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�e focus of the present paper is to analyze the shape effect of gold (Au) nanoparticles on squeezing nanofluid flow and heat
transfer between parallel plates. �e different shapes of nanoparticles, namely, column, sphere, hexahedron, tetrahedron, and
lamina, have been examined using water as base fluid. �e governing partial differential equations (PDEs) are transformed into
ordinary differential equations (ODEs) by suitable transformations. As a result, nonlinear boundary value ordinary differential
equations are tackled analytically using the homotopy analysis method (HAM) and convergence of the series solution is ensured.
�e effects of various parameters such as solid volume fraction, thermal radiation, Reynolds number, magnetic field, Eckert
number, suction parameter, and shape factor on velocity and temperature profiles are plotted in graphical form. For various values
of involved parameters, Nusselt number is analyzed in graphical form. �e obtained results demonstrate that the rate of heat
transfer is maximum for lamina shape nanoparticles and the sphere shape of nanoparticles has performed a considerable role in
temperature distribution as compared to other shapes of nanoparticles.

1. Introduction

Nanotechnology has recently emerged and has become a
worldwide revolution to obtain exceptional qualities and fea-
tures over the last few decades. It developed at such a fast pace
and is still going through a revolutionary phase. Nanotech-
nology is coming together to play a crucial and commercial role
in our future world. Gold nanoparticles are one of the utmost
stablemetal nanoparticles and their current fascinating features
include assembly of several types inmaterial science, individual
nanoparticles behaviors, magnetic, nanocytotoxic, optical
properties, size-related electronic, significant catalysis, and

biological applications. Gold nanoparticles have attracted re-
search attention due to their properties and various potential
applications. �is progression would go to the later generation
of nanotechnology that requires products of gold nanoparticles
with precise shape, controlled size, large production facilities,
and pureness. Gold nanoparticles are widely used as preferred
materials in numerous fields because of their unique optical
and physical properties, that is, surface plasmon oscillation for
labeling, sensing, and imaging. Recently, significant develop-
ments have been made in biomedical fields with superior
biocompatibility in therapeutics and treatment of various
diseases. Gold nanoparticles can be prepared and conjugate
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with numerous functionalizing agents such as dendrimers,
ligands, surfactants, RNA, DNA, peptides, polymers, oligo-
nucleotides, drugs, and proteins [1].

Squeezing nanofluid flow with the effect of thermal ra-
diation and magnetohydrodynamics (MHD) has important
uses in the development of the real world. It has gained the
consideration of researchers due to its extensive usages.
Squeezing flow has increasing usages in several areas, par-
ticularly in the food industry and chemical engineering. �e
undertakings and properties of the squeezing flow of nano-
fluid for industrial usages such as electronic, transportation,
biomechanics, foods, and nuclear reactor have been explained
in many publications in the open literature. �ere are various
examples concerning squeezing flow but the most significant
ones are injection, compression, and polymer preparation.

�e squeezing flow of nanofluid has gained significant
consideration due to the valuable verities of applications in the
physical and biophysical fields [2]. Hayat et al. [3] discussed the
MHD in squeezing flow by using two disks. Dib et al. [4]
examined the analytical solution of squeezing nanofluid flow.
Duwairi et al. [5] addressed the heat transfer on the viscous
squeezed flow between parallel plates. Domairry and Hatami
[6] examined the time-dependent squeezing of nanofluid flow
between two surfaces by applying differential transformation
techniques. Sheikholeslami and Ganji [7] studied the heat
transfer in squeezed nanofluid flow based on homotopy
perturbation method. �e thermal radiation effect in two-
dimensional and time-dependent squeezing flow was inves-
tigated using homotopy analysis method by Khan et al. [8].
Sheikholeslami et al. [9] presented the effect of MHD on
squeezing nanofluid flow in a rotating system. Gupta and Saha
Ray [10] investigated the unsteady squeezing nanofluid flow
between two parallel plates by using the Chebyshev wavelet
expansion. �e effects of MHD on alumina-kerosene nano-
fluid and heat transfer within two horizontal plates were ex-
amined by Mahmood and Kandelousi [11].

In the fields of engineering and science, there are various
mathematical problems to find but the exact solution is
almost complicated. Homotopy analysis method (HAM) is a
well-known and critical method for solving mathematics-
related problems. �e main advantage of the homotopy
analysis method is finding the approximate solution to the
nonlinear differential equation without linearization and
discretization. Earlier time in 1992, Liao [12–16] introduced
this technique to find out the analytical results of nonlinear
problems. �e author concluded that homotopy analysis
method (HAM) quickly converges to an approximate so-
lution. �e homotopy analysis method gives us a series of
solutions. �e approximate solution by homotopy analysis
method is quite perfect since it contained all the physical
parameters involved in a problem. Due to the effectiveness
and quick convergence of the solution, various researchers,
namely, Rashidi et al. [17, 18] and Abbasbandy and Shirzadi
[19, 20], used homotopy analysis method (HAM) to find the
solutions of highly nonlinear and coupled equations. Hus-
sain et al. [21] presented the bioconvection model for
squeezing flow using homotopy analysis method with the
effect of thermal radiation heat generation/absorption.

Heat transfer can be increased by using several meth-
odologies and techniques such as increasing the heat transfer
coefficient or heat transfer surface which allows for a higher
heat transfer rate in small volume fraction. Cooling is a
major technical challenge faced by increasing numbers of
industries involving microelectronics, transportation,
manufacturing, and solid-state lighting. So, there is an es-
sential requirement for innovative coolant with a better
achievement that would be employed for enhanced prop-
erties [22]. Recently, nanotechnology has contributed to
improving the new and innovative class of heat transfer
nanofluid. Base fluids are embedded with nanosize materials
to obtain nanofluids (nanofibers, nanoparticles, nanotubes,
nanorods, nanowires, droplet, or nanosheet) [23]. Signifi-
cantly, nanofluids have the ability to enhance heat transfer
rate in several areas like nuclear reactors, solar power plants,
transportation industry (trucks, automobiles, and airplanes),
electronics and instrumentation, biomedical applications,
microelectromechanical system, and industrial cooling us-
ages (cancer therapeutics, cryopreservation, and nanodrug
delivery) [24]. �ere are several studies to show the appli-
cations of nanofluid heat transfer. Kristiawan et al. [25]
studied the convective heat transfer in a horizontal circular
tube using TiO2-water nanofluid. Turkyilmazoglue and Pop
discussed the heat and mass transfer of convection flow of
nanofluids containing nanoparticles of Ag, Cu, TiO2, Al2O3,
and CuO [26]. Sheikholeslami and Ganji [7] presented the
analytical results of heat transfer in water-Cu nanofluid.
Qiang and Yimin [27] investigated the experimental studies
of convective heat transfer in water-Cu nanofluid. Elgazery
[28] examined the studies of Ag-Cu-Al2O3-TiO2-water
nanofluid over a vertical permeable stretching surface with a
nonuniform heat source/sink. Rea et al. [29] studied the
viscous pressure and convective heat transfer in a vertical
heated tube of Al2O3-ZrO2-water nanofluids. Salman et al.
[30] discussed by using a numerical technique the concept of
affecting convective heat transfer of nanofluid in microtube
using different categories of nanoparticles such as Al2O3,
Cuo, SiO2, and ZnO. Sheikholeslami et al. [31, 32] studied
hybrid nanofluid for heat transfer expansion. Hassan et al.
[33] discussed convective heat transfer in Ag-Cu hybrid
nanofluid flow. Bhatti et al. [34] examined numerically hall
current and heat transfer effects on the sinusoidal motion of
solid particles. Furthermore, many researchers did work on
heat transfer and thermal radiation; see [35–39].

In light of the above literature study, it has been observed
that Cu, Ag, Al2O3, SiO2, Cuo, and ZnO are mostly used to
find the heat transfer. �e gold (Au) was rarely used to find
the heat transfer rate due to mixed convection [40]. �e
shape of nanoparticles is very significant in the enhancement
of heat transfer. It is necessary to find the heat transfer rate in
nanofluid under the exact shapes of nanoparticles [41]. From
the literature survey, it is observed that no effort has been
made on gold (Au) nanoparticles shape effect on squeezing
flow. �e basic purpose of the present study is to analyze the
shape effect of gold (Au) nanoparticles on squeezing
nanofluid flow and heat transfer. Various types of nano-
particles are under deliberation: column, sphere, hexahe-
dron, tetrahedron, and lamina. �e effects of various
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physical parameters on velocity and temperature distribu-
tions are analyzed through plotted graphs.

2. Problem Description

Consider heat transfer in the incompressible, two-dimen-
sional, laminar, and stable squeezing nanofluid between two
horizontal plates at y � 0 and y � h. �e lower plate is fixed
by two forces which are equal and opposite. Both the plates
are separated by distance h. A uniform B magnetic field is
applied along y-axis. Moreover, the effect of nonlinear
thermal radiation is also considered. �e thermophysical
properties of gold nanoparticles and water are presented in
Table 1. �e values of nanoparticles shapes-related param-
eters are presented in Table 2. �e partial governing
equations of the problem are modeled as [42]
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�e reverent boundary value conditions are

f � 0, f′ � 1, θ � 1, at η � 0,

f �
v0
ah
, f′ � 0, θ � 0, at η � 1.

(5)

�e following similarity variables are induced to non-
dimensionalize governing equations (1)–(4):

u � axf′(η),

v � − ahf(η),

η �
y

h
,

θ(η) �
T − T1

T2 − T1

.

(6)

Equation (1) is identically satisfied. Eliminating the
pressure and by using equation (6) into equations (2), (3),
and (4), one has the following nonlinear coupled boundary
value problems:

f″″ − R
A1

A2

f′f″ − ff‴( ) − 1
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f(0) � 0,

f′(0) � 1,

f(1) � A,

f′(1) � 0,

θ(0) � 1,

θ(∞) � 0.

(9)

�e dimensionless quantities are
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,
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,
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,

Ec �
ρfa

2h2

(ρCp)f Tw − T∞( ),

M �
σnfB

2h2

vfρf
,

Rd �
16σ∗T3

∞
3knfk
∗ .

(10)

Here, A, Pr, M, R, Ec, and Rd represent the suction
parameter, Prandtl number, magnetic parameter, Reynolds
number, Eckert number, and thermal radiation parameter,
respectively. One has

Table 1: �ermophysical properties of gold (Au) and pure water as
[40, 43].

Physical properties Gold (Au) Pure water

ρ (kg/m3) 19300 998.3
Cp (J/kg·K) 129 4182
k (W/m·K) 318 0.60

Table 2: �e values of nanoparticles shapes-related parameters as
[44].

Shapes Column Sphere Hexahedron Tetrahedron Lamina

ϕ 0.4710 1 0.8060 0.7387 0.1857
m 6.3698 3 3.7221 4.0613 16.1576
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Here, A1, A2, A3, and A4 represent the ratio of density,
viscosity, heat capacitances, and thermal conductivity,
respectively.
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where kf, μf, ρf, and (ρCp)f represent thermal conduc-
tivity, dynamic viscosity, density, and specific heat of the
fluid, respectively, whereas ks, μs, ρs, and (ρCp)s denote the
thermal conductivity, dynamic viscosity, density, and spe-
cific heat of the solid, respectively. m and ϕ are the shape
factor and volume fraction of nanoparticles, respectively.

�e physical quantity of Nu (Nusselt number) is defined
as

Nu � A4θ′(0)
∣∣∣∣ ∣∣∣∣. (13)

3. Solution by HAM

�e auxiliary linear operators are selected as follows:
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,
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.

(14)

�ese auxiliary operators satisfy the following properties:
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�e initial guesses are chosen as

f0(η) �(1 − 2A)η3 +(3A − 2)η2 + η,

θ0(η) � 1 − η.
(16)

3.1. Zeroth-Order Deformation. �e corresponding zeroth
deformation problem is defined as follows:
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(17)
in which qϵ[0, 1] is called an embedding parameter and

Zf ≠ 0 and Zθ ≠ 0 are the convergence control parameters
such that f̂(η, 0) � f0(η), θ̂(η, 0) � θ0(η) and
f̂(η, 1) � f(η), θ̂(η, 1) � θ(η); it means that when q varies
from 0 to 1, f̂(η, q) varies from initial guess f0(η) to the
final solution f(η) and θ̂(η, q) varies from initial guesses
θ0(η) to θ(η).
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Expanding f̂(η, q) and θ̂(η, q) with respect to q
Maclaurin’s series and q� 0, we obtain

f(η, q) � f0(η) + ∑∞
m�1

fm(η)q
m,

θ(η, q) � θ0(η) + ∑∞
m�1
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(19)

where fm(η) �(1/m!)((z
mf(η, q))/(zηm))|q�0 and θm(η) �

(1/m!)((zmθ(η, q))/(zηm))|q�0.

3.2. Higher-Order Deformation Problem. �e higher-order
problems are as follows:
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�e mth-order solutions are

fm(η) � f
∗
m + C1
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θm(η) � θ
∗
m + C5e
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where Cmz (z � 1 − 6) are constants to be determined by
using the boundary conditions.

3.3. Convergence of Series Solutions. Zeroth- and higher-
order deformation problems are given in equations (7) and

(8), which clearly show that the series solutions contain
nonzero auxiliary parameters Zf and Zθ. �e convergence of
the solutions is checked through plotting Z-curves Zf and Zθ
as displayed in Figures 1 and 2. It is evident that the series
solutions (22) and (23) converge when − 1.8 ≥ Zf ≤ − 0.2
and − 1.8 ≥ Zθ ≤ − 0.2.

4. Results and Discussion

�e physical insight of the problem is discussed in this
present portion. �e schematic model of squeezing nano-
fluid is shown in Figure 3. �e dynamics of heat transfer in
the squeezing nanofluid fluid flow are described under the
variation of dimensionless solid volume fraction, thermal
radiation, Reynolds number, magnetic field, Eckert number,
suction parameter, and shape factor. �e analysis is carried
out using the following range of parameters 0.1≥ ϕ≤ 0.2,
0.5≥A≤ 1.0,0.5≥M≤ 4.0,0.5≥R≤ 1.0,0.01≥Ec≤ 0.9, and
0.5≥Rd≤ 2.0. It is evident from Figures 4–7 that nano-
particles which participate in heat transfer are
lamina> column> tetrahedron> hexahedron> sphere.

ϕ is a very important parameter for squeeze flow of
nanofluid. From Figure 8, it is noted that the impact of ϕ on
primary velocity seemed ineffective. It is also observed that
the primary velocity is increased with increase of R as
displayed in Figure 9. It is because that the inertia with the
viscous ratio is dominant. From Figure 10, it is observed
that the effect ofM on the primary velocity is decreased due
to the Lorentz force produced byM. �e Lorentz force acts
against the motion of squeeze flow of nanofluid. �e
variation of A on the dimensionless primary velocity is
shown in Figure 11. From Figure 11, it can be seen that the
primary velocity is intensifying with the increase of A;
physically, the wall shear stress increases with the increase
of A.

�e secondary velocity decreases in the half of the region
as shown in Figure 12. In Figures 13 and 14, it is distin-
guished that secondary velocity changed in half of the region
(the region above the central line between the plates). It
happened due to the constraint of law of conservation of
mass. �e variation of A is plotted in Figure 15; secondary
velocity is also increased with the increase of A.

�e shape effects of nanoparticles on dimensionless
temperatures profiles are shown in Figure 16. It is noted
from Figure 16 that sphere> hexahedron> tetrahedron>
column > lamina. It is also observed that lamina nano-
particles have minimum temperature because of maximum
viscosity while sphere shape nanoparticles have maximum
temperature because of minimum viscosity. From Figure 17,
it is observed that the temperature profile has a direct re-
lation with ϕ; the reason is that increasing the volume
fraction causes enhanced thermal conductivity of the
nanofluid which turns to increase the boundary layer
thickness. From Figure 17, it is also observed that the sphere
shape nanoparticles show a prominent role in temperature
distribution. Figure 18 depicts the influence of R on the
dimensionless temperature profile; with increasing R, the
dimensionless temperature profile decreases because of
decreasing the thermal layer thickness. Figure 18 showed
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Figure 14: f′(η) for values ofM and R� 0.3, A� 1.0, and ϕ � 0.2.
Blue: M� 0.5. Green: M� 4.0.
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Figure 15: f′(η) for values of A and R� 0.3,M� 0.5, and ϕ � 0.2.
Blue: A� 0.5. Green: A� 1.0.
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Figure 13: f′(η) for values of R and M� 0.5, A� 1.0, and ϕ � 0.2.
Blue: R� 0.5. Green: R� 1.0.
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Figure 16: θ(η) for effect of the nanoparticles shapes and R� 0.3,
Rd, M� 0.5, Ec� 0.7, A� 1.0, and ϕ � 0.2. Blue: column. Green:
sphere. Red: hexahedron. Brown: tetrahedron. Black: lamina.
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Figure 17: θ(η) for values of ϕ and Ec� 0.7, Rd, M� 0.5, R� 0.3,
and A � 1.0. Blue: column. Green: sphere. Red: hexahedron.
Brown: tetrahedron. Black: lamina. ϕ � 0.1 dot line; ϕ � 0.2 dash
line.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ 
(η

)

η

Figure 18: θ(η) for values of R and Ec� 0.7, Rd, M� 0.5, A� 1.0,
and ϕ � 0.2. Blue: column. Green: sphere. Red: hexahedron. Brown:
tetrahedron. Black: lamina. R� 0.5 dot line; R� 1.0 dash line.
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that the effect of sphere shape nanoparticles is more sig-
nificant than other shapes of nanoparticles under the in-
fluence of R. Figure 19 describes the impact ofM on thermal
boundary layer thickness. From Figure 19, it is noted that the
temperature increases with the increase of M. �e reason is
that M tends to increase a dragging force which produces
heat in temperature profile. Figure 19 depicts that the sphere
shape nanoparticles in Au-water play a leading role in the
temperature profile. Figure 20 shows that the temperature
profile increases with A; physically, the heated nanofluid is
pushed towards the wall, where the buoyancy forces can
intensify the viscosity. �at is why it decreases the wall shear
stress. Figure 21 shows the effect of Rd on temperature
profile; from this figure, it is illustrated that the Rd has an
inverse relation with temperature profile. Due to this, the
greater value of Rd corresponds to an increase in the
dominance of conduction over radiation and hence re-
duction in the buoyancy force and the thermal boundary
layer thickness. Under the effect of Rd, sphere shape
nanoparticles have an important role in temperature dis-
tribution. Figure 22 displays that the squeezed nanofluid flow

temperature increases with the increase of the Ec; the reason is
that the frictional heat is deposited in squeezed nanofluid;
however, thermal boundary layer thickness of sphere shape
nanoparticles seems to be more animated in squeezed
nanofluid by Ec effect.

5. Conclusion

In the present paper, the effect of gold (Au) nanoparticles on
squeezing nanofluid flow has been thoroughly examined. �e
analytical solution was obtained by using homotopy analysis
method (HAM) for a range of pertinent parameters such as
shape factor, solid volume fraction, thermal radiation, Rey-
nolds number, magnetic field, suction parameter, and Eckert
number. �e effects of various parameters have been illus-
trated through graphs.�e Pr keeps fixed at 6.2. In the view of
results and discussions, the following deductions have arrived:

(i) �e nanoparticles of sphere shape show a re-
markable role in the disturbance of temperature
profiles
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Figure 19: θ(η) for values of M and R� 0.3, Rd� 0.5, Ec� 0.7,
A� 1.0, and ϕ � 0.2. Blue: column. Green: sphere. Red: hexahe-
dron. Brown: tetrahedron. Black: lamina. M� 1.0 dot line; M� 3.0
dash line.
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Figure 20: θ(η) for values of A and R� 0.3, Rd, M� 0.5, Ec� 0.7,
and ϕ � 0.2. Blue: column. Green: sphere. Red: hexahedron. Brown:
tetrahedron. Black: lamina. A� 0.7 dot line; A� 1.0 dash line.
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Figure 21: θ(η) for values of Rd and Ec� 0.7, R� 0.3, M� 0.5,
A� 1.0, and ϕ � 0.2. Blue: column. Green: sphere. Red: hexahe-
dron. Brown: tetrahedron. Black: lamina. Rd� 0.5 dot line; Rd� 1.0
dash line.
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Figure 22: θ(η) for values of Ec and R� 0.3, Rd, M� 0.5, A� 1.0,
and ϕ � 0.2. Blue: column. Green: sphere. Red: hexahedron. Brown:
tetrahedron. Black: lamina. Ec� 0.6 dot line; Ec� 0.9 dash line.
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(ii) �e nanoparticles of tetrahedron shape show a
moderate role in the disturbance of temperature
profiles

(iii) �e nanoparticles of lamina shape play a lower role
in the disturbance of temperature profiles

(iv) �e nanoparticles of lamina shape play a principal
role in the heat transfer rate

(v) �e nanoparticles of tetrahedron shape show a
moderate role in the heat transfer rate

(vi) �e nanoparticles of tetrahedron shape show a
lower role in the heat transfer rate

(vii) Performances of lamina and sphere shapes
nanoparticles in the forms of disturbance on
temperature profiles and the heat transfer are
opposite to each other

(viii) Performances of hexahedron and tetrahedron
shapes nanoparticles in forms of the disturbance
temperature profiles and the heat transfer are
opposite to each other
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