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Ecological and epidemiological invasions occur in a spatial context. We investigated how these processes

correlate to the distance dependence of spread or dispersal between spatial entities such as habitat patches

or epidemiological units. Distance dependence is described by a spatial kernel, characterized by its shape

(kurtosis) and width (variance). We also developed a novel method to analyse and generate point-pattern

landscapes based on spectral representation. This involves two measures: continuity, which is related to

autocorrelation and contrast, which refers to variation in patch density. We also analysed some empirical

data where our results are expected to have implications, namely distributions of trees (Quercus and

Ulmus) and farms in Sweden. Through a simulation study, we found that kernel shape was not important

for predicting the invasion speed in randomly distributed patches. However, the shape may be essential

when the distribution of patches deviates from randomness, particularly when the contrast is high. We

conclude that the speed of invasions depends on the spatial context and the effect of the spatial kernel

is intertwined with the spatial structure. This implies substantial demands on the empirical data, because

it requires knowledge of shape and width of the spatial kernel, and spatial structure.
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1. INTRODUCTION
Both ecological and epidemiological studies are concerned

with invasion of organisms, the mechanism and dynamics

of which are essential components of numerous specific

topics. These include the following: recolonization of habi-

tats [1,2], migration in response to variations in climate

[3,4], the spread of diseases [5–7] and invasion of alien

species [8,9]. The rate of invasion is determined largely

by the spatial spread of organisms, which is commonly

modelled using some probability density distribution

describing the probability of dispersal or infectious con-

tacts as a function of distance. Here, we refer to these

distributions as spatial kernels because that term has

been used in both epidemiological (e.g. [6,10]) and eco-

logical (e.g. [11,12]) studies. In the ecological literature,

they are also known as dispersal kernels [3,13], redistribu-

tion kernels [14,15], dispersal curves [16] and

displacement kernels [17,18], and in epidemiological pub-

lications they are sometimes called contact kernels [7,19].

Here, we focus on the importance of spatial kernel

characteristics in spatially explicit settings. The spatial

kernel can be characterized by its scale and shape,

which are quantified by variance (n) and kurtosis (k),

respectively [17]. Dispersal of organisms that follow a

random-walk process results in a Gaussian distribution

[20], where k ¼ 3 or k ¼ 2 for one- and two-dimensional

kernels, respectively [17,21]. In this study, we consider

two-dimensional kernels, because most ecological

and epidemiological dynamics occur in at least two-
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dimensional landscapes. Figure 1 shows examples of

spatial kernels with different scales and shapes.

For epidemiological studies, assumptions regarding the

shape of the kernel should be derived from knowledge of

how transmission occurs. For example, if transmission

arises through direct contacts, the kernel should be based

on the movement behaviour of the hosts. However, for

many pathogens, transmission is mediated via a vector. If

the movement of the vector resembles a random walk, a

fair assumption is to model transmission with a Gaussian

kernel [22]. Yet outbreak data [7] and studies of pathways

that potentially mediate transmission [23] often reveal

highly leptokurtic distributions. Furthermore, empirical

studies in ecological settings show that dispersal frequently

deviates from Gaussian distributions. A leptokurtic (k . 2)

distribution is usually observed for both plants [14,24] and

animals [4,25], which implies a peak in density at short

distances but at the same time a fat tail, indicating fairly

frequent long-distance dispersers. A number of expla-

nations have been proposed for leptokurtic dispersal,

including population differences in dispersal abilities

[26], temporal variation in the diffusion constant [27]

and loss of individuals during dispersal [28].

Previous studies have focused on the shape of the

kernel in relation to invasion speed. If Gaussian dispersal

in a homogeneous and continuous space is assumed, the

invasion can be modelled as a reaction–diffusion process,

and the speed of the invasion will be given by the diffusion

constant [8], which can be calculated from the kernel var-

iance. Fat-tailed kernels are generally considered to result

in faster invasion speed, and highly leptokurtic kernels

that are exponentially unbounded may result in accelerat-

ing invasions [3,14,19]. In recent research, the centre of

attention has moved further away from assumptions of
This journal is q 2010 The Royal Society
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Figure 1. (a) Probability densities at distances from the
source shown for shape/kurtosis (k) and scale/variance (n):
k ¼ 4 and n ¼ 0.0025 (dashed), n ¼ 0.005 (solid) and n ¼

0.01 (dotted), respectively. (b) Corresponding probability

densities for n ¼ 0.005 and k ¼ 2 (dashed), k ¼ 4 (solid)
and k ¼ 6 (dotted). The diagrams in the inserts in both (a)
and (b) are the same as the main diagrams but at larger
distances from the source and with a logarithmic y-axis.
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homogeneous and continuous space, and is instead turn-

ing to heterogeneous landscapes [9,29]. In this paper, we

take yet another step and focus on invasion of organisms

in environments where the habitats or epidemiological

units are best represented as discrete entities with a

fixed spatial location. Examples of this are studies of live-

stock epidemics [6,30] and ecological invasions, where

habitats and epidemiological units are regarded as iso-

lated patches surrounded by a hostile matrix (as is done

in metapopulation studies). Throughout this article, we

refer to such habitats and epidemiological units as

patches, hence using terminology that is perhaps more

familiar to ecologists. Our aim here is to explore the

impact of shape and scale of spatial kernels on the

speed of biological invasion in patchy environments.

The results may support both future research and the pre-

dictive power of estimated speed of invasions, which we

presume can also depend on the spatial pattern of focal

entities. Therefore, we introduce a novel method that

uses a spectral density approach to incorporate spatial

aggregation into point-pattern representations. Accord-

ingly, we test whether the role of scale and shape

depends on spatial structures such as aggregation in

patchy landscapes. To exemplify what spatial patterns

may be found, we also analyse relevant point-pattern

data by applying a method developed from the approach

described by Mugglestone & Renshaw [31].
2. MATERIAL AND METHODS
In this study, we focused on invasion in spatially explicit,

patchy landscapes. Such a strategy requires methods for rep-

resentations of (i) the spatial distribution of patches, and

(ii) the distance-dependent probability of colonization

between patches. Patch distributions were generated and

characterized using a novel technique based on Fourier

transform, and the probability of colonization was modelled

with spatial kernels characterized by their scale and shape,

as described by Lindström et al. [17].

(a) Analysis and generation of

point-pattern landscapes

Keitt [32] defined neutral landscapes for lattices as models in

which the value at any point in the landscape can be
Proc. R. Soc. B (2011)
considered random, and he also emphasized that this does

not exclude models with spatial autocorrelation. This neutral

landscape definition can also be applied to point-pattern

landscapes, where the distribution of points may deviate

from random as long as the exact position of a point

cannot be predicted. We refer to these as neutral point-

pattern landscapes (NPPLs), and in this section we describe

two measures that we designate contrast (d) and continuity

(g), which can be used to characterize such landscapes.

Technical details and mathematical explanations of these

parameters are presented in electronic supplementary

material, appendix A.

Continuity (g) is a scale-free measure of spatial autocorre-

lation that is based on assumptions of self-similarity over

multiple scales. Large values of g indicate that nearby areas

have similar density. By using Fourier transform as described

by Mugglestone & Renshaw [33], the point pattern can be

represented by a series of sine and cosine terms, and g is

given by the negative slope of a linear regression fitted to

the log(frequency) versus log(amplitude) of these elements.

Readers familiar with time-series analysis may find it useful

to interpret this measure as a two-dimensional point-pattern

equivalent to the spectral colour parameter of 1/f-noise (for a

review of 1/f-noise, see [34]).

Continuity determines whether areas with similar patch

density are located near each other or are more scattered in

the landscape. It does not, however, provide any information

about the differences in patch density in the landscape, and

thus we introduce contrast (d), which is a normalized and a

scale-free measure of density dispersion. Large values of d

reflect a substantial difference between sparse and dense

areas. We measure contrast in the frequency domain, and

this measure can be interpreted as a point-pattern equivalent

of coefficient of variation. Figure 2 shows examples of

NPPLs generated using different values of contrast and con-

tinuity. For further details regarding continuity and contrast

and generation of NPPLs, see the electronic supplementary

material. The assumption of self-similarity over scales in an

NPPL is crucial to the use of a single continuity measure g

for spatial autocorrelation. To determine whether this

assumption holds, we analyse some relevant empirical

point-pattern data. These analyses also provide some esti-

mates of what parameter values (of continuity and

contrast) can be expected in studies in which our results

have implications. The empirical data consist of distributions

of two species of trees (Quercus robur (English oak) and Ulmus

glabra (wych elm)) and farms (pig and cattle) in Sweden, all

represented by their Cartesian coordinates. The data on

Ulmus and Quercus were provided by the County Administra-

tive Board of Östergötland and had been collected in a

massive inventory of large and old trees [35]. The farm

data were supplied by the Swedish Board of Agriculture

and we used the same data as used for kernel estimation in

Lindström et al. [23]. A more detailed analysis of the farm

data has been reported by Nöremark et al. [36].

(b) The spatial kernel

In this study, we modelled the spatial kernel with a general-

ized normal distribution [37]. In Lindström et al. [17] this

was extended to two-dimensional symmetrical kernels.

Kernel density is given by

KðdÞ ¼ e�ðd=aÞ
b

S
; ð2:1Þ
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Figure 2. (a) Examples of spatial distributions of patches used in the simulation study and (b) their corresponding spectral
densities with estimated continuity (g) and contrast (d).
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where d is the distance, and a and b are parameters that

regulate the scale and shape of the kernel. The kernel is nor-

malized by S, as discussed further below. Note that equation

(2.1) may have the shape of some well-known distributions,

such as the normal distribution (b ¼ 2) or the negative

exponential (b ¼ 1).

We focus on rotationally symmetric kernels and quantify

scale and shape by two-dimensional variance and kurtosis,

respectively, as defined by Clark et al. [21] and Lindström

et al. [17]. As described in Lindström et al. [17], the two-

dimensional variance (n) is defined as the second moment

and is a kernel measurement, which is perhaps more familiar

to the empirical ecologist as expected net squared displace-

ment. Kurtosis (k) is a dimensionless quantity defined as

the fourth moment divided by the square of the second

moment, and in Lindström et al. [17] it was shown that for

equation (2.1) n and k are given by

n ¼ a2 G ð4=bÞ
G ð2=bÞ and k ¼ G ð6=bÞG ð2=bÞ

ðG ð4=bÞÞ2
; ð2:2Þ

where G is the gamma function.

In studies focused on continuous space, the spatial kernel

usually describes the probability of dispersal events as a

function of distance. Here, we instead consider invasion as

a series of colonization events in discrete patches.

Implementation of spatial kernels is somewhat less straight-

forward because the probability of colonization events is also

influenced by the location of patches. Hence, the spatial

kernel can be incorporated in different ways that correspond

to different assumptions of the dispersal process. First, one

may assume that every occupied patch overall has the same

potential to colonize other patches. For instance, this may

correspond to the assumption of animals dispersing actively

without any mortality, or transmission of disease between

farms through human-mediated contacts such as animal

transports, given that the number of shipments does not

depend on the farm location [23]. In these instances, the

spatial kernel describes how much more probable the colo-

nizations of nearby patches are as compared with the

colonizations of distant patches, and we refer to this as

relative density dependence. This is implemented by nor-

malizing the spatial kernel by summation over all possible

patches such that the colonization from patch j is
Proc. R. Soc. B (2011)
normalized over all patches k = j by

S ¼
XN�1

k¼1

e�ðdkj=aÞb ; ð2:3Þ

where N is the number of patches.

Second, one may assume that the probability that one

occupied patch will colonize another patch is a fixed prob-

ability that depends on between-patch distance and thus

does not depend on the location of all other patches. This

would correspond to situations where colonization is the

result of a large number of passively dispersing (e.g. by

wind) units, such as seeds or pathogens, and we refer to

this as absolute density dependence. Equation (2.1) is then

normalized by the following [17]:

S ¼ 2pa2G ð2=bÞ=b: ð2:4Þ

(c) Simulation

The effect of k and n on invasion was estimated by simulating

invasions in NPPLs with a discrete time scale and the com-

bination of parameters given in table 1. Some combinations

of d and g could not be generated (figure 3), because it is

not feasible to uphold a pattern with high spatial autocorre-

lation without any contrast in patch density. Starting at a

random patch, we simulated invasions with 200 replicates

of each parameter combination, considering both absolute

and relative distance dependence. To reduce edge effects,

we arranged the landscape such that the starting point was

located in the centre of the NPPL; such arrangement is poss-

ible owing to the periodic nature of the Fourier transform.

(i) Probability of colonization

In the discrete time and space simulation model presented

here, the probability (p) of colonization of an unoccupied

patch by an occupied patch at a distance d in one time step

is given by p ¼ RK(d), where K(d) is the kernel from

equation (2.1), normalized by equation (2.3) or (2.4), and

R is a constant determining the colonization pressure. For

relative distance dependence, we use R ¼ 0.1, and, on

average, an occupied patch will initially colonize one other

patch every 10th time step. To achieve comparable results

for absolute distance dependence, we use R ¼ 0.1/(N 2 1),

where N is the number of patches. Thereby, on average, we

obtain the same probability of colonization as for relative



Table 1. Input parameters of the simulations and values

used.

parameter explanation parameter values

d contrast of patch density 1, 2, 3, 4, 5

g continuity of patch
density

0, 0.5, 1, 1.5, 2

N number of patches 500, 10 000
n variance of kernel 0.0025, 0.005,

0.01

k kurtosis of kernel 2, 4, 6
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distance dependence, if the distribution is random. In a non-

random landscape, patches in sparse (dense) areas will have a

lower (higher) probability to colonize other patches.

(ii) Simulation outputs and analysis

To address the current objective of investigating the impor-

tance of the shape of the spatial kernel for biological

invasions in a spatially explicit context, we analysed two

measurements of invasion speed. First, we investigated the

time, Tl, required to reach fixed proportions, pl, of occupied

patches, and we used pl ¼ 10, 50 and 90 per cent to acquire

estimates at different stages of the invasion. Second, we

analysed the speed, c, of spatial spread, defined as c ¼ dl/tl,

where dl is a fixed distance, and tl the number of time steps

required to reach that distance. We analysed the results for

dl ¼ 0.25 (given relative to the unit square), a distance at

which the influence of the edge effect is considered very

small. For c, we present the results of both absolute and

relative distance dependence.

The results were analysed with an ANOVA (type three) for

each combination of landscape parameters, with the output

parameters c and Tl as dependent variable, and variance

and kurtosis as categorical predictors. Since the outputs

showed non-normal residuals, a Box–Cox transform [38]

was performed for each analysis. The exact values of continu-

ity and contrast varied between replicates, and therefore,

these parameters were included as continuous covariables.

The relative effect of kurtosis was calculated by Ek ¼MSk/

(MSk þMSn), where MSk and MSn are the mean sum of

squares of k and n, respectively.
3. RESULTS AND DISCUSSION
(a) Simulations of invasion

Our results show that the shape of the dispersal kernel can

have a substantial effect on the invasion speed, in terms of

both the number of occupied patches (figure 3a) and the

spatial range of the invasion (figure 3b). However, the

extent of the impact depends on the spatial structure of

patches, as well as assumptions regarding the dispersal

process. The black areas in the diagrams in figure 3 indi-

cate that the kernel shape is of limited importance, which

is consistently found for random NPPLs (contrast ¼ 1

and continuity ¼ 0), indicating that the shape of the

kernel has little influence when patches are randomly

distributed.

Absolute distance dependence can best describe a

colonization process involving an organism with a large

number of propagules and passive dispersal (e.g. caused

by wind). Under such assumptions, our results suggest

that the shape of the spatial kernel can have a pronounced
Proc. R. Soc. B (2011)
impact on the invasion speed in non-random landscapes.

The general pattern in our findings is that contrast is the

characteristic that had the most extensive effect on

the importance of kernel shape, whereas the influence

of continuity was less apparent. In figure 3a,b, this can

be seen as a more evident left–right shift instead of an

up–down shift. Moreover, the importance of kernel

shape changes during the course of invasion (figure 3a),

with the most prominent effect being observed during

the initial phases of invasion. High values for contrast

result in groups of locally connected but regionally iso-

lated patches, and colonization between such isolated

groups is rare when dispersal is limited (i.e. variance is

low). This is enabled by the occurrence of rare but

long-distance events (described by the tail of the leptokur-

tic kernels). The importance of kurtosis decreases with

higher continuity, at which the distribution of patches

may locally resemble random distribution of patches,

where kurtosis is of little consequence.

The relative distance dependence will correspond to

colonization by actively dispersing individuals that are

not affected by mortality, or to spread of disease between

farms via human activities, if the number of contacts of

infected premises is independent of its location. For

example, the number of animal transports can be

expected to be the same for geographically isolated

farms as for those in dense areas [23]. Our results show

that, for such organisms, kernel shape is unimportant

relative to the kernel scale for all landscape characteristics

(figure 3c). Hence, it is not essential to consider kernel

shape in the context of invasions of organisms, when

the colonization process follows the assumptions of rela-

tive distance dependence. Under such an assumption,

the patch arrangement becomes less important, and,

because the colonization pressure from each patch is the

same, the invasion process may not be equally dependent

on fat-tailed kernels to reach isolated patches. It might

also be expected that dispersal can comprise both an

active component and a more passive component that

include mortality. Depending on the organism and its

dispersal mechanism, it is possible that the invasion

process will position the importance of kurtosis along

the gradient between absolute and relative distance

dependence in a given patchy landscape.

Factors other than distance can influence the dynamics,

and this is particularly apparent for epidemiological

invasions [30,39]. Here, we have used an admittedly

simplified colonization model to represent both ecological

invasions and spread of disease. This analogy between

colonization in a metapopulation and spread of disease

has been discussed and used in disease modelling, for

example, by Vernon & Keeling [40] in their study of the

spread of disease in a network representation. These inves-

tigators emphasized that the assumptions of a simplified

colonization model may be too crude to capture the

dynamics of any real invasion, but with such a model it

is possible to test the effect of the contact structure. Our

aim was to reduce the system so that the main character-

istics considered in the study were landscape and

dispersal, while excluding recovery/extinction and within-

patch dynamics such as density dependence. We argue

that our results regarding the importance of kurtosis and

the interaction with landscape features will hold for more

realistic models as well.
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Previous studies have shown that spatial kernels with-

out exponentially bounded tails lead to invasions where

the speed of the spatial range expansion accelerates

[14,19,41]. The cited investigations focused on travelling

wave solutions and examined invasion as the speed of the

wavefront. Such fronts cannot be observed in our spatially

explicit and finite point-pattern landscape. Instead, we
Proc. R. Soc. B (2011)
studied spatial range expansion as time to a fixed distance,

and thus we cannot draw many conclusions about accel-

erating invasions. However, when there are heavy tails,

they can also be expected to occur in point-pattern land-

scapes. Yet, much larger landscapes and more replicates

are required to assess acceleration, and consequently

computational power may become a limiting factor.
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An alternative is to turn to one-dimensional models of

invasion, as has been done in many previous studies

(e.g. [3,14]), although in that case it is necessary to con-

sider that invasions in one and two dimensions may

behave quite differently [19]. In addition, it might be

cumbersome to relate the results of one-dimensional

models to empirical patch distributions. In a patchy land-

scape, the last patches to be colonized are not necessarily

those that are farthest from the initial point. Therefore,

we evaluated both a direct measure of spatial speed and

a measure of the time required for a specified proportion

of patches to become colonized. For example, the spatial

speed measure applies to when a disease will reach a

specific area, while the proportion colonized relates to

the number of infected units within an area. Inasmuch

as the trends are very similar, only examples of the spatial

range results are shown in figure 3.
(b) Point-pattern landscapes

To justify the linear model used for continuity and to

demonstrate what landscape parameter values might be

expected in areas where our results have implications,

we used the method given in electronic supplementary

material, appendix A to analyse relevant data. More pre-

cisely, we assessed the distribution of two species of

deciduous trees (Quercus robur and Ulmus glabra). Trees

of these species are important habitats for saproxylic

insects. Many of these insect species are endangered,

and limited dispersal has been proposed to be a major

explanation for this situation [42,43]. Both of these tree

species are also hosts for numerous lichens [44], and

Ulmus is also of interest in epidemiological studies

owing to the spread of Dutch elm disease (caused by

the fungal pathogen Ophiostoma ulmi) [45]. We also exam-

ined the spatial distribution of pig and cattle farms in

southern Sweden. The spatial distribution of farms has

a marked impact on possible outbreaks of livestock dis-

eases [6]. The continuity estimates are all fairly close to

1, while the contrast estimates are more variable, ranging

from 1.29 for cattle farms to 4.9 for elm trees (figure 4).

From figure 4, it can be seen that the estimated values

of continuity and contrast of the empirical distributions

(see §3b) lie within the range where kurtosis can have

a substantial effect on invasion speed under absolute

distance dependence. Hence, although it is not within

the scope of this paper to compare invasions in tree and

farms landscapes, it can be noted that the differences in

contrast suggest that kernel shape is more important for

invasions in the former.

The distribution of the analysed data and the

estimated values of contrast (d) and continuity (g) indi-

cate that the linear assumption in determining g is also

applicable for the analysis of empirical data. The linear

relationship between log (frequency) and log(amplitude)

implies that there is a spatial self-similarity over scales,

which is the definition of a fractal process [46]. There

are, however, many processes underlying the distributions

of these point patterns. Furthermore, Halley et al., p. 259

[46] point out that ‘Even an elephant appears linear if

plotted on log–log axes’, and one should be careful

when inferring fractality. Therefore, we refrain from draw-

ing conclusions about the fractal properties of these

distributions. Instead, we conclude that the analysed
Proc. R. Soc. B (2011)
patterns justify the assumptions of the NPPLs used in

this study and that the measurements continuity and

contrast may capture important landscape features.

Keitt [32] introduced spectral methods to landscape

ecology and presented neutral landscapes for lattice

models. By further developing the point-pattern represen-

tation offered by Mugglestone & Renshaw [33] and the

spectral mimicry of time series described by Cohen

et al. [47], we were able to introduce the NPPL model.

This method can be used to generate non-random land-

scapes with specific characteristics. The landscapes are

characterized by their continuity, which is a measure of

spatial autocorrelation, and by their contrast, which is a

measure of the variability of patch density in the land-

scape. High contrast results in groups of locally

connected but regionally isolated patches, and coloniza-

tion between such isolated groups is rare when dispersal

is limited (i.e. when there is low kernel variance).

The methods introduced here to generate and analyse

point-pattern landscapes are based on spectral represen-

tation, which has become increasingly important in spatial

data analysis. This approach is especially advantageous

when studying spatial dependence in point-pattern pro-

cesses, because, compared with other techniques, it may

capture more complex dependencies. An example of this

is anisotropy [48], which was not within the scope of our

study but is a straightforward modification of the method.
(c) Implications of our results

Ecological and epidemiological processes occur in a

spatial context. Our understanding of those processes

and our ability to predict and control them depend on

how well we can describe the spatial context, which

includes both the spatial environment and the spatial

behaviour of the processes themselves. Here, to study

invasion, we used a patchy landscape as the spatial

environment and a family of spatial kernels to model

the distance dependence in the colonization process.

The novel feature of our work is that we employed

spatially explicit models, and we avoided the commonly

applied assumption of homogeneous and continuous

spatial structures, and instead focused on colonization

in patchy landscapes. In that way, we were able to include

the interplay between the spatial kernel and patchy land-

scapes. Our results indicate that, depending on the

assumptions of distance dependence, this interaction

may be very strong, and the findings also suggest that

the spatial structure of the patches determines whether

kernel shape will have a pronounced effect on the invasion

speed. More specifically, the importance of shape of the

spatial kernel is measured in relation to the scale of the

spatial kernel and our results emphasize the importance

of correct representation of both these features. Indeed,

a vast array of topics, such as colonization of habitats,

migrations in response to climate variations and spread

of diseases, all occur in a spatial context in which the

arrangement of patches is an obvious component [49],

and thus we expect that our results can have implications

in direct applications and in future research and

investigations. The observation that the importance of

kurtosis differs depending on the structure of the land-

scape suggests that both the speed of invasion and the

methodology used to estimate that variable can differ
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between landscapes. In some landscapes, it may suffice to

analyse the scale of the spatial kernel, whereas in other

landscapes it will be necessary to assess the shape of the

kernel. This also stresses the importance of developing

empirical methods that correctly capture landscape

structure.

Both variance and kurtosis are related to long-distance

dispersal (LDD), and most studies of LDD (e.g. [50])

define this as either dispersal events beyond some fixed dis-

tance or some percentile of the tail. It should be kept in

mind that these distances or percentiles are chosen by

the researchers, and thus the measures of LDD are to

some extent subjective, and comparison between studies

may be difficult. We argue that dispersal is better described

by analysis of the spatial kernel and its characteristics.

Several investigations of dispersal in continuous space

(e.g. [14,41,51]) have shown that the fat tail of the spatial

kernel (reflected by kurtosis in our study) has an impact on

invasion speed. However, to our knowledge, ours is the

first investigation to focus on the importance of the

kernel characteristics for invasions in patchy environments,

applying both random and non-random distribution of

patches. By using variance and kurtosis to describe the

kernel, and testing the effect of these measures, it is poss-

ible to ascertain whether and when it will be essential to

estimate these characteristics.
4. CONCLUSIONS
The impact of the spatial aspect on ecological and epide-

miological theory is especially apparent when considering

invasions and spread of disease. This aspect has two com-

ponents, the landscape and the dispersal of organisms,

which we have shown are entwined when the landscape

structure is complex. Our observations also demonstrate

that in many cases it will not suffice to assess the scale

of the dispersal kernel, because the specific shape of the

spatial kernel may be important as well. Yet, the influence

of the scale of the kernel depends on the structure of the

landscape, and hence it is also necessary to measure the

structure. These conclusions emphasize that studying

ecological and epidemiological spread in a spatial context

places considerable demands on empirical details regard-

ing dispersal, contact patterns and landscape structures.
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