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Abstract. We determine the shape of the strongest column in the class of columns
of length [, volume V, and having similar cross-sectional areas A (z) satisfying a < A(z)
< b where a and b are prescribed positive bounds. In the special case where there are no
constraints on the areas of cross-sections the problem has been solved by Keller [1] and
by Takjbakhsh and Keller [2]. These authors observed that the problem is equivalent
to an extremal eigenvalue problem and developed a variational technique for solving
such problems. We treat a slightly more general class of extremal eigenvalue problems
and give sufficient conditions for a given function to be a solution. Our work on the strong-
est constrained column demonstrates a procedure for finding functions satisfying these
conditions.

1. Introduction. Let \(p) denote the lowest eigenvalue of the boundary-value
problem

v+ @y =0, 0Lz
a,y(0) — 8y'(0) = 0, 1.1)
ay() + By'(D) = 0
where p(z) > 0 and the «; and B; are real numbers satisfying |a:| + |8 > 0,7 = 1, 2,
and chosen in such a way that

¥ OW©) — vyl + [ Yt dz >0

for any nonzero C” function y satisfying the boundary conditions in (1.1). This condition
insures that all eigenvalues of the boundary value problem are > 0. It is satisfied by
many of the Sturm-Liouville problems commonly met in practice.

Let M and H > h > 0 be given numbers and let f(z, p) be a given real-valued contin-
uous function defined on [0, I} X [k, H]. In this paper, we shall study the extremal
eigenvalue problem

ol
maximize A(p) subject to j @ o@)dz =M k<o) <H (12
0

Several special cases of this problem have been solved by previous authors. In particu-
lar, the case where f(x, p) = p~'/* (this corresponds to the strongest column problem)

* Received August 7, 1975.
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was solved by Keller {1] with no constraints of the form # < p(z) < H on p. This work
was generalized to the case f(z, p) = p", n < } by Tadjbakhsh and Keller [2].

Another important special case of (1.2) occurs when f(z, p) = pand 8, = 8, = 0.
This problem was solved by M. G. Krein [3] with the constraints h < p(x) < H present.
Krein actually did much more than this. He determined both the maximum and minimum
of each eigenvalue of (1.1) subject to the constraints in (1.2) with f(z, p) = p. His results
were used to determine Lyapunov zones of stability for a parameter in Hill’s equation.
Problems similar to Krein’s are studied in [4, 5, 6].

2. The extremal eigenvalue problem. The constraints b < p(z) < H imposed on
the function p in (1.1) are analogous to the ones we find in passing from classical problems
in the calculus of variations to more general problems in optimal control theory where
each admissible curve is required to lie in some designated region. We shall therefore
use certain ideas from optimal control theory in dealing with the problem (1.2). Actually,
all that is required is an elementary version of Pontryagin’s maximum principle (which
we state below as a minimum principle) and the reader is not assumed to have a back-
ground in optimal control theory.

The minimum principle that we require concerns problems of the form

minimize j: folz, o(x)) dx

t
subjecttof L @) de = M, G=1,2--,N), h<opx<H 21

where fo, f1, - -, fv are given functions, each continuous on [0, ] X [k, H],and M, , - -,
My are given constants.
TueorEM 2.1 (Minimum Principle). If po(x) is a solution of problem (2.1) then there

exist constants (Lagrange multipliers) 7, > 0, n,, - -+, 7~ , not all zero, such that
hmirz [nofo(@, p) + mfi(x, ) + -+ + anfn(z, p)]
<ps<

= nofo(x, po(2)) + mfi(x, po(2)) + - + fulz, po(Z)) 2.2)

for each z in [0, I]. Conversely, if there exist multipliers n, > 0, 7,, - -+, 7y and a function
po(x) such that (2.2) holds, and if the conditions

[t@nea =2 (=10 r<a@<H @3

are satisfied, then p, is a solution of (2.1).

This theorem appears in {7, page 215]. In our work below, once we have determined
a function p,(z) satisfying the conditions of the theorem, we would like to know that this
function is optimal. Therefore, we stress the sufficiency part of this theorem, and since
the proof of this part of the theorem is extremely short we give it here.

Let po(x) be given satisfying conditions (2.2) and (2.3) and assume that n, > 0.
Let p(x) be any other function satisfying (2.3). We shall show that

[ 1o o dz > [ 1o, o) @.4)
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We have

no[ [ e, (@) dz — [ s pol®) dx]

N

1 1 N
= j(; [;) nf:(z, P(x))] dr — ‘/; [1’—0 n.f:(z, Po(x))] der >0
by (2.2). Since 5, > 0, (2.4) holds.

Our problem (1.2) is clearly not one of the form (2.1). To see how Theorem 2.1
applies to problem (1.2) we need Theorem 2.2 below. This theorem gives a sufficient
condition for a function p,(z) to be a solution of problem (1.2). Having proved the theorem
we can therefore solve problem (1.2) by constructing a function satisfying the conditions
of the theorem. This will be the approach we shall take.

THEOREM 2.2. Let po(x) be a function satisfying

fl f@, po()) dz = M,  h < py(z) < H (2.5)

and let yo(x) be any eigenfunction of (1.1) (with p = p,) corresponding to the lowest
eigenvalue A(p,). Then if

14 14
[ w@e@ dr < [ 4@t do 2.6)
for every function p(z) satisfying (2.5), po(x) is a solution of (1.2).

Proof. Let p(x) be any function satisfying (2.5). For simplicity assume that 3, # 0
and 8, # 01in (1.1). We then have

(cr/BY0) + (ea/B)y(D) + [ Y da

Ap) = min

13
f p(x)y’ dx
1]

where the minimization is taken over all functions y having an absolutely continuous
first derivative on [0, 1]. It follows that

(0a/B)20) + (ea/Boyat (D) + f v’ dz

1
fo p@)ye’ dx

NMp) <

(@ /BEO) + /B ® + [ v da

(by (2.6))

!
f po(z)y02 dx
0

= A{(po).

This shows that p, is a solution of (1.2), The proof is similar if 8, or 8, is zero. In this
case A(p) is still the minimum of the ratio of two quadratic forms over a certain class
of functions and the proof is essentially unchanged.
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Another way of stating Theorem 2.2 is to say that if p,(z) is a solution of the problem
l 1
minimize [ yo’(z)p(e) drsubject to [ f(z, @) dz = M,k < p(r) S H  (27)
0 U

then p,(x) 18 a solution of (1.2).

Problem (2.7) is one of the form (2.1) to which the minimum principle can be applied.
Of course the eigenfunction y,(z) is not known but this will cause us no difficulty in
applying the minimum principle. It turns out that y,(x) and po(x) can be determined
simultaneously.

By applying Theorem 2.1 to problem (2.7) we obtain the following result.

Tueorem 2.3. In order for py(x) to be a solution of problem (1.2) it is sufficient that

[ e, oy dr = M, b < nie) < B,

and that there exist constants n, > 0, 5 such that

min [770?/02(7')9 + nf(x, p)] = ﬂoyoz(x)Po(z) + 9f(z, po(2))

h<p<H

for almost all z in [0, ], where y,(x) is an eigenfunction corresponding to the lowest
eigenvalue of the boundary-value problem

¥" + Mo(z)y = 0,
ay(0) — By’ ©0) =0,  ayd) + By'() = 0.
One way of attempting to satisfy the conditions of this theorem is to select some

convenient positive value of 1, , say 7, = 1, and then define p(z, y, 9), for each z & [0, []
and for each real pair (5, y), to be the solution of the problem

min [n0y°p + nf(z, p)]. (2.8)

Here y and 5 are to be treated as unknown parameters. When no confusion can arise
we shall not indicate the dependence of p on y (or on y and %) and shall simply write
p(z, 1) (or p(x)) in place of p(x, y, 7). Having determined p(z, y, n) we solve the nonlinear
initial value problem

?/" + )‘p(xy LB y)y = 0, 0<z< ly
y(O) = ﬂl ) yl(o) = o .

with X and 5 treated as parameters. (Note that «,4(0) — 8,4'(0) = 0.) Let y(z, \, »)
denote the solution of this problem. Whenever no confusion can arise we shall simply
write y(x, 1) or y(z) in place of y(x, 7, \). Now consider the nonlinear equations

a??/(ly 7y )‘) + /32?//(l, M )‘) = 0; (2103')

2.9

fl f(x, p(z, ) dz = M. (2.10b)

(Clearly p(z, n) depends on X since y(z, 1) does.) If we can determine X and » such that
these equations are satisfied and such that X is the lowest eigenvalue of the boundary-
value problem (2.9) coupled with (2.10a), then we will have satisfied all the conditions




THE SHAPE OF THE STRONGEST COLUMN 397

of Theorem 2.3 with po(x) = p(x, 1) and y.(x) = y(x, ). po(x), determined in this way,
will therefore be a solution of problem 1.2.

In the remaining two sections of the paper, we describe how the procedure we have
outlined can actually be carried out in particular instances. In particular, we solve the
modified strongest column problem in Sec. 4.

3. Isoperimetric eigenvalue inequalities. The examples solved in this section
demonstrate that, at least in certain cases, our procedure is easy to apply. They also
serve to increase our understanding of the procedure.

Consider the problem

1
maximize \(p) subject to f px)de = M, 0< o) <H 3.1)
!

where n, H, and M are given positive numbers satisfying n > 1, M < IH", and A(p) is
the lowest eigenvalue of the boundary-value problem

¥ + M@y =0, 0Lz,
a;y(0) — ') =0, oay() + y'(D) = 0.

a; and a, are positive constants.

Problems similar to this one were solved in [2]. There the problems studied correspond
to taking H = o and n < 1 in (3.1). Problem (3.1) has no solution for H = « and
n > 1. In fact, it can be seen from our work below that the maximum in (3.1) tends to «
as H tends to «. The constraint A < p(x) < H imposed on the functions p admitted in
(1.2) therefore has the desirable effect of establishing a solution in problems that other-
wise would have none. This type of constraint is also desirable in problems such as the
one involving column design to be described in Sec. 4. Without a lower bound on the
thickness of admissible columns, the optimal ones would taper to a point at certain places
along the length of the columns. Such columns are shown in [2] but probably would
never be used in an actual structure.

We shall solve (3.1) by finding functions p, and y, satisfying the conditions of Theo-
rem 2.3 for this problem. For convenience we take 7, = n in (2.8). Then, in order to
satisfy the conditions of Theorem 2.3 in the present case, we must choose po(x) such that

3.2)

1
f (@) dz = M, 0 < p(e) < H,
0

and such that

0151121 [y’ (@)p + 10"] = ny’(@)pu() + npy"(x) (3.3)

for almost all 0 < x < I and for some constant 7.

Since y(r) is an eigenfunction of (3.2) corresponding to the lowest eigenvalue, and
since a; > 0, @, > 0, y(z) can have no zeros on [0, !]. Thus, y’(z) > 0for 0 <z <1
From this it follows that if » > 0in (3.3), the minimum there would be attained uniquely
at p = 0. But since M > 0 we cannot have po(z) = 0. We must therefore take n < 0
in (3.3) if our method is to succeed. We do this, and in order to simplify the notation
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we replace 7 by —# and assume that 7 > 0. (3.3) then requires that

min [ny’(@)p — 19" = ny*@)po(x) — npo"(2) (3.4)

0Sp<H

for almost all 0 < ¢ < [ and some 3 > 0.

For each 0 < z < [, the function ny’*(r)p — np" is concave in p. The minimum in
(3.4) therefore occurs either at p = 0 or p = H. Comparing the values of ny*(z)p — np"
at these two points, we see that

po(z) = H if y*(2) < 9H" '/n (3.5)
=0 if y*(x) > 4H" '/n

satisfies (3.4) and we shall choose po(x) in this way.

Assume that y*(z) < 9H""'/n for z sufficiently close to 0. It is easily verified that the
converse leads to negative results. Thus, if our problem has a solution, it must satisfy
po(x) = H for z sufficiently close to 0. For these values of x the differential equation in
(3.2) is simply

y"”" + MHy = 0. (3.6)
This shows that near + = 0 the point (y(z), ¥'(x)) is moving along an ellipse of the form
y"* + AHy® = constant 3.7

in ¥, 3’ space. Since eigenfunctions are unique only up to a scalar factor, we may assume
that ¥(0) and 3’(0) are > 0. Thus near x = 0 y() is increasing. Since we cannot have
po(xr) = H for all x in [0, ] because of our assumption that

!
f p'(x)dx = M < IH",
0

there will come a time 0 < z, < [ when the condition
¥ (x) = »H" '/n

is satisfied. Assume that y*(z) > »H""'/n for r in some interval [z, , z,], 7, < z, < [,
where z, has been chosen as large as possible. Then by (3.5) we can take po(z) = 0 for
n<zr< .

It must be the case that y(z) is decreasing at x = x, . That is, we must have y'(z;) < 0.
For if we had y’(z;) > 0 then the condition y(x) > nH""'/n would be satisfied in some
neighborhood of xz, , contradicting the fact that x, was chosen as large as possible.

Since y(x) # 0 for 0 < z < [ we have

y"'(@) = —Npo(x)y(x) <0

on [0, 7). This implies that ¥’(z) is nonincreasing on [0, I}. In particular, since y'(z,) < 0
we have y'(z) < 0 for 2, < z < L It follows that y{x) is nonincreasing on [z, , {]. This
implies that y(x) < 9H"'/n on (x,, l] and we therefore have

PO(I)=H) 0<z<u2
= 0, <zl (3.8)
= H, r, <z <l
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Since [o' po"(z) dx = M we must have
2, —x, =1 — (M/H"). (3.9)

We must also have

13
' O) + () + [ 7 d
Jo

1
f poy” da
[}

T1 Tn 1
a’(0) + (D) + [ y?de + f y?de + f y'? dx
<0 £ z3 .

E 2 i
[ Hy’ dx + f Hy’ dx
v 0 Zg

The differential equation (3.2) implies that

f Y dx
0

[
f ¥y dx

/0 l MHy® dz + y(z.)y'(2) — a,y’(0)

and

t
[ My dr ~ ) — vy ).

It follows that

n—1

A ! 3
)\j; Hy dz + 2 f Hy® dz + f y?de + (nH ) W' (x,) — y'(x)

A n

Z1 l
[ By i+ [ By de
o Za
This equation implies that

Hn—l 1/2 Z 32 .
() ) — v + [ v az = o,

n

and, since ¥'(x,) > 0 and ¥'(z,) < 0, we must have y’(z) = 0 forxz, < z < z,. The
function y is therefore such that the point (y(z), ¥’(x)) moves along the ellipse (3.7)
in a clockwise direction, starting on the line ¥’ = a,3, to a point and time z, where

y@) = ("

n—1

)1/2
n and ¥'(x) = 0.

The point (y(z), ¥’'(z)) remains fixed at

n—1\1/2
((n_H7_L_> ,0) for , <z<2,.

Then on the interval [z, , I] it continues along the ellipse (3.7) to the line ' = —ayy.

We shall now determine expressions for x, and z, in terms of A. To this end let 8(z) =
y'(x)/y(x). Then for z € (0, ;) \J (2., ) we have ¢ = —\H — 6°. Moreover, 0(x,) =
6(z;) = 0, 6(0) = o, , and () = a, . It follows that

ay do _fzxd
s NH+6 _ J, ¥
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or
()\H)I7§ arc tan O\H),/z =7 . (3.10)
Similarly,
()\H)l/2 arc tan ()\H)I/Z = l - I2 . (311)
We therefore have
Xy — 1y = | — ;75 are tan ——2; — 573 arc tan ——i;s-
(\H) (\H) ()\H ) (>\H)
Combining this with (3.9) gives
a o (H)"*M
are tan _—()\H)n/z -+ arc tan CH)7 = o

Taking the tangent of each side of this equation gives the single equation

O\H)'’M  (\H)"*(a; + a)
tan H = M - aw, (3.12)
for \. The desired \ is the lowest eigenvalue of (3.2) for p = p, . This A is therefore the
smallest positive solution of (3.12). In summary we have
THEOREM 3.1. Let A denote the smallest positive solution of Eq. (3.12). Then the
maximum in (3.1) is A and is achieved by the function (3.8) with z, and z, given by
(3.10) and (3.11) for A = A.
CoroLLARY. Let A, denote the lowest eigenvalue of the boundary-value problem

¥+ @y =0, 0<z<1

(3.13)
y(0) = y() =
If 0 < p(x) < H, and p is not identically zero, then for any n > 1,
13 -2
A < «H“’""( f () dz) . (3.14)
o

Proof. This result may be obtained directly by computing the maximum of the
lowest eigenvalue of (3.13) over all functions p satisfying 0 < p(z) < H and for which the
integral [,' p"(z) dx has the value M determined by the p in (3.13). Alternatively, it
may be obtained by treating (3.13) as a limiting case of (3.2) as , , @3 — . In this
latter approach one obtains that

1 (wH")2 . 1< L )
A—= = *H dx
TH\M i fo o'(@) dz

as o, , oy = ®. The conclusion of the corollary now follows from the definition of A.
We remark that the bound (3.14) is sharp in the sense that equality holds for the
function

p(x) = H, 0<z<
=0, n <z
= H, <z <l
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where z, = M/2H", x, = | — (M /2H"). These values of z, and z, are obtained by taking
a, = a; = +» in (3.10) and (3.11).
For n = 1 the result (3.14) and our remark are contained in [3].

4. The shape of the strongest column, ILet! > 0, V > Oand b > a > 0 be given
numbers satisfying

al <V < bl *.1)

Consider an untwisted column of length I, volume V, and cross-sectional areas A(x)
satisfying
a < Azx) < b, 0<z<Ll 4.2)
Assume that all cross-sections are similar. Each such column will be called admissible.
We wish to determine the strongest admissible eolumn. This is the one whose critical
buckling load is largest.
Let an admissible column be subjected to an axial load P and let w(x) denote the

lateral deflection in the column caused by this load. Then, as described in [2], w satisfies
the differential equation

(EI@)w.s)e: + Pw,, =0, 0<zx <1 (4.3)
and some boundary conditions such as
w(0) = w,(0) =0
w.(l) = Pw,(l) + (EIDw,.().. = 0

4.4)

or
w(0) = w,(0) = 0
w(l) = w,,()) = 0.

(There are other possibilities for the boundary conditions but we do not treat these here.)
Conditions (4.4) correspond to a column clamped at z = 0 and free at + = I. Conditions
(4.5) correspond to a column clamped at £ = 0 and hinged at ¢ = L

In (4.3) E is Young’s modulus of the column material and I(x) is the moment of
inertia of a cross-section about a line through its centroid normal to the plane of the
deflected column. I(z) is related to the area A (z) by I(z) = aA’(r) where a is a propor-
tionality constant determined by the shape of the cross-sections.

Let y(z) and A be new variables defined by y(z) = A’@)w..(x), A = P/Ea. (4.3)
implies that

(4.5)

¥ + M)y =0 (4.6)
and the boundary conditions (4.4), (4.5) imply
y©0) =0, yB=0 (4.7)
and
y'©0) +1U'y0) =0, y@ =0. (4.8)

respectively.




402 EARL R. BARNES

For a given admissible shape A(x), let A denote the smallest value for which the
equation (4.6), together with one set of the boundary conditions (4.7) or (4.8), has a
nontrivial solution. Then P = XEea is the critical buckling load of the column with
shape A(zx). The shape of the strongest column is therefore the function A(x) which
makes P as large as possible subjeet to the constraints

)
f AW dr =V, a< AG) < b. (4.9)
0

The first constraint fixes the volume of the column and the second restricts the thickness
of the column.

To be specific we now restrict our attention to admissible columns which are clamped
at ¢ = 0 and free at @ = [. The analysis is similar in the clamped-hinged case. In the
clamped-free case the relevant boundary conditions are given by (4.7). Let p(x) = A~ *(z)
and let A(p) denote the lowest eigenvalue of the boundary-value problem

v+ Ny =0, 0L r<l

(4.10)
y(©0) =0, y0=0.
The problem of determining the shape of the strongest column is then to
!
maximize A(p) subject tof o (x)dxr =V, h < p(x) < H, 4.11)

where h = b>and H = a".

We begin the solution of this problem by applying the results of See. 2 directly. In
(2.8) we take, for convenience, 7, = 3. We then define p(z, #) for a fixed », and for each
x & [0, 1], to be the solution of the problem

min [35°@)p + np” "] (4.12)

h<psH

where y(x) = y(x, N) is the solution of the initial-value problem
y' + M, my =0,  y'(0) =0, y0) = I, (4.13)

with A > 0 treated as an unknown parameter.
If we can choose 7 and X such that

l
[ o, mydr =V
and
y,\) =0 (4.14)
and such that A is the lowest eigenvalue of the boundary-value problem

¥+ zeolz,my =0,  y0) =0 yd) =0,

then p(z, ) will satisfy all the conditions of Theorem 2.3 and will therefore be a solution
of problem (4.11).
Lemma 4.1. In order for p(x, n) to satisfy conditions (4.12), (4.13), and (4.14) we
3/2

must have 0 < 5 < H™”,
The proof is fairly simple and we shall omit it.
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We now begin our search for 5 in the range 0 < n < H*? and A > 0 satisfying con-
ditions (4.12), (4.13), and (4.14). From (4.12) we deduce, reasoning as in the previous
paragraph, that

bt )y <
@) i b < @) < H

=H if »’)** > H (4.15)

p(r, 1)

Il

for0 <z <land0 < 5 < H*”.

There are two cases to distinguish. First, let us assume that & < *° < H. This is
the less complicated case and we shall treat it first.

Near z = 0 it follows from (4.15), together with the fact that y(0) = 1, that

oz, m) = 0" (y(@) ™"
and the differential equation in (4.13) becomes
yll + >\n2/3y-—l/3 — 0

It is convenient to view the solution in the phase, or y, ¥/, plane (see Fig. 1). Near x = 0
the solution satisfies

C;_‘lt(%yﬂ + %)\772/32/2/3) — O.

Since ’(0) L = 0 and y(0) = 1, initially the solution is traveling along the curve
%yli’ + _g_)\n2/3y2/3 — %)\772/3 (4.16)

P ~
i ; AN
s ! ARY
Va4 ; - AN

\
172,-3/4_ 93\
j 0 MTHITEZNY N ()

i ] T Y

O\ yl2+)\Hy2=3>\")2/3‘2>\"7H_|V2
AR

~a

_ lyin,y'a) y'2+3\n2/3,2/3
N - - 3)\,’72/3

Fic. 1. The path of the solution is indicated by arrows. This is the case where b £ »** < H.
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in phase space. Since y(z) is decreasing and y(I) = 0, there will come a time 0 < z, < I
when

7 (y(@:)) ™ = H. (4.17)
We will then have
p(x,n) = H

for z; < z < l. To determine an expression for x, we introduce a new function 6(x)
defined on [0, x,] by the equation

sin® 8(z) = y(z).
Substituting this into (4.16), we find that 6(z) must satisfy the differential equation

sin? 0(d8/dz) = —n’/a\/g, 8(0) = /2.

By separating variables in this equation and integrating we obtain

6(z1) )\
f sin® 0df = —y'? 3 %0

/2

or
6(x,) _ sin 26(z,) _r _ 1/3\/§ z
2 4 4~ 7T N3
This equation can be written as
1 . . p 3 )\
3 [B(z,) — sin 0(z,)(1 — sin® 6(z,))'* — g] = —q" \/g T . (4.18)

Now by (4.17) we have

sin® 0(z)) = y(x,) = '*H**.
Thus

sin 6(z,) = 9"/*H™ "%

Substituting this into (4.18) we obtain

1, = n—l/a\/% {‘g + nl/aH—xn(l _ nl/aH—l/2)1/2 — aresin (nl/eH—lm)}_ (4‘19)

On the interval [z, , ] we have p(x, n) = H and the differential equation in (4.13) is
simply
¥y’ + M\Hy = 0.
Along a solution of this equation we have

d% [y”* + \Hy*] = 0. (4.20)

Recall that y(z;) = »"?H™**. Substituting this into (4.16) gives
Y (2:) = 3™ — AngH 2,
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Thus
y*(@) + My (@) = 3\ — 2\H

and it therefore follows from (4.20) that, in phase space, the solution of (4.13) moves
along the ellipse

y? 4+ NHy = 3\ — 2mHTY, oz <2 <1 (4.21)
Since y(I) = 0 we must have

y) = —B\™* — 20qH VAV,

It follows that

B 3)\772/3 _ 2)\17H_1/2
y@) = ( NH

for #, < z < I. From this, together with the condition y(z,) = #"?H™*"*, we deduce that

"1/3H—l/2 1/2
rn=1- O\H)m arc sin {3 —W/z}

Here and in (4.19) the multi-valued function are sin is to be given its principal value in
[0, #/2]. This is to insure that x, corresponds to the first intersection of the curves (4.16)
and (4.21) in the fourth quadrant of phase space. Note that the curves have other
intersections corresponding to larger values of z, .

Equating (4.22) to the value of x, given by (4.19), we obtain the equation

1,—1/3\/% {g + nl/ﬁH—lﬂ(l - 1]1/3]_]-1/2)1/2 — aresin (nl/ﬁH—q/()}

12
) sin (\H)'?(L — 2)

4.22)

1/3H-— 1/2 1/2
+ g wesin {25} T =

for 7 and N. We can obtain a second equation for these variables from the relation

1
f p ¥z, n)dx = V. (4.24)
0
We have

l Iy
[ p~x, m) dx = f n ' sin® 6(z) dz + H™'?(l — x,)
0 0

s 8(x1) d 12
=9 -[/2 sin’® 0%d0+H (- z)

3 8(r1)
= —17—2/3 —f sin* 8 dé + H—l/z(l — )
x /2
.3 (z1) 8(z1)
= ,,—2/3\/?_’ sm” 9 cos 017 _ —2/3\/ f sin® 0.do + H™*(l — ).
/2

A 4
Simplifying this expression and makmg use of (4.22), Eq. (4.24) takes the form

- 3 - - . - _
" 2/3J_x nl/?H 3/4(1 _ 1’]1/3H 1/2)1/2 _ %arc sin (nl/GH 1/4) + %nl/ﬁH 1/4

3 1/3H—l/2 1/2
(1 - 111/3H‘1/2)1/2 -+ 1I'} + H'\/ are sin {3—_—‘”2—"1/’3'HT1/—2} = V. (425)
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If we multiply Eq. (4.23) by (\H)'* and set z = »"°H~"* we can rewrite (4.23) as
-2 § ™ N V2 I : } H { 2 _}1/2 = 172
2 \/4 {2 + (1 — 2% arc sin (2)¢ <+ are sin 3 o7 = [(\H)'". (4.26)
Similarly, if we multiply Eq. (4.25) by HA/\ we obtain the equation

V3 {3" + 2°(1 — 2°)'* — % arcsin (2) + #(1 — 22)'/2}
. z2 1/2 )
+ are sin {3—_——2?} = VHA . (4.27)
Now if we divide Eq. (4.27) by Eq. (4.26) we obtain the single equation
2 1/2
V3 {3” +2°1 — 25)"V? — 3 aresin (2) + 32(1 — zz)”z} + arcsin {—3 j -}

22
-2 § L N V2 . } . { z }1/2
z \/4 {2 +2(1 — 2% arcsin (z) ¢ + arcesin 3_ 97

VH'?/l = V/al (4.28)

for the unknown z = »'/*H™"*,

LeMMa 4.2. If the function arc sin is given its principal value in [0, 7/2] for positive
values of its argument, then Eq. (4.28) has a unique solution in the range 0 < z < 1 for
any choice of V, a, and [, satisfying al < V.

The proof of this is fairly simple and we shall omit it.

We summarize and interpret the results obtained so far in the following theorem.

TuEOREM 4.1. Let 2, be the solution of Eq. (4.28) satisfying 0 < 2, < 1. If 2, >
(h/H)'"* set 4 = H*’2°,

_4 2 1/2 |2
A = TI_Z [\/ { + 2,(1 — 2)%»'? — arcsin (21)} + are sin {3__51‘225} :I ,

T, = n_’/s\/i‘ {1—2r + 2,(1 — 2,5)'* — arcsin (z,)} ,

where the multi-valued function are sin is given its principal value in [0, 7/2].
Then define p(y) by

and

h if 7]2/311—4/3 S h
— n2/3y—-4/3 if h S 1,2/3y—4,/3 S H
— H lf 1,2/3:'/—4/3 Z H

p(y)

and solve the initial value problem
y' + 2y =0, 0<=z<!
y0 =1, 0 =0
as we did above. Let y(z) denote the solution. Define the admissible shape 4 (z) by
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A@@) = %), 0<z<uq
= q, n <<l (4.29)

Then A (x) is the shape of the strongest column in the class of columns of length I, volume
V, clamped at = = 0 and free at 2 = [, and having cross-sectional areas betweena = H™ '
and b = BV

It should be observed that the conditions of this theorem will be satisfied if h is
sufficiently small relative to H. In particular, when there is no restriction on the maximum
thickness of admissible columns (i.e., when h = 0), the optimal shape is given by (4.29)

Suppose now that the solution z, of Eq. (4.28) in the region 0 < 2 < 1 satisfies 2, <
(k/H)"*. This is the second case to distinguish in solving problem (4.11). In this case,
the 5 that belongs in (4.12) satisfies 0 < »°’* < h. We leave the problem of determining
equations for # and A to the reader in this case.

In closing we wish to acknowledge the paper [8] by Taylor and Liu. They solve a
column design problem which can be thought of as dual to the one we have studied here.
Instead of fixing the weight of the column and maximizing the load they fix the load and
minimize the weight. The striking feature of their work is that they impose a lower
bound on the thickness of admissible columns. They solve the resulting constrained
minimization problem using techniques from the calculus of variations. They use the
model (4.3) of a column and assume that the weight of the column is proportional to
Jo' I(z) dx. This, of course, is not true, but it may be a reasonable assumption from a
practical point of view since it assumes the weight to be proportional to [,* A*(x) dx.
This assumption is useful in proving that the column found in [8] minimizes f," A*(z) dx.
This proof makes strong use of the form of the design objective and does not apply to
the more general extremal eigenvalue problems studied here.

Two other papers closely related to the work reported here have been called to our
attention by a referee. The first [9] of these papers deals with determining the shape
of the strongest circular arch (see also [10]). These authors consider inextensional buckling
in their planes of uniformly loaded simply-supported circular arches, with opening angle
2a sufficiently large that anti-symmetrical buckling is critical. For a pictorial description
of the problem see [9].

Let R denote the circular radius of the arch and let w denote the radial displacement
of the arch’s central line. Let P denote the critical buckling load. Then P is given by the
Rayleigh quotient

1 1
P= f EI(w,, + w/R%)? ds// [w,? — (w/R)?] ds (4.30)
[} [}
and w minimizes this quotient subject to
w(0) = 0, Elw,,(0) = 0, w(l) =0, Elw,, () = 0.

s denotes arc length measured along the central line of the arch, E is Young's modulus
of the arch material and I is the moment of inertia of the arch and is related to area
A(s) of cross-sections by

I/Vl = (AYVY, V= fl As) ds,

where n = 1, 2, or 3. These values of »n correspond to light-core sandwiches of constant
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width and depth, solid cross-sections of fixed shape, and solid rectangular sections of
constant width. The problem of optimal arch design is to minimize (4.30) with respect
to w and then to maximize with respect to A subject to [,' A(s) dx = V.

The Euler equation associated with (4.30) is

A " 2 1 A " 2 P 2
((%) (w,s + w/R )>” + 7 (%) (w,, + w/R*y + Vi (w,, + w/R*) = 0, 4.31)

w(0) = 0, A(0)w,,(0) = 0, w(l) = 0, A(Dw, (D) = 0.

Let p(s) = (AGS)/V)™", yls) = p(s)™" (w,.(s) + w(s)/R*), and A = P/EVI. We then
have, by (4.31),

v’ + /Ry + 2y =0, (" =d/ds), y0) =yd) =0. (4.32)

The volume of the arch is

V= fl A(s) ds = ‘—l’fl 57 7(s) ds. 4.33)

The problem of determining the strongest circular arch is equivalent to determining p
to maximize the lowest eigenvalue of (4.32) subject to the isoperimetric constraint (4.33).
This problem is solved in [9] and [10]. The solution given in [9] uses an argument similar
to the one used in [2]. If magnitude constraints are placed on the areas of cross-sections
it is clear that the resulting problem can be solved by the procedure described in this
paper.

The problem studied in [11] has to do with determining the optimal shape of a vibrat-
ing beam. A simply supported beam performing small harmonic vibrations in a plane
is considered. Such a beam has an infinite number of natural frequencies. The problem
is to determine the shape of the beam which makes the lowest frequency as large as
possible. The modes of vibration of the beam satisfy the equation

(EIw,,).. — «*yAw = 0 (4.34)

where w is the lateral deflection in the plane of bending, x is the coordinate along the
axis of the beam, E is Young's modulus, I the principal moment of inertia of the cross-
section perpendicular to the plane of bending, w the natural angular frequency, v the
mass per unit volume, and A the cross-sectional area. The length and volume of the beam
are assumed to be fixed. For simply-supported beams we have the boundary conditions

w(0) = 0, Elw,.(0) = 0, w(l) = 0, Elw,. () = 0, (4.35)

where [ is the length of the beam.

The problem of determining the optimal beam is equivalent to determining the
function 4 (x) to maximize the lowest eigenvalue X = &’ of the boundary value problem
(4.34)—(4.35) subject to the fixed volume constraint

fl Al@)de = V. (4.36)

Even though this problem bears some resemblance to the problems studied in [1] and [2],
it is considerably more difficult. In the first place, the optimal eigenfunction satisfies a
fourth-order nonlinear eigenvalue problem with singular boundary conditions. Unlike
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the analogous equation which comes up in [1] and [2], this equation cannot be solved
in closed form. However, an iterative procedure for constructing the solution is described
in [11]. This makes it possible to determine the solution numerically. The optimal area
function 4 (x) is an explicit function of the optimal eigenfunction and its second derivative.

The method we have developed for determining the shape of the strongest constrained
column can be made to apply to the beam design problem when constraints of the form

a <A@ <b (4.37)

are placed on the areas of cross-sections. Of course, the actual implementation of the
procedure would have to be done numerically. We shall not present the details of this
here.

The author wishes to thank the referee for calling his attention to references[9, 10, 11].
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