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By
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Abstract. We reconsider the problem of determining the shape of the strongest

column having a given length / and volume V. Previous results [13,7] have given

optimal shapes for which the cross section vanishes at certain points. Although these

results are mathematically correct, Theorem 1 below explains what is wrong with

these anomalous shapes.

1. Introduction. An interesting problem with a long history is to find the shape of

a slender column of a given length and volume which will give the largest possible

buckling load [1,2,3,5,6,7,8,10,11,12,13,14]. Mathematically, this amounts to maxi-

mizing an eigenvalue of a certain Sturm-Liouville system to obtain an isoperimetric

inequality. Some solutions of the problem have been given, but those extremal shapes

have points where the cross section vanishes. It is remarkable that the strongest col-

umn should have such points. These shapes have led to confusion, controversy, and

several attempts to resolve the anomaly. The case in which the column is clamped

at each end seems to be especially troublesome since the solution has two points in

its interior where the cross section vanishes. With such boundary conditions, some

shapes may yield eigenvalues of multiplicity two. Now it is clear that the optimal

shapes given previously [13, 7] are mathematically correct (see also [1]). However,

in this work we will show, in Theorem 1 below, that these treatments of the problem

are incomplete in that, very simply, there is no solution within the class of shapes

for which the mathematical eigenvalue problem gives an adequate description of the

physical buckling problem. Mathematically speaking, the eigenvalue problems in-

volved are not well-posed and the supremum of the buckling load is not attained for

any reasonable shape. This is always the case in that it happens for clamped, pinned,

or free end points and for any combination of these. The anomalous behavior of
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the strongest column problem is not at all related to the kinds of boundary conditions

or to the multiplicity of the eigenvalues involved. It is due to the singularities of the

coefficient function in the differential equation.

We will then show how to correct this difficulty by using a constraint of the form

A{x) > h > 0 on the area of the cross section. Such problems have been considered

by E. R. Barnes [5]. Using this constraint, we will give a direct proof, in Theorem 2

below, that there does exist a well-behaved function A*(x) which yields the maximum

of the buckling load. A similar proof will work for any reasonable combination of

boundary conditions.

2. On the nonexistence of the maximizing shape. Consider the case where the

column is pinned at each end. The critical buckling load is determined by the first

eigenvalue, denoted by k\{A), of the Sturm-Liouville system

y"+AA^jy = 0t y(°) = y(» = 0- (0

In order for such an eigenvalue problem to be a good mathematical model of the

physical buckling problem, it must be well-posed. To be precise about this concept, let

W be the class of all shape functions A(x) which satisfy the following four conditions:

1. Ai(A) exists;

2. A(x) > 0;

3. /q A(x) dx = V;

4. the eigenvalue functional Ai(-) is continuous at A. That is, if B is any

function which satisfies conditions 1,2, and 3, then Ve > 0,34 > 0, such that if

sup0<x</\A(x) - B{x)I < Se, then |Aj (A) - kx (5)| < e.

The problem (1) is well-posed for all A&W.

Keller [7] used the condition that A(A) be a maximum to derive the condition

y2 = A3. Substituting this relation into (1) and solving the resulting equation gives

the classical solution of the strongest column problem, which we denote by A*(x). It

is defined by the following equations:

A*(x) = ^sin20(x), y(x) = (^*)3/2(x), 20(x) - sin20(x) = Inx/l. (2)

When we define the function p*(x) = (A*)~2(x), we see that p*{x) = _y~4/3. There-

fore, p* has singularities at the nodes of y and, in fact, J0' p* dx = oo. This has

profound and unfortunate implications for the associated eigenvalue problem, and

none of the usual eigenvalue theory will be valid for such functions. One of the reper-

cussions of this singularity is that a very small change in the classical shape A*(x)

can yield a shape function for which the eigenvalue problem is well-posed but for

which the buckling load is arbitrarily small. More precisely, the following theorem

holds.

Theorem 1. Let e, > 0 and e2 > 0 be given. Let A*(x) be the classical shape function

for the pinned column defined by (2). Then there exists a shape function B(x) G W

for which \A*(x) - B(x)\ < £\ but for which X\{B) < £j. Thus A* g SIP.
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Proof. Given the classical function (2) and small positive numbers S and r), define

the functions A%(x) and B(x) by

( A*(S — x) if 0 < < <5, n t ri \
AUx)={ ~ B(x) = i + (l--/7)A*s{x).s ' I A*(x) if 6<x < I, I V V) sy

Now B(x) is piecewise continuous and bounded below by the positive constant ////.

It follows that B~2(x) is bounded above so that B(x) € W. Given E\, we will first

select S and t] so small that for all x, |A*(x) - B(x)\ < e\.

Next, we will show how to make X\{B) < e2. The extremal condition used to

obtain the classical solution is that A* = y2/i. Therefore, the function (A*)~2(x)

behaves like x~4/3 as x —► 0, and (A^)~2(x) behaves like (S - x)~4/3 as x —> S. This

is a nonintegrable singularity so that if S > 0 is fixed, then

lim [ B~2(x)dx- [ (A*)'2(x) dx = oo.
i^oj o Jo

Next, we will substitute the trial function u — x(l -x) into the variational character-

ization of the first eigenvalue to obtain

. u'2dx l3
X\(B) - min —2 < -—  .

" J0u2B~2(x)dx 6 f0 x2(l - x)2B~2(x) dx

The singularity of B~2(x) is at x = 5 > 0, and the zero of the trial function u is at

x = 0. It follows that if we hold <5 fixed and let tj —> 0, then /0' x2(l-x)2B~2(x) dx -*

oo. Therefore, X\(B) can be made less than any given e2 and the theorem follows.

3. A condition for the existence of the maximizing shape. Consider the eigenvalue

problem

y" + Xp(x)y = 0, y(0) = y(l) = 0, (3)

with the coefficient function p(x) restricted to the class J?(a, b, M), defined by the

conditions

JJo

l

p{x) dx = M, p(x) >0, a < p{x) < b.

Define a metric d0(pi, p2) on (a, b, M) by

do{p\,pi) = max / {p\(t) - p2(t))dt
o<X<1 \Jo

Although the result was not expressed in the topological language used here, Krein

[9, pages 165-167] proved that the «th eigenvalue of (3), denoted by X„{p), is a

continuous function on the compact metric space 3f(a, b, M). Therefore, the maxi-

mizing function exists. We will also be concerned with the class W(h, H, V) of shape

functions A(x), defined by the conditions A e W and h < A(x) < H. Using the

change of notation p(x) = A~2(x), b = h~2, and a — H~2, we see a correspondence

between the two classes. Assuming that h > 0, it is easy to prove that if n —► oo,

then do(An, A*) 0, if and only if d0{A~2, (A*)'2) —> 0. Furthermore, since there

are no singularities in this case, it follows that any function in W(h,H, V) yields a

well-posed eigenvalue problem. Thus we obtain the following theorem.
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Theorem 2. Let (A) denote the first eigenvalue of system (2). For any constants

0 < h < H, there exists a function A*(x) € W(h, H, V) which maximizes Ai (A).

4. On the choice of a metric. In addition to the metric do(-,-) defined above,

consider two more metrics defined as follows:

d\{p\,pi)= max \px(x) - p2{x)\,
0 <x<l

di{p\,pi)= max \px{x) - p2{x)\ + max \p\{x) - p'2(x)\.
0<x<l 0<x<l

We have shown that if A*(x) vanishes at some point, then the eigenvalue (A) will

not be continuous at A*(x) with respect to the metric d\{-, ■). However, one might

argue that other variational problems, such as the brachistochrone, exhibit the same

kind of behavior noted here but that the cycloid solution curve in that case is valid.2

The cycloid solution curve of the brachistochrone problem has other curves which

are arbitrarily close to it (in the sense of the metric dj(-, ■)) but for which the time

of travel is arbitrarily large. However, the brachistochrone problem involves moving

particles and directions, and the most natural metric to use there seems to be d2{-, •)

and not d\{-, ■). This makes the travel time a continuous function with respect to the

metric.

The choice of a metric to use for the column is quite arbitrary. However, the metric

d\{-, ■), which we have used, seems the most natural in this case since directions or

surface areas are not involved. The metric d2(-, •) is too strong and the metric do(-, ■)

is too weak. Note also that if A(x) is bounded away from zero, as it should be, then

Ai(-) is continuous at A(x) with respect to the metric dt(-, ■).

5. Final remarks. The proofs of Theorems 1 and 2 can be modified to give analo-

gous results for other kinds of boundary conditions, including clamped or free ends

and various combinations of these.

These results also extend easily to the case where p(x) = (A)~m(x) with m > 1.

See also the work of D. C. Barnes [4], which involves other kinds of functions.

If the coefficient function A*(x) vanishes at some point, the eigenvalue problem

(1) will not be well-posed. It appears that similar ill-conditioning phenomena may

occur if the boundary conditions are perturbed. This may cause the zero of the

eigenfunction to move away from the singularity of the coefficient function, giving a

large integral in the denominator of the Rayleigh quotient and a small buckling load.

It also seems reasonable to expect this to happen based only on the physics of the

situation.
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