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ABSTRACT

We present a metechnique for multi-axis force/torque sensor calibration cathage from motion. The nwel aspect of this
technique is that it does not requisgkcit knowledge of the redundant applied loagttors, yet it retains the noise rejection

of a highly redundant data set and the rigor of least squares. The result is asteydlifhtly more accurate calibration pro-
cedure. A constant-magnitude force (produced by a mass inity dield) is randomly meed through the sensing space while
raw data is continuouslyaghered. Using only thewesensor signals, the motion of the foreetor (the “motion”) and the cal-
ibration matrix (the “shape”) are simultaneoustjracted by singularalue decomposition. Eliminating the need to collect all
the applied loads mak collecting lage amounts of calibration data nearlfoefess. V¥ have applied this technique tovezal

types of force/torque sensors and presgmeemental results for a 2-DOF fingertip and a 6-DOF wrist sensor with comparisons

to the standard least squares approach.

1. INTRODUCTION

Calibration of multi-axis force/torque sensors is a time-consuming ordeal that traditionally requires the precise application of
a set of knavn forces and torques carefully selected to adequately span the space of th&ksenstion by least squares, the
standard technique of force sensor calibratioatédh and Drak 1975; Shimano and Roth, 1977; Nakamura et al, 1988;
Uchiyama et al, 1991), requires both the application of a spanning set of precisetylkads and the measurement of asso-

ciated sensor (e.g. straiagg) \alues. Although ééctive, this approach is cumbersome because of thevedlaliige number



of accurate loads that must be applied to the sensor to reduce noise introduced by measurement error; often 12 to 30 or more
are required to produce a reasonably accurate calibration matrix for a 6-degree-of-freedom (DOF) sensor, even though six are
theoretically sufficient (Watson and Drake, 1975; Shimano and Roth, 1977). For example, Lord Corporation allows up to 60

loads for their user calibration function (Lord Corporation, 1986).

Despitethis burden, there has been littleincentive to find alternative calibration methods. The least squarestechniqueis math-
ematically sound (excepting its explicit assumption of zero-error load vectors, discussed later); it is accurate, given good exper-
iment design and careful attention to implementation details; and, perhaps, most important to its widespread use, it is intuitive
to casual users. Because the relatively high cost of least squares calibration isincurred only occasionally during the life of any

given sensor, few researchers have pursued aternative calibration techniques.

Several researchers have tried to alleviate the burden of least squares by designing specialized calibration fixtures and proce-
dures. Watson and Drake (1975) created a calibration table on which the sensor was mounted. The table had two movable pul-
leys that could be quickly and accurately positioned so that hanging weights applied accurately known forces and torques for
least squares analysis. Uchiyama, et al (1991) created a similar but inverted apparatus. Rather than a table, they built a frame
from which the sensor was suspended with an accurately adjustable “moment bar.” Weights were suspended from the moment
bar to create the forces and torques for least squares analysis. Shimano and Roth (1977) used the robot and gripper and known
objects in the workspace as calibration fixtures for in situ calibration. The wrist was reoriented through afixed set of discrete
poses, some with the gripper empty, some while gripping a known object. The accuracy of this procedure is limited by the ac-

curacy of the kinematics of the arm and grip points and the accuracy of the torques the arm can exert, however.

Assuming the calibration experiment has been properly designed, every calibration method benefits from more data in the
presence of noise. The problem with the least squares technique, as previously mentioned, is that each new piece of data has a
high cost. Each piece of data hastwo parts: the raw output of the sensor and the carefully applied |oad that produced that output.

While the sensor output is easily collected, carefully applying the load is much more time consuming.

We propose a hew approach to force sensor calibration based on “ shape and motion decomposition” techniques from com-
puter vision (Tomasi and Kanade, 1991). Unlike the least squares technique, shape from motion calibration does not require

knowledge of all applied loads. Instead, calibration is performed with a very large number of easily obtained raw outputs and



only a fev known loads. This allws much quickr calibration with feer precise measurementst lpreseres the robstness

and noise-rejection of a &, redundant data set.

2. THE CALIBRATION PROBLEM
A sensor coverts an applied loadp , into a measuremenestor, z (Figure 1). In the case of a force sengarexample, the

applied load is aector of forces and torques and the measurementestanof strain gge readings. The purpose of the cali-
bration function is to wert this transformation so thatygh a measuremengstotr we can estimate the load which generated it.
For a linear senspto which we restrict our attention (Bayo and Stubbe, 1989), the calibration function is a constant matrix

that transformg into m.

Cz=mor zTCT = mT (1)

Our calibration problem is to reeer C, the calibration matrix (not to be confused with the compliance matrix of Uchiyama et
al (1991) and Nakamura et al (1988)) in the presencecfytpes of noise: errors in the applied loadter m , and measure-
ment noise in the measuremeattor z. Because of these sources of random noise, an accurate calitaiationbe achieed
without redundant data; more redundant data results in a better signal to noise ratio for calibratoy reco

Equation (1) assumes zero bias. If the sensor has some constant non-zero bias, this must be determined aspart of the e
imental procedure and subtracted frorarg reading. Agin, careful gperiment design, which is not the subject of this paper
is required to determine a procedure to accuratehaet the bias foany calibration technique based on (1).

For force/torque sensors with symmetric internal mass disiitis, sensor bias can be determined with a simple procedure
in which thez axis is aligned with the gvay vector The aerage of measurements in the parallel and anti-parallel orientations
yields the bias ector However, there are some conditions under which the determination of biafigaltifAn extension to

the shape from motion technique to include bias determinatioplisred in Sectio®.



Least Squares Calibration Solution
The standard technique for solving calibration problems is the least squares (LS) or pseudoinverse method. (Least squares

and pseudoinverse are equivalent, Shimano and Roth, 1977, Strang, 1988.) This requiresthe application of several known loads,

m;, and the measurement of the corresponding sensor vectors, z;. These data form two matrices that plug into (1):

(|C o= @)
from which the calibration matrix can be computed using the pseudoinverse of the measurement matrix, Z:
c'=2z'm . ?)

Remember there are two types of noise: measurement noise and applied load error. The effect of measurement noise can easily
be reduced by taking many measurements for each known load. Applied load error can only be reduced by carefully applying
many different known loads.

The accurate application of al load vectors, m;, makes the least squares calibration process tedious. The difference between
the true applied load and the intended applied load (the “applied load error”) must be minimized for an accurate calibration
because this error manifestsitself directly in the calibration matrix, C. Most statistical analyses of least squares (i.e. Chatterjee
and Hadi, 1988) assume M contains no errors. Thisisthe same as assuming the applied load error is zero and leads to the result
that Z*M isan unbiased estimate of C. Infact, applied |oad errors can lead to a biased estimate of C (Beaton et al, 1976), which
leads to inaccuracy in the calibration result even if redundant loads are applied.

This error can only be minimized by exercising extreme care when applying each and every load used in the LS calibration.
Thus, incorporating a large number of redundant applied loads in the LS calibration procedure is very expensive (in time) due
to this applied load error minimization requirement. In practice, this limits the number of redundant loads. In our lab, for a 6-

DOF sensor, userstypically lose patience after only 6 to 14 redundant loadsfor atotal of 12 to 20 known applied loads (although

30 - 40 are more desirable).

Shape from Motion Calibration
With the shape from motion calibration approach we do not need to know all the applied loads, m;, but only aconstraint which

relates them. Thisfeature allows usto apply many redundant |oad vectors and use the resulting raw measurements to determine

calibration without knowing exactly what the loads were that caused them. Literally hundreds of data points can be acquired



in the shape from motion calibration procedure in a fraction of the time that a dozen data pointsin the LS procedure require. A
small number of knen applied loads are required to establish the desired reference litamene of the redundant data re-
quires accurate applied load knowledge for the shape from motion calibration procedure. The ability to economically collect

and apply masge amounts of redundant data in shape from motion calibration accounts foaittaagvaeer least squares.

Why do we call itshape from motion? The calibration matrix encodes the mechanical structure of the Seskating the
placement of sensing elements and the properties of the material from which it is made. These are what definesthe sensor’
intrinsic shape. The motion refers to the mement of the applied load around the serSbape from motion refers to theect

that we can rea@r the shape of the sensor by Wity the theoretical rank of the shape (the “proper rank” or rank in the absence

of noise, defined later) and applying arbitrary motion to the load.

Shape from Motion Derivation

In this section, we will deve the shape from motion approach in an abstract sense.ihaection 3, we will apply it to
specific sensors and sensing spaces. Ouradien bgins with a representation of the sensor function which maps a load onto

a measurement:

.
Z

= mjs, (4)

WhereziT is al x p measurementactor miT is al x mload \ector andS is them x p shape matrix. There apesense elements

andm DOF. Note, from (1), that the calibration matr, is easily computed from the shape matéixas

T+
C=I[ST]. (5)
If we applyn loads and collect the measurements, we gpress (4) as the matrix equation (similar to (2))

Z =MS, (6)
whereZ is then x p matrix of measurements aMlis then x m matrix of applied loads. Note that the shape maS;is un-

changedM is our motion matrix which encodes the applied loads to the sensor

In traditional calibration techniques (i.e. least squares), HathdM are knavn. Z contains the output signals of the sensor
while M is constructed from carefukiernal measurements of the applied forces that correspond toeohimZ. These
external measurements generallydlve scales, libble levels, and protractors and can leewtime consuming. Our technique
eliminates the need to kwdVl a priori by simultaneously determinirlg andS given onlyZ. We achige this by performing

a singular @lue decomposition (SVD) (Klema and Laub, 1980¥on



SVD produces the follging unique decomposition of am x p matrix, Z:
_ T
Z = Uxv (7
whereU is ann x n orthogonal matrixZ is ann x p “diagonal” matrix (padded with zeroes as needed) of the singailaew of

Z in descending ordeandV is ap x p orthogonal matrix.

Assuming we knw that the “proper rank” of isr, it can be shon (Strang, 1988) that the best projectiorzadnto anr-
dimensional space (far< p) is
z0=u=vd (8)
whereU” consists of the firstcolumns ofU, £ is a diagonal matrix of the firstsingular alues, and/"T consists of the first
r rows of V'. (Z" is not the same &' in equation (3).)
We hare assumed should hae rankr (elaborated on belg, but measurement noise pides additional independent infor-
mation. Equation (8) ges us the best possibleo(Bythe et al, 1977) rankrepresentation o in the presence of that noise,

so, combining (6) and (8) yields

zO=uEvd = MsS . €)
from which we can estimaid andS:

~ 1/2
M = Ug:zD (10)
3= (qu/zva

Unfortunately M andS are not yet the trumotion andshape matricesbut are only initial estimates. Thare indeterminate
by an afine transformation. Genany invertibler x r matrix, A, (an afine transform)

MS = (MAT)(AS) | (11)
so we must find an appropriate matéx,such that

M=MA™
S=AS
We indirectly findA by applying a geometric constraint to the uidiial vectors of the motion matrix (which we call the

(12)

“motion constraint” and describe in Secti® to sohe forA™L. Knowing AL, findingA is trivial and we sole forS using (12)
andC using (5). Finallywe introduce a fe precise measurements, fn; both knavn) in order to orient the calibration matrix

with respect to the desired reference frame and to scale the result to the desired engineering units. Figure 2 illustrates this pro-



cedure in flav chart form. (V@ presentxamples in Section 3 for clarification.) There are strong mathematical similarities be-
tween LS and shape from motiowtlthe essence of shape from motion is that we heplaced the LS requirement of tring
all individual loads with the shape from motion requirement of a geometric constrintvith no assumptions of smoothness

of motion.

Proper Rank

The “proper rank” of the matrix of outpugetors is the rank of the matrix in the absence of no@ea Bven sensor config-

uration, we must determine the proper rank before we can apply shape from motion.

We knaw the rank of the product of twmatrices cannotxeeed the rank of either indédlual matrix. (The product is both a
subspace of the column space of one and a subspace oftheace of the othgr~rom equation (6), which does not include
noise, we knav the rank ofZ is limited by the rank of the “motion” and “shape” matrices. From these we can deduce the proper

rank ofZ for ary sensar

We knaw little about the form of the shape matrixitbve can assume good sensor design will produce maximum rank. If
not, the sensor will, inaict, be dgenerate. The motion matrix, on the other hand, has a well-defined form. The motion matrix
describes the motion of the forcector through euclidean space. Therefore, the rank will be either 2 or 3 for planar and 3-space

sensors, respewtly. From this, we knw the proper rank of.

Note that the rank is deduced from forces oAlB-space wrist sensor canvbaup to six dgrees-of-freedom,ut the force
vector remains embedded in 3-spaa@qlies are a linear combination of forces, sg tenot increase the rank of the motion

matrix. e will see that this complicates the shape from motion procedurdobs not causaifure.

3. APPLICATIONS OF SHAPE FROM MOTION

Force-Only Sensors

2-DOF Calibration. As an &ample of the shape from motion calibration procedure, we first consider a 2-DOF subset (Figure

3) of a fingertip sensor for axteous hand similarin concept, to that of Bicchi and Dario (1988)ré¢e sensing results from
the deformation of a single cantitr beam. There are four straiaggs that respond to forces in the plane, thus, the measure-
ment \ector for this gperiment has four elements and the loacter has tw elements{andy directions). © collect measure-

ments, aonstant-magnitude force is applied in random directions in the plane using the setup of Figure 4.



The sensor equation can be written in the form of (4):

[Zu z, 73 zi4] = [cosei sinBJ {Sll 512 S13 Sl‘ﬂ : (13)
S21 S22 S23 Sp4

The constant magnitude of the force has been arbitrarily set to one wiity lealy co® and si® in the motion matrix. (Cor-

rect engineering units will be selected in the final sfEpi3 allavs us to use c88 + sirfd = 1 as our motion constraint. Fur-

thermore, the rank of the shape matrix is, at most, 2, so the proper ranknof pumeasurement matrig, is also 2. If we

denote the elements Af* by ay;, a;,, ay, anday,, and théth rov of M bym; andm,, thenthe constraint equation becomes

2,2 2
1 = miy(ag; +ag) + 2my;miy(a548,; + a5,8,) (14)
2,2 3
+miy(az; + a3))

We sol\e for (y12 + a3,9), (@187 + 81085,), and @y;° +ay,?) in (14) in the least squares sense and then numerically solv
for the indviduala; values. (In &ct, an analytic solutiorxsts for thea;;'s in the 2- and 3-DOF cases.) Because there are three
equations and four unknms, one griable is left free. Although grsolution is acceptable, forcing A to be upper triangular or
symmetric ensures vertibility. (Symmetric is preferred for good conditioning.)vitey computedd ™, one can sok for the
shapesS, using (12) and the calibration matrix, using (5).

Unfortunately the resulting calibration matrix is not oriented iy garticular direction. @ align it with our desired reference
frame, we introducene precise load (&, m pair, both \ectors knan) to rotate and scale it appropriatelg do this, simply

applyC to z and use the resulting magnitude and angle to rotate and scale the matrix accordingly:

C, = Rot((p)%c , (15)

whereC, is the oriented calibration matrigjs the angular diérence betweem andCz, andRot(¢) is the2 x 2 rotation matrix.

We use Mathematica to perform the SVD and toestite nonlinear equations tteactA, S, and finally C. Figure 5 shars
a polar plot of the rea@red motion of one calibration trial. Despite significant noise, the motion displegteat aerage
circularity (Quantitatie assessments of precision appear in Section 4) and we calibrated this 2-DOF sensor with onlynone kno

load.

3-DOF Force Sensor. An extension of the 2-D fingertip force sensor to 3-8swperformed using a standard 6-DOF Lord force/

torque sensor with a compact mass mounted oratteefflate. In reality there is a small moment arm associated with this ar-

rangement, it we will ignore that for n@.



The resulting motion matrix consists of vectors of the form [cosBsing sinBsiny cosy] so M is now rank 3. Likewise, S ac-
quires another row, becoming 3 x p. The derivation of motion and shape is the same as in the 2-DOF case with the necessary
modifications to the motion constraint (constant magnitude force application). Thisrelation is easily derived so we will not re-
peat it here. (It issimilar in form to (14).) Plots of the recovered motion of the Lord force/torque sensor during an actua cali-
bration trial appear in Figure 6. Although it is difficult to judge by eye, it is an accurate sphere. (Again, quantitative results

appear in Section 4.) This 3-DOF sensor requires only two known loads to fully scale and orient the matrix.

Force/Torque Sensors

The previous section showed the application of the shape from motion calibration method to 2-DOF and 3-DOF force-only
sensors. This section will develop the shape from motion technique for force/torque sensors. We will see that the introduction

of torque measurement introduces a new problem: the moment arm of the applied force is embedded in the shape matrix.

2-D Force/Toque Sensor: 2 Forces, 1 Torque. Consider a2-D force/torque sensor which respondsto forcesand torquesin the
plane (3-DOF). Our motion vector has 3 elements: two forces and one torque, so the true shape, S, must have 3 rows. However,

if we generate the load by applying aforce to moment arm, r, then the torque value is linearly related to the force values,

fo 1 = [f 1) ;i_rr:. (16)

Because the torque, T, is alinear combination of the first two columns of the motion matrix, it does not increase the rank.
Therefore, given a constant moment arm, r, the motion matrix has rank 2 (not rank 3, as we would hope). This means a planar
system with three DOF has a proper rank of 2, the same as the 2-DOF force-only case. Post-multiplying equation (16) by the
true shape, é, yields
10-r

MS = M YS=Ms, 17
01r,

where M consists of vectors of the form [fxfy 1] and M consists of vectors of the form [f, fy] (identical to the 2-DOF case). The

moment arm becomes embedded in the shape matrix, S (rank 2), we can recover using shape from motion:

S = [l xT]é (18)



wherel isthe 2 x 2 identity matrix and X isthe planar equivalent of the cross product matrix, [-ry r,]. (This vector produces the
magnitude of the cross product of r and any other vector in the x-y plane.) We call the matrix [I X ] the rank squashing matrix

(or squashing matrix) because the constant moment arm “ squashes’ down the proper rank of S.

From the 2-DOF force-only case, we have seen how to recover the M and S matrices of equation (17). However, we are in-
terested in recovering the true shape matrix, S , whichisthe samefor any load with any moment arm. We cannot simply pseudo-
invert the squashing matrix because it hasrank of only 2 and so will not completely specify the true shape matrix, which isrank
3. To overcome this, we need to perform shape from motion calibration twice using two different moment arms and combine
the results. As we have pointed out before, the two recovered shape matrices are not aligned with the desired reference frame,
nor are they aligned with each other. So we must introduce a precise data point to orient each squashed shape matrix to a con-
sistent frame of reference before we can combine them to extract the true shape matrix. This is accomplished using the same

technique that culminated in equation (15) for the 2-DOF case.

Once the squashed shapes are “ co-oriented,” we find S from (18) by conglomerating the shape and squashing matrices from

both trials such that

-l

or

(20)

g &

where the subscripts 1 and 2 refer to the two calibration trials with different moment arms.

In summary, for the 3-DOF planar force/torque sensor, we run the calibration procedure twice with the same constant force
but different moment arms and then combine the results. This provides three independent columns of information so S (which

isrank 3) can be recovered.

3-D Forcel/Torque Sensor: 3 forces and 3 torques. The 6-DOF force/torque sensor shape from motion calibration procedure

follows a similar development as the 3-DOF force/torque procedure. Now our load vector has six elements: three forces and

10



three torques. Agjn, if we apply a constant magnitude force with a particular moment atine, torques are linear combina-

tions of the force so the rank of the motion matrix is 3 (not 6).

) 1000 r, -1y
oty L, = [ ff) o010, 0 1, (21)
001r,-r, O

Again, the squashing matrix consists of the identity matrix and the transpose of the cross producutatnixhlese sub-
matrices are represented in 3-space (21).

To reconstruct the full 6-DOF shape matrix (which is rankBge trials are required with three tifent moment arms. Three
trials are required because it is impossible to choosetwashing matrices that yield rank greater than 5 when combired. W

solve for S in a manner similar to (20) using co-oriented shape matrices:

r 7+

B3 s,

[E2IRER (22)

1]

where [ X;] is as it appears in (21). Note that a total of 6 precism) points are required - twyper moment arm - in order to

wme
I

consistently orient th§;’s.

4. EXPERIMENTAL COMPARISON TO LEAST SQUARES
The point of ap sensor calibration is to pridle an accurate characterization of the serdarr desired accurgds almost

always traded-dfwith the time required to perform the calibration procedure. Usumablye accurate calibration measurements
will produce a more accurate calibrationt they will take more time. Our motion and shape approackdsional in that it
allows the collection of much more data@sstime as compared to the least squares approach. This produossazcurate
and precise calibration, for a gien accuragin calibration measurement.

The reason it tads less time is ofious -- faver accurately applied loads are requireat. &gien accurag of each measure-
ment, fever of them results in less time, despite #a fve collect manmore data points.

The reasons for greater accyrace threefold. First of all, more data can hthgred in less time. Second, the applied loads
are unknwn sothere is no applied load error. Finally, the least squares approachewhkll the datavailable and attempts to

minimize the total erroiit does this at thexpense of the shape because, from equatio€(B)the only free ariable. As such,

11



both the measurement errors and the applied load errors distort the shape. On the other hand, the shape from motion approach
has two free variables: the shape and the motion. Errors are distributed between the two because shape from motion relieson a
known physical constraint of the motion and minimizes error with respect to that constraint to maintain the shape. It isimportant
torealizethat thisisatrue constraint based on geometry, not a constraint based on some sensor model that may be wrong. Great-

er accuracy results from this hard physical constraint.

To demonstrate these assertions, we performed both shape from motion and least squares calibrations on our 2-DOF fingertip
sensor and a 6-DOF Lord force/torque sensor. In both cases, the least squares method was aided by averaging each force mea-

surement over time to minimize noise.

Fingertip Results

For the shape from motion approach, we chose a mass in the linear region of the sensor, near the upper extreme of what we
consider “reasonable,” as defined by the expected forces resulting from the tasks for which the sensor was designed. We picked
the upper extreme to improve signal-to-noise, but we stayed within the “reasonable range’ to reduce any effects of minor non-
linearities. Thisis the extent to which we considered experiment design because we assumed the sensor is highly linear. Sub-
seguent testing showed this assumption isvalid. The chosen test massweighed in at 111.4 grams and the calibration procedure

took only 1.5 minuteswhile collecting atotal of 96 unknown data points and 1 known load.

For the least squares approach, we chose five different masses, each of which was applied at 40-degree increments around the
circlefor atotal of 45 accurate loads. For each load we gathered several measurements and averaged them to reduce the effects
of measurement noise. We chose alarge number of loads to reduce the effects of applied load error. The same criteriawere used
in selecting the calibration masses which were: 60.4, 78.3, 95.2, 111.4, and 122.8 grams. The procedure consisted of adjusting
the angle of the rotating stage to within 0.2 degrees, sequentially applying the five masses, and then incrementing the angle. The

entire procedure took 17 minutes to collect al 45 known data points (including redundancy at each data point).

Because of the nearly exhaustive nature of the least squares calibration, the time differenceismore than 10:1. But even cutting
the procedure down to 15 measurements results in nearly a 4:1 time advantage for shape from motion, not to mention the loss
in accuracy for least squares due to lesser noise rejection. The large number of |east squares measurements gathered should pro-

duce nearly the best possible |east squares calibration.
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To assess the calibration results quantigdyj we hung each of the umasses used for the least squares calibration on the
string and gthered rav data as the sensoawrotated 360 deees. W& then calculated the force magnitude at each sample point
and performed tav calculations. The first determined tivei@ge magnitude to assess absolute acgurhe second smoothed
the magnitude signal to eliminate high frequenocise and determined the standardiateon of the smoothed signal. This
guantifies the “imprecision” of the measurement across all orientations for a constant magnitude force. The bestaind w

these data are talated in Bble 1.

Lord F/T Results
For the 6-DOF sensor weulitt a special calibration fixture (Figure 7) to help us englick, accurate measurements. It con-
sists of a 3-inch aluminum cube (approximately 1 kg) amditsnch diameter brass bars (approximately 1 kg each). The cube
has one threaded hole in the center of eack into which the bars can serd@his pravides 16 unique force/torque combina-
tions that can be quickly and precisely selected during calibration. The simple design is easy to machine yet it dramatically re-
duces the time required for the least squares approach because #uedlgiréide an accurate reference swé for leeling

the deice in \arious orientations. It is quite caemient for the shape from motion approach as well.

Despite using the calibration fixture and collecting only 13 leadors (force magnitudes of 12.09N, 22.9N, and 33.71N
with different moments), the least squares approach required 69 minutes to collect data and computesniorae(\ithout
the calibration fixture, using ounm version of the “torque bar” as in Uchiyama, et al, 1991, toek édongel) This compares
to only 34 minutes for shape from motion to collect up to 500 measureewots/using the single 33.71 N weight and compute
the moment gctors. Although the time didfrence is not as dramatic as the 2-DOF case, it is significant and gets more so as the
number of least squares forcectors increases. Also, these times are aided by the use of the calibration fixture, whkh mak

applying precise loads easiprimarily benefitting least squares.

Gathering the ra data for the shape from motion trialsaived sampling the sensor at 2 Hz while itdiomoved up and
down the longitudinal lines of an imaginary sphere. Each tadéd slightly in length so the totabume of data as diferent
each time, bt the rav data collection time &s a small percentage (10-15%) of the total. The majority of tiasecansumed
in gathering the precise loads used to orient the calibration matrix with the desired reference frames dbigevio the same

precision as the least squares loads.
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To compare precision, we performed the same experiments as in the previous subsection but randomly moved the sensor in
3-D rather than just the plane. The extremes of these data are tabulated in Table 2. Again, shape from motion accuracy (mean)
isas good or better while imprecision (standard deviation) is always better.

Figure 8 shows the magnitude of the linear forces of the one-bar experiment from Table 2. Ideally, this should be a straight
line with avalue of 25.24N including internal mass. We choseto illustrate this data set not because it makes shape from motion
look best (in fact, other data sets show superior performance of shape from motion compared to least squares), but because the
mass was different from that used during the shape from motion approach but the same as in four of the least squares vectors.
Thisavoids giving the shape from motion approach an unfair advantage. The two plots result from applying the calibration ma-
trices from both techniques to the same batch of data. It is clear that the shape from motion plot has less variation, which indi-

cates greater precision. Thisis confirmed by the smoothed standard deviation measurementsin Table 2.

To verify the absolute accuracy of both techniques, we assembled the calibration fixture in two configurations that were not
used in either calibration procedure and gathered data in ten different orientations. The accuracy of each applied load in orien-
tation and forceis 1 milliradian and 0.02 Newtons, respectively. Table 3 shows average errorsin force magnitude and direction

across al ten trias. Figure 9 shows the angular error of both techniques for all ten trials.

5. SIMULATION STUDIES
To verify the above real experiments we ran dozens of simulations comparing least squares to shape from motion. For these

simulations, we assumed a decoupled sensor with known calibration matrix:

003 0 0 O -003 O 0 0
0O 0 003 O 0 0 003 0
0 002 0 002 0 002 0 0.02

Simulated data was generated with various levels of independent, uniformly distributed noisein the sensor outputs and in the
components of the load vector input. When both techniques were presented with the same large data sets of 210 loads (least
squares using both load inputs and raw outputs, shape from motion using only the outputs), they performed nearly equivalently
with a dight advantage to shape from motion. We expect the performance to be nearly the same under identical conditions be-

cause the underlying mathematics are closely related (both compute aleast squares fit).
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However, we ran the greatest number of simulations around an operating point similar to the reakpenisoerts: 12 load
vectors for least squares and 210 loacters for shape from motion. Under these conditions, shape from motion demonstrated
a clear adantage. Wh peak sensor noise at 1 percent of peak sensor output and an applied load error ball with a peak radius
of /3 degrees, the ariation in resoled force magnitude from the dvealibration procedures is displayed in Figure 10. These
plots are analogous to those with real data in Figure 8. The first limblef & lists the mean and standardat®on data anal-
ogous to &ble 2 with real data. Thetea column for “load error” is the peak error for each component of the émdrwsed

in the least squares technique. (Measurement naisénjected in all trials.)

These data were generated by simulating 1h0sensor gctors with no noise and then applying the calibration matrices
resulting from each calibration method to the xeectors. Lile the simulated data used to generate the calibration matrices and
the real data of Section 4, this dat@swgenerated by mimg the force ector along the longitudinal lines of an imaginary sphere.

Although these data are from onlydwimulation trials, theare representag of all simulation trials we ran.

The second line ofable 4 shars a simulation run in which no errors were injected into applied loads for the least squares
procedure. The error in the measurements stayed the same at 1 percent. In this case, shape from motion is still superior becaus
of the lage number of data points used (210 compared to 12). More data reducésctiseoéhoise in the measurements, as

expected.

6. SENSOR BIAS

Sensor bias consists of a constagtter of ofsets that is added to each andrg sample. From equation (1) we see that both

the least squares method and shape from motion as described both assume zero-bias.

In practice, this does not cause a problem because sensor bias is usually easy to depemnie@&lly For a robotic wrist
force/torque senspit is usually sufcient to tale readings with the sensor pointing straight up and straigitt dod &erage

them (i.e. Shimano and Roth, 1977).

In certain situations, foxample an asymmetrical mass digtitibn (a gripper) that is incernient to remee, it would be
corvenient to determine sensor bias and the calibration matrix simultanédasiav howv LS can be augmented to include
bias identification, and then present suchxaereion to the shape from motion technique that is similaora$i and Kanade’

original computer vision derition [5].
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Bias and Least Squares

Rewriting equation (1) in terms of the sensor function of Figure 1 yields:

z=C'm+ Zy, (23)

where z;isthe constant bias vector and C* isthe pseudoinverse of C. For every applied force, m, the sensor response, z, includes

the additive offset, z,. By augmenting C* and m, we can write (23) as astrictly linear function:
zZ= [C+ zo} m (24)
1
This requires two LS (pseudoinverse) procedures, however. The first extracts C* and z; while the second finds C.

Bias and Shape from Motion

The idea of adding bias extraction to the shape from motion technique is analogous to the least squares case. For the single

strain gage as in equation (12), adding a non-zero offset becomes:

(25)
z; = Fs;jcosh;siny; + Fs,;sin6;siny; + Fs;;cosy; + z,
which can be rewritten in accordance with equations (13) and (24):
S11 S12 ™ Si
_ . . . S21 S22 Spg
[zil Zj ... zis] = [cosE)isqui sin®;siny; cosy, 1] S S - Sy (26)
Zo1 Zo2 - Zog

The effect of thisistheincrease of the rank of the motion matrix by one and the subsequent increase of the “proper” rank of Z
by one. It is true that, except for specific pathological cases (such as all offsets equal to zero), increasing the columns of any
rank deficient matrix by constant offsets will increase the rank of the matrix by exactly 1.

Here we have the first caveat: Z must be rank deficient. In other words, there must be a minimum of n+ 1 sense elements for
an n-space sensor. In general, this does not present a problem because the critical n is not the degrees-of-freedom of the sensor
but the dimensionality of the pure force vector. For example, the three-beam “maodified maltese cross’ commercial products
from ATI (Little, 1992) which have only 6 sense elements for a 6-DOF sensor will work fine because the dimensionality of the
force vector is 3 (not 6). In fact, any force/torque sensor will have the required number of sense elements. Only pure force sen-

sors can potentially fall short of this requirement.
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Armed with the new proper rank of Z, the shape from motion procedure progressesin similar fashion asreported in Section 5
until the determination of A1 from the motion constraint. Clearly, the motion constraint has changed, but also the size of A™

has changed; it isnow 4 x 4.

Using the same nomenclature for Aland M asin Section 3, we find we have two, decoupled constraints:

2 2 2
(mia) +(may) +(mias) =1 on
miTa4 =1

The second constraint isjust the description of aplane and is easy to solve. Thefirst constraint istrickier, though, and can be

rewritten

m'B'Bm =1 (29)

where BT isa4 x 3 submatrix consisti ng of the first three columns of AlandmT isarow of M . Thisis adifficult nonlinear
problem to solve that involves the fitting of data to a cylinder. We solve this problem by successively refining the solution nu-

merically.

First, we note the similarity between (28) and the equation for an ellipse:

mTQm =1 (29)

where Q issymmetric. Intuitively, an ellipse should give usagood estimate for the cylinder and we can useit asaninitia starting

point for the numerical refinement of the cylindrical fit.

Finding Q isalinear problem that we must solve in the least squares sense over all the rows of the matrix, M . Given Q, we
decomposeit with SVD and set the smallest singular valueto zero. Thisgivesusa4 x 3 matrix representing a cylinder that best
fitsthe ellipse. Using this as a starting point, we numerically improve the solution using gradient descent over the mean squared

error.

Concatenating the solution from the plane constraint and the solution from the cylindrical constraint yields a4 x 4 matrix,
AL, that we can verify is invertible and well conditioned. With equation (12), we can reconstruct the augmented motion and
shape matrices from equation (26) and strip off the offset vector from the shape matrix before taking the pseudoinverse that

yields the calibration matrix.
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7. CONCLUSIONS
We have described an impved calibration technique for linear force/torque sensors basshpafrom motion decompo-

sition that preides a slightly more accurate calibration matrix with much Idestéfom the userThe intrinsic “shape” of the
sensor is @racted by randomly nuing the calibration force through a spanning range of motion. Both the motion and the
pseudoimerse of the calibration matrix are simultaneously veoed from the na sensor alues.

The shape from motion approach yields a calibration matrix that is at least as precise and accurate as the corresponding leas
squares technique that &sksgeral times as long because more data can be collected wihderor sources. It has been suc-
cessfully applied to force-only and force/torque sensors from 2 tgréeteof freedom with a single batch file written for Math-
ematica. While it is possible to achéeequvalent precision and accusaasing least squares, the additional time required can
be prohibitve for sensor manaé€turers or researchers that must calibrate sensors often.

Although we determined biagetors as part of thexgerimental procedure, we shaehat it is possible to augment the tech-
nigue to automatically determine these as wellyidexl there are at least 1 sensing elements for a sensonispace (not to
be confused witim-DOF).

Of course, this technique has limitations. It linearizes the response around a single force magnitude whereas the least square
technique finds the best linear representation across a range of force magnitudes. (Althougbriutuviteralax this require-
ment. See belw) In practice, we ha found our force sensorsveasuficient linearity that shape from motion still padis.
However, this raises the important issue of designxgfegiments. W briefly discussed our rationale for selection of applied
loads in Section 4,ut we leae the important topic ofx@eriment design to the classicatttaooks in the field (e.g. Diamond,
1981).

Another potentialx@erimental flav is induced by gthering the na measurements while the sensor is in motion. This permits
the quiclest data collection withery dense agerage of the sensing spacet Is subject to dynamicfefcts. Care must be tak
to move the sensor with minimal acceleration so measurements are quasistatic. Of course, s&stdipameasure” data col-
lection works, too, and remainadgter than least squares.

In closing, we note that trehape of the sensor is completelyteacted without the application ofwknown loads. The final
step of applying a fe known loads is only for scaling and orienting the shape matrix with respectxteanat reference frame.

The rav shape still preides useful information about the sen®#cause knen loads are not required to daithis, it is pos-

sible to use shape from motion faimordial learning in autonomous agentsdyes et al, 1995). Our ongoing researdomts$
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are more in this direction, toward fully autonomous calibration. We have also laid the theoretical groundwork for eliminating
the constant magnitude requirement by pressing two uncalibrated sensorstogether asin amulti-robot system or on the fingertips

of adextrous hand.
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Table 1

Least Squares Shape from Mation
load mean | error | imprecision | time || mean | error | imprecision | time
©) @ | (%) | (stddev) | (min)| (99 | (%) | (stddev) | (min)
60.4 60.1 0.5 1.20 17 60.5 0.2 113 15
1114 1102 | 11 0.83 1116 | 0.2 0.60
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Table 2

Least Squares Shape from Motion
load mean | error | imprecision | time mean | error | imprecision | time
(N) (N) (%) (std dev) (min) (N) (%) (std dev) (min)
9.26 9.09 18 .084 69 9.09 18 .058 34
25.24 2553 | 1.7 157 2541 | 0.7 .062
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Table 3

magnitude angle
method error (N) error (rad)
Shape from Motion 0.080 0.0025
Least Squares 0.144 0.0046

34



Table 4

load Least Squares Shape from Motion

mag. | error || mean | error |imprecision|| mean | error | imprecision
(N) | (N) || (N) | (%) | (stddev) || (N) | (%) | (stddev)

10 | .017 || 9971 | .29 .0071 1.00001 | .001 .0013
10 | 0.0 ||1.0003| .03 .0041 9998 | .02 .0016
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