

wi j h j + b j

⎞

⎠ , (19)

where 0 is a vector of zeros and I denotes the identity matrix.

The model was trained using gradient ascent, and inference

was performed using elliptical slice sampling as described in

Eslami and Williams (2011).

Our second baseline model was the RBM as defined in

Eq. 4. We used 500 hidden units and trained the model using

SML as described in Sect. 4. For both baseline models the

hyperparameters and number of hidden units were manually

optimized for each dataset.

5.1.1 Realism

To assess the Realism requirement, we sampled a set of

shapes from each model, as shown in Figs. 5 and 7 for the

horse and motorbike datasets respectively.

The FA shape models can be sampled from directly.

For the RBM and SBM models samples are generated by

extended block Gibbs sampling. In particular, for the SBM

models samples were generated using the scheme outlined in

Fig. 4. As is common in the literature, we visualize the sam-

ples by showing for each pixel i the (grayscale) conditional

probability of that pixel p(vi = 1|h) given the particular

hidden configuration that constitutes the current state of the

Markov chain. Binary samples can be generated per-pixel

from a Bernoulli distribution where the gray level specifies

the distribution mean.

FA effectively defines a transformed Gaussian distribution

over the image pixels and is thus inherently unimodal. In

order to account for the diversity of shapes in the training data

it is therefore forced to allocate probability mass to images

that do not correspond to realistic horse or motorbike shapes,

as shown in Figs. 5b and 7b.

By contrast, the RBM can, in principle, account for multi-

modal data and could thus assign probability mass more

selectively. However, as the samples of horses (Fig. 5c) indi-

cate, the model also fails to learn a good model of the vari-

ability of horse shapes—the samples are mostly of the same

pose, and details of the shape are lost when the pose changes.

We found this effect to be even more dramatic for RBM sam-

ples of motorbikes, due to the larger image size (see Fig. 7c).

These problems are symptomatic of training RBMs with

insufficient data. The SBM aims to overcome these problems

through a combination of connectivity constraints, weight

sharing, and model hierarchy. As we will discuss in more

detail in Sect. 5.2 below, the combination of these ingredients

is necessary to obtain a strong model of shape.

Samples from the SBM for horses and motorbikes are

shown in Figs. 5d and 7d respectively. First, we note that
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Fig. 5 Sampled horses. (a) A

selection of images from the

Weizmann horse dataset, (b) A

collection of samples from a

discrete factor analysis model.

The Gaussianity assumption

forces the model to allocate

probability mass to unlikely

horse shapes, (c) Samples from

an RBM, (d) Samples from an

SBM. The model generates

samples of varying pose, with

the correct numbers of legs and

details are preserved (samples

are arranged left-right, up-down

in decreasing order of

generalization)

the model generates natural shapes from a variety of poses.

Second, we observe that details such as legs (in the case of

horses) or handle bars, side mirrors, and forks (in the case

of motorbikes) are preserved and remain sharply defined in

the samples. Third, we note that the horses have the cor-

rect number of legs while motorbikes have, for instance, the
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Fig. 6 Generalization. (a) A

sample from the SBM, the

closest image in the training

dataset to the generated sample,

and the difference between the

two images. Red pixels have

been generated by the sample

but are absent in the training

image; yellow pixels are present

in the training image but absent

in the sample. The model has

generalized to an unseen, but

realistic horse shape,

(b) Generalizations made in

each of the samples in Fig. 5d

correct number of handle bars and wheels. Finally, we note

that the patch overlap ensures seamless connections between

the four quadrants of the image. Indeed, horse and motor-

bike samples generated by the model look sufficiently real-

istic that we consider the model to have fulfilled the Realism

requirement.

5.1.2 Generalization

We next investigated to what extent the SBM meets the gener-

alization requirement, to ensure that the model has not simply

memorized the training data. In Fig. 6 we show for horses

the difference between the sampled shapes from Fig. 5d and

their closest images in the training set. We use the Hamming

distance between training images and a thresholded version

of the conditional probability (>0.3), as the similarity mea-

sure. This measure was found to retrieve the visually most

similar images. Red indicates pixels that are in the sample but

not in the closest training image, and yellow indicates pixels

in the training image but not in the sample. Fig. 7e shows

a similar analysis for samples from the model learned for

motorbikes. Both models generalize from the training data-

points in non-trivial ways whilst maintaining validity of the

overall object shape. These results suggest that the SBM gen-

eralizes to realistic shapes that it has not encountered in the

training set.

5.1.3 Shape completion

We further assessed both the realism and generalization capa-

bilities of the SBM by using it to perform shape comple-

tion, where the goal is to generate likely configurations of

pixels for a missing region of the shape, given the rest of

the shape. To perform completion we obtain samples of

the missing—or unobserved—pixels vU conditioned on the

remaining (observed) pixels vO (U and O denote the set

indices of unobserved and observed pixels respectively). This

is achieved using a Gibbs sampling procedure that samples

from the conditional distribution. In this procedure, samples

are obtained by running a Markov chain as before, sampling

v, h1, and h2 from their respective conditional distributions,

but every time v is sampled we ‘clamp’ the observed pix-

els vO of the image to their given values, updating only the

state of the unobserved pixels vU . Since the model speci-

fies a distribution over the missing region p(vU |vO), multi-

ple such samples capture the variability of possible solutions

that exist for any given completion task. In Fig. 8 we show

how the samples become more constrained as the missing

region shrinks. Figures 9 and 10 show sampled completions

of regions of horse and motorbike images that the model had

not seen during training. Despite the large sizes of the missing

portions, and the varying poses of the horses and motorbikes,

completions look realistic.
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Fig. 7 Results on Caltech-101

motorbikes. (a) A selection of

images from the training set (at

64 × 64 pixels), (b) A set of

samples from the FA baseline

model, (c) A set of samples from

the RBM baseline model, (d) A

chain of samples generated by

the SBM, (e) Difference images

for each of the samples in (d)

(same format as in Fig. 6): the

model generalizes from training

examples in non-trivial ways,

whilst maintaining overall

motorbike look-and-feel

Fig. 8 Shape completion

variability. Blue in the first

column indicates the missing

regions. The samples highlight

the variability in possible

completions captured by the

model. As the missing region

shrinks, the samples become

more constrained
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Fig. 9 Sampled image

completion for horses. The

SBM completes rectangular

imputations of random size on

images not seen during training

Fig. 10 Sampled image

completion for motorbikes

The SBM’s ability to do shape completion suggests appli-

cations in a computer graphics setting. Sampled completions

can be constrained in real-time by simply clamping certain

pixels of the image. In Fig. 11a and c we show snapshots of a

graphical user interface in which the user modifies a horse or

motorbike silhouette with a digital brush. The model’s abil-

ity to generalize enables it to generate samples that satisfy

the user’s constraints. The model’s accurate knowledge about

horse and motorbike shapes ensures that the samples remain

realistic.

As a direct comparison we also consider a simple data-

base driven (‘non-parametric’) approach where we try to

find suitable completions via a nearest-neighbor search in

our database of training shapes. As shown in Fig. 11 such a

database-driven approach can fail to find shapes that match

the constraints.

The same approach can also be used to generate com-

plete silhouettes in different poses given simple stick fig-

ures provided by the user (see Fig. 11b, d). This GUI and a

video showing its use may be downloaded from http://bit.ly/

ShapeBM.

5.1.4 Quantitative Comparison

A natural way to directly evaluate a generative model quanti-

tatively is by computing the likelihood of some held-out data

under the model. Unfortunately, this likelihood computation

is intractable for DBMs. Approximations, e.g. based on

annealed importance sampling, (Neal 2001; Salakhutdinov

and Murray 2008; Salakhutdinov and Hinton 2009; Murray

and Salakhutdinov 2009) are computationally very expensive

and their accuracy can be difficult to assess.

As an alternative we therefore introduce what we will refer

to as an ‘imputation score’ for the shape completion task as

a measure of the strength of a model. We collect additional

horse and motorbike silhouettes from the web (25 horses and

25 motorbikes), and divide each into nine segments. We then

perform multiple imputation tests for each image. In each

test, we remove one of the segments and estimate the con-

ditional probability of that segment under the model, given

the remaining eight segments. The log probabilities are then

averaged across the different segments and images to give

the score.

Except for the mean model (where they are trivial) the

conditional distributions over the subsets of unobserved pix-

els given the rest of the image are infeasible to compute in

practice due to the dependencies introduced by the latent

variables. We therefore approximate the required conditional

log-probabilities via MCMC: for a particular image and seg-

ment we draw configurations of the latent variables from the

posterior given the observed part of the image and then eval-

uate the conditional probability of the true configuration of

the unobserved segment given the latent variables, i.e. we

compute:

p(vU |vO) ≈
1

S

∑

s

p(vU |ĥs), (20)

where vU and vO indicate the set of unobserved/observed

pixels (corresponding to the one removed and the eight

remaining segments), and ĥs ∼ h|vO are samples from

the conditional distribution over the hidden units given the

observed part of the image obtained via MCMC.3 Provided

that our MCMC scheme allows us to sample from the true

posterior the right hand side of Eq. 20 provides us with an

unbiased estimate of p(vU |vO).

3 We set S = 10, 000 in our experiments.
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Fig. 11 Constrained shape

completion. Missing regions

(blue pixels, top row) are

completed using the SBM and

by finding the closest match

(middle row) to the prescribed

pixels in the training data.

(a) The horse’s back is pulled up

by the SBM (bottom row) using

an appropriate ‘on’ brush.

Notice how the stomach moves

up and the head angle changes

to maintain a valid shape. The

horse’s back is then pushed

down with an ‘off’ brush,

(b) Given only minimal user

input, the model completes the

images to generate realistic

shapes. (c), (d) Motorbikes. In

many cases, the nearest

neighbor method fails to find a

suitable training image to satisfy

the constraints

A high score in this test indicates both the realism

of samples and the generalization capability of a model,

since models that do not allocate probability mass on good

shapes (from the ‘true’ generating distribution of horses)

and models that waste probability mass on bad shapes are

both penalized. In particular for the motorbike dataset we

found a small amount of regularization to be beneficial

for most models. This prevented overly confident predic-

tions (and hence large penalties in the log-probability), e.g.

in the situation where a particular pixel happened to be 0

for all training images, but 1 in one or some of the test

images. To this end we replaced the predicted probabil-

ity p of a pixel being 1 given the observed portion of the

image by d + (1 − 2d) · p. The results of these experi-

ments can be seen in Table 2. For optimal damping SBM

is the top-performing model on both the horses and motor-

bikes datasets, but the FA model performs well on the

motorbikes.

Table 2 Imputation scores

Horses Motorbikes

Score d Score d

Without regularization

Mean −50.72 0.000 −248.28 0.000

FA −41.28 0.000 −109.17 0.000

RBM −48.57 0.000 −142.47 0.000

SBM −27.90 0.000 −132.97 0.000

With regularization

Mean −50.65 0.012 −154.14 0.010

FA −40.33 0.028 −108.41 0.006

RBM −47.52 0.016 −142.47 0.000

SBM −26.90 0.014 −104.21 0.034

In the ‘with regularization’ scenario, we also report for each model the

regularization d which maximizes that model’s score

Bold values indicate the highest score achieved by the four models on

each dataset in each scenario
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5.2 Analysis of the SBM Formulation

So far we have demonstrated that the SBM is able to learn

strong models of object shapes, producing realistic samples

without overfitting to the training data. In this section we

explore in more detail how these capabilities of the SBM

depend on the specific properties of the architecture described

in Sect. 3: local receptive field and weight sharing; hierarchi-

cal formulation; and receptive field overlap.

5.2.1 Generalization Through Local Receptive Fields

In the first layer of the SBM we employ localized receptive

fields and parameter sharing. This dramatically reduces the

number of parameters that need to be learned and in conse-

quence substantially reduces the propensity of the model to

overfit.

One way to diagnose this effect is to inspect the first layer

weight matrix of the SBM and compare it to those of the two

baseline models (RBM and FA) which were implemented

without weight sharing. Each column in the weight matrices

W of the models (Eqs. 4, 9, 19 for the RBM, SBM, and FA

model respectively) corresponds to a ‘filter’ that is associated

with the activation of one of the hidden units. As shown

in Fig. 12a, b, the filters for the FA and RBM have only

global structure. This means that these models are unable

to combine local filters to generate novel horse shapes. In

contrast, because spatial locality and parameter-sharing are

built into the SBM, it learns general-purpose filters that allow

it to generalize factorially from the training examples as can

be seen in Fig. 12c.

Increasing the number of hidden units in the RBM in the

hope that additional capacity would allow it to learn more

local filters did not solve the problem but rather worsened

the overall results, suggesting that it is indeed the lack of

data rather than a lack of capacity that is the issue. On the

other hand, an RBM with similar connectivity constraints as

the first layer of the ShapeBM has fewer parameters than a

fully connected RBM and thus suffers less from overfitting

(cf. Fig. 13). But as we discuss in more detail in the next

section without the second layer it fails to account for global

constraints on the shape.

5.2.2 Global Consistency Through Hierarchy

Localized receptive fields and weight sharing are crucial

for the ability of the SBM to generalize well. In order to

obtain a model that produces realistic samples these need to

be embedded in a hierarchical architecture that ensures the

global consistency of the shapes.

This is demonstrated by the samples in Fig. 13: They are

obtained from an RBM equivalent to only the first layer of the

SBM, i.e. this RBM has localized receptive fields with a small

overlap between them. It was trained on the Weizmann horse

dataset and has the same number of hidden units as the first

layer of the horse SBM for which we have shown samples

above. Unlike the fully connected RBM whose samples are

shown in Fig. 5c this constrained RBM learns to generate a

diverse set of shapes. The samples are, however, only locally

plausible. In contrast to the samples from the SBM they do not

exhibit any of the large-scale structure present in the training

data and therefore are not realistic horse shapes in most cases.

Fig. 12 First layer example weights. (a) Weights learned by the FA model capture only global modes of variability (32 × 32), (b) Weights learned

by the RBM also fail to capture local modes of variation (32 × 32), (c) General, more local filters learned by an SBM (18 × 18)
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Fig. 13 Samples from an SBM

with only a single layer. (a) A

set of samples drawn from an

RBM with the same connectivity

constraints (localized receptive

fields; small receptive field

overlap; weight sharing) as the

first layer of the SBM. Although

the RBM enforces local

smoothness (including at the

receptive field boundaries, due

to the overlap) it fails to enforce

global constraints on the pose of

the horses therefore often

appears distorted (see, in

particular, examples in (b); the

pink lines indicate receptive

field boundaries). Note that the

visible biases bi are not shared,

and this is what allows the

model to reproduce very

coarsely the main features of

horse shapes

Fig. 14 Clamped sampling.

Sampling chains are run for two

fixed, but different,

configurations of h2. The

horse’s pose remains fixed, but

configurations of legs, and neck

and back positions vary

The second layer of the SBM is crucial for enforcing global

consistency of the shapes.

In order to further understand the role of the hierarchy

and to tease apart the roles of the two layers of the SBM in

representing shape information we performed the following

experiment: we fixed the configuration of the hidden units in

the second layer (h2) to values inferred from training images

and then iterated between sampling v and h1 only. In Fig. 14

we plot two sets of samples for two different settings of h2.

We observe that by freezing h2 we fix the horse’s pose, but

since h1 changes from sample to sample the position of its

legs and other small details vary. This suggests that the high-

est layer in the model predominantly captures global infor-

mation and has learned to be invariant to small-scale changes

in shape (achieving an effect similar to the pooling layers e.g.

in (Lee te al. 2009). This automatic, implicit, separation of

large-scale and small-scale statistics is fundamental to the

operation of the model.

5.2.3 Local Consistency Through Receptive Field Overlap

The hierarchical formulation encourages global consistency

of the shapes by coordinating the overall pose across recep-

tive fields. In order to also ensure local consistency at the

receptive field boundaries we further introduced a small over-

lap of the receptive fields (denoted by r in Fig. 3).

The effect of this is illustrated in Fig. 15 where we show

samples from an SBM (two-layer with local receptive fields

and weight sharing) trained in the usual manner, except that

there is no receptive field overlap (i.e. r = 0). This leads to

a loss of continuity at the patch boundaries and also (albeit

to a lesser extent) to a more global deterioration of sample

quality, suggesting that the second layer on its own strug-

gles to enforce local consistency. This global deterioration is

due to the fact that some of the modeling capacity of the

second layer is now needed to enforce local continuity.

Increasing the number of hidden units in the second layer

would reduce this deterioration at the cost of increasing the

number of parameters and so reducing the advantage gained

from the hierarchical structure. Experimentally we found that

it led to overfitting and did not give satisfactory results.

5.3 Multiple Object Categories

Class-specific shape models are appropriate if the class is

known, but for segmentation/detection applications this may
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Fig. 15 Samples without

overlap. (a) Samples from a

SBM trained on Weizmann

horses in the same way as the

SBM described in Sect. 5.1

except that there is no receptive

field overlap in the first layer

(i.e. r = 0). The lack of

receptive field overlap leads to

discontinuities at the receptive

field boundaries not present in

the samples from the SBM

trained with r = 4 (see in

particular the examples

highlighted in (b) and compare

to the SBM samples shown in

Fig. 5d) and more generally

reduces the overall sample

quality somewhat

not be the case. A similar situation arises if the view point

is not fixed (e.g. objects can appear right or left facing).

In both cases there is large overall variability in the data but

the data also form relatively distinct clusters of similar shapes

(e.g. all objects from a particular category, or all right-facing

objects).

To investigate whether the SBM is able to successfully

deal with such additional variability and structure in the data

we applied it to a dataset consisting of shapes from multiple

object classes and tested whether it would be able to learn a

strong model of the shapes of all classes simultaneously.

We trained an SBM on a combination of the Weizmann

data and three other animal categories from Caltech-101 (Fei-

Fei et al. 2004). In addition to 327 horse images, the dataset

contains images of 68 dragonflies, 78 llamas and 59 rhinos

(for a total of 531 images). The images are cropped and nor-

malized to 32 × 32 pixels. An SBM with r = 4, and 2,000

and 400 units for h1 and h2 was jointly trained without infor-

mation about image class.

In our experiments we found that the SBM still learns a

strong model, as demonstrated by Fig. 16 which shows sam-

ples as well as shape completions obtained from the learned

model.

We further wanted to know whether the SBM’s unsuper-

vised learning procedure has led it to discover the under-

lying grouping of the shapes into categories. In order to

test this, we compute average inter- and intra-class dis-

tances of all training instances, both in data-space (v)

and in latent-space (h2). In Fig. 17a we plot the ratio

of these distances for the four classes. These results sug-

gest that the SBM latent representation groups the shapes

from each category much more closely than they are in

pixel-space.

We also tested how well the model discovered object cat-

egories by using it to classify in a setting with very few

labeled examples. We trained a generalized linear model

(GLM) using the glmnet algorithm (Friedman et al. 2010)

on between T = 1 . . . 20 randomly selected images of each

category and tested on 59 − T images per category, averag-

ing over 100 runs. We find that despite its smaller size, given

only a few training examples, the latent h2 is most discrim-

inative (see Fig. 17b). After just one labeled example per

category, classification accuracy using the trained GLMs is

56.0% using h2 versus just 36.8% using v.

Overall these results suggest that the SBM is not only able

to deal with the additional variability arising from multiple

object classes, but also reliably generalizes within each class.

It further appears to naturally separate clusters of related

shapes in its latent representation, which can be exploited,

for instance, for classification purposes.

5.4 Multiple Object Parts

For the evaluation of the multi-part formulation of the SBM

presented in Sect. 3.2 we considered the ground truth label

images from two segmentation datasets:

ETHZ cars dataset The first dataset that we considered was

the ETHZ labeled cars dataset (Thomas et al. 2009), which

itself is a subset of the LabelMe dataset (Russell et al. 2008).

It consists of 139 images of cars, all in the same semi-profile
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Fig. 16 Multiple object

categories. (a) A selection of

images from the augmented

dataset, (b) The model

simultaneously identifies the

object class and fills in the

missing image region,

(c) Samples from a single

tempered chain

Fig. 17 (a) The ratio of inter-

and intra-class distances (values

>1 indicate that inter-class

distances are larger), (b) GLM

classification accuracy as a

function of the number of

training images, averaged over

100 runs
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view. We used the associated ground-truth segmentations for

L = 6 parts (body, wheel, window, bumper, license plate,

headlight; see Fig. 18a for examples). We trained an SBM

at 50 × 50 pixels with overlap r = 4, and 2,000 and 100

hidden units in the first and second layers respectively. Each

layer was pre-trained for 3,000 epochs and joint training was

performed for 1,000 epochs.

HumanEva pedestrians dataset The second dataset we con-

sidered was a labeled version of HumanEva (Sigal et al. 2010;

annotations by Bo and Fowlkes 2011) showing humans in dif-

ferent poses and facing in different directions. The images

are annotated with ground-truth segmentations for L = 7

different parts (hair, face, upper and lower clothes, shoes,

legs, arms; see Fig. 19a). We trained an SBM on 684 images

together with their flipped counterparts (for a total of 1,368

images) at 48 × 24 pixels with overlap r = 4 (this corre-

sponds to a receptive field size in the first layer of 26 × 14),

and 400 and 50 hidden units in the first and second layers

respectively. Each layer was pre-trained for 3,000 epochs.

After pre-training, joint training was performed for 1,000

epochs.
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Fig. 18 ETHZ cars. (a) Examples from the training data. Different

colors represent different object parts, (b) A chain of samples (1,000

samples between frames). The apparent ‘blurriness’ of samples is not

due to averaging or resizing. We display the probability of each pixel

belonging to different parts. If, for example, there is a 50–50 chance that

a pixel belongs to the red or blue parts, we display that pixel in purple,

(c) Differences between the samples and their most similar counterparts

in the training dataset, (d) Sampled completions of occlusions (pink).

For each occlusion we show two different completions produced by

the model (i.e. we show two different samples from the conditional

distribution over the unobserved pixels)

To assess the realism and generalization characteristics of

the learned SBM models we then performed experiments

analogous to the ones in Sect. 5.1: Figures 18b and 19b

show a chain of unconstrained samples from the SBM mod-

els learned for cars and pedestrians respectively. The models

capture highly non-linear dependencies in the data whilst

preserving the objects’ details (such as face and arms for the

pedestrians; or headlights, license plates, and the window

frames for cars). We also show for each sample the differ-

ence to the closest image in the training set (based on per-

pixel label agreement). We see that the model generalizes in

non-trivial ways to generate realistic shapes that it had not

encountered during training.

We also evaluated the models on constrained shape com-

pletion tasks: In Figs. 18d and 19d we show how the SBM

completes rectangular occlusions. The left-most example of

Fig. 19d highlights the variability in possible completions

captured by the model. In the middle example the length of

the person’s trousers on one leg affects the predictions for

the other, demonstrating the model’s knowledge about long-

range dependencies.

Overall these results demonstrate that the multi-part for-

mulation of the SBM significantly extends the binary SBM in

that it allows the modeling of shapes with internal structure

while preserving its ability to produce realistic samples and

to generalize in a meaningful manner from the training data.

6 Discussion

Thanks to its formulation as a generative model the SBM

is very versatile. In our experiments we investigated it as

a ‘stand-alone’ shape model and focused on its ability to

generate and complete shapes. But it can also directly be

used as a component of a more comprehensive probabilis-

tic architecture: As demonstrated in Le Roux et al. (2011),

Heess et al. (2011), Eslami and Williams (2012) and Chen

et al. (2013), for instance, it is possible to combine undi-

rected models of shapes formulated as RBMs or DBMs with

models of appearance to obtain complete probabilistic gener-

ative models of RGB images with well-defined and efficient

inference schemes. Such models allow reasoning about var-
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Fig. 19 HumanEva results. (a) A selection of images from the dataset,

(b) A chain of samples (1,000 samples between frames); same format

as in Fig. 18, (c) Differences between the samples and their most simi-

lar counterparts in the training dataset. As observed for the horses and

motorbikes the model generalizes in interesting and non-trivial ways to

pedestrian shapes not present in the training data, (d) Sampled comple-

tions of occlusions (pink). For each occlusion we show two example

completions. Note the variability in the conditional distribution for the

large scale occlusion on the left

ious image properties and can be applied, for instance, to

segmentation tasks. Indeed, Eslami and Williams (2012) use

the multi-region SBM presented in Sect. 5.4 to obtain com-

petitive results on two challenging parts-based segmentation

benchmarks.

There are three main open questions associated with such

applications of the SBM:

Firstly, our shape models are currently of fairly low reso-

lution compared to many real-world images. Naïvely scaling

up the SBM by increasing the receptive field size is unlikely to

work as this would greatly increase the number of parameters

(and hence the potential to overfit) and also lead to practi-

cal problems such as slow mixing when sampling from the

model. Eslami and Williams (2012) have demonstrated how

to side-step these problems by upsampling the predictions of

the low-resolution shape prior at test-time. This appears to

work well in practice but it still limits the level of detail at

which shapes can be modeled.

A second open question is that of translation and scale

invariance. These invariances are challenges for many dense,

pixel-level models, not just the SBM. Convolutional archi-

tectures (e.g. Desjardins and Bengio 2008; Roth and Black

2005; see also e.g. Ranzato et al. 2010) are inherently trans-

lation invariant but can be expensive as they require enough

capacity to learn the structure of interest at all possible posi-

tions. An alternative way to achieve large-scale translation

invariance is through a model that is defined only for a tight

bounding box enclosing the shape and which is then explic-

itly translated to all possible image positions (e.g. Frey et

al. 2003; Williams and Titsias 2004; similar to the sliding

123



Int J Comput Vis

window approach for object detection e.g. Rowley et al.

1998; Schneiderman 2000; Felzenszwalb et al. 2009). When

the processing of individual image positions is expensive an

exhaustive search over all positions can be computationally

very demanding or even infeasible. This problem can, how-

ever, be mitigated with a fast and lightweight mechanism to

reduce the number of candidate positions for which the more

expensive computations are being performed (see e.g. Lam-

pert and Blaschko 2008; Harzallah et al. 2009; Alexe et al.

2010).

We believe that by further increasing the number of layers

in the model in combination with appropriate constraints on

the connectivity we will be able to make progress with respect

to both of these questions. As demonstrated in Sect. 5.2.2 the

hierarchical formulation in combination with joint training

leads to a ‘separation of concerns’ across layers, in which

the lower layer is responsible for the local details while

the higher layer determines primarily the overall pose. This

allows the model to learn some degree of small-scale invari-

ances, achieving an effect similar to the pooling layers e.g. in

Lee te al. (2009) (but without having to explicitly build them

in). We expect that a deeper model, in which such effects

will be replicated across several layers, will be able to han-

dle larger invariances, and that it will also allow us to work

with shapes at higher resolutions while avoiding overfitting.

The third question is how to handle real-world images

that contain not just one but many objects. This will make

it necessary to model the interactions between the shapes

of multiple occluding objects. Although the multi-part SBM

can model multiple regions it is unlikely to be a good model

of the regions that are the result of occlusion, as discussed

in Le Roux et al. (2011). Their proposed solution is, in prin-

ciple, directly applicable to the SBM and we are currently

investigating how their or similar approaches can be utilized.

7 Conclusions

In this paper we have presented the Shape Boltzmann

Machine, a strong generative model of object shape. The

SBM is based on the general DBM architecture, a form of

undirected graphical model that makes heavy use of latent

variables to model high-order dependencies between the

observed variables. We believe that the combination of (a)

carefully chosen connectivity and capacity constraints, along

with (b) a hierarchical architecture, and (c) a training proce-

dure that allows for the joint optimization of the full model,

is key to the success of the SBM.

These ingredients allow the SBM to learn high qual-

ity probability distributions over object shapes from small

datasets, consisting of just a few hundred training images.

The learned models are convincing in terms of both realism

of samples from the distribution and generalization to new

examples of the same shape class. Without making use of

specialist knowledge about the shapes the model develops

a natural representation with some separation of concerns

across layers.

Overall we believe that by integrating powerful compo-

nent models like the SBM into comprehensive generative

models of images, performance in many computer vision

tasks can be improved. We believe this to be a very promis-

ing direction of research.
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