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Abstract
With rates of climate change exceeding the rate at which many species are able to shift their range or

adapt, it is important to understand how future changes are likely to affect biodiversity at all levels of orga-

nisation. Understanding past responses and extent of niche conservatism in climatic tolerance can help pre-

dict future consequences. We use an integrated approach to determine the genetic consequences of past

and future climate changes on a bat species, Plecotus austriacus. Glacial refugia predicted by palaeo-modelling

match those identified from analyses of extant genetic diversity and model-based inference of demographic

history. Former refugial populations currently contain disproportionately high genetic diversity, but niche

conservatism, shifts in suitable areas and barriers to migration mean that these hotspots of genetic diversity

are under threat from future climate change. Evidence of population decline despite recent northward

migration highlights the need to conserve leading-edge populations for spearheading future range shifts.

Keywords
Approximate Bayesian computation, Chiroptera, ecological niche modelling, niche conservatism, phylogeography.

Ecology Letters (2013) 16: 1258–1266

INTRODUCTION

The effects of future climate change on biodiversity have been the

focus of much research (Bellard et al. 2012), highlighting the poten-

tial extent of global species losses (Thomas et al. 2004) and docu-

menting changes to the distribution of species (Parmesan & Yohe

2003). Recent estimates of the rate of global climate change suggest

that many species may not be able to shift their range fast enough

to track suitable conditions (Loarie et al. 2009), and therefore species

survival will depend on phenotypic plasticity or adaptive capacity

(Hoffmann & Sgr�o 2011). However, despite the importance of

genetic diversity for species persistence and adaptive capacity, genetic

effects are often ignored in climate change studies (Pauls et al. 2013).

Building on the integrated framework in Dawson et al. (2011), we pre-

dict the effects of future climate on patterns of genetic diversity across

a species’ range. We assess sensitivity and exposure to climate change

and analyse how historical processes and barriers to movement shape

the current distribution of genetic variation.

Quaternary climatic fluctuations, in the form of recurring glacial-

interglacial cycles, contributed to the contemporary distribution and

genetic composition of biodiversity (Hewitt 2000). In particular, sta-

ble populations that persisted from the Last Glacial Maximum

(LGM ~ 21,000BP) to the present harbour disproportionately large

amounts of unique genetic diversity (Hampe & Petit 2005). Many

European species survived periods of glaciation in southern refugia

near the Mediterranean, from where they colonised their northern

range during warmer interglacial periods (Hewitt 2000). Across the

rest of the range, rapid climatic cooling and warming at the begin-

ning and end of glaciation cycles were accompanied by a loss of

genetic diversity and extinction of populations that were unable to

track suitable conditions (Hofreiter & Stewart 2009). These losses

provide warnings of the potential effects of future climate change,

especially as projected rates of future changes dramatically exceed

the past rates under which the climatic niches of vertebrates

evolved (Quintero & Wiens 2013).

Bats are important indicators of responses to climatic changes

due to their high diversity, wide distribution, high sensitivity to tem-

perature change and keystone ecological roles (Jones et al. 2009).

Extant populations of European bats show a strong genetic signa-

ture of range expansion from Mediterranean glacial refugia (e.g.

Rebelo et al. 2012). This pattern is common for European temper-

ate biodiversity, ranging from plants to mammals, and has resulted

in high concentrations of genetic diversity in Iberia, Italy and the

Balkans (Hewitt 2000). Hence, the analysis we present here is likely

to be relevant for many temperate organisms that were forced to

contract away from the poles into glacial refugia during the LGM.

The longevity and slow reproductive rates of bats suggest that

they may not be able to evolve fast enough to respond to future
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changes because of the slow spread of favourable traits through the

population (Hoffmann & Sgr�o 2011).Yet, there is a paucity of stud-

ies investigating potential effects of future climate change on bats,

and in particular potential genetic consequences (Sherwin et al.

2013). The few published studies to date show that temperate

species are likely to experience distributional shifts and range con-

tractions, with some species losing their entire suitable niche space

(Rebelo et al. 2010).

We studied the effects of historic and future climatic changes

on the spatial distribution of genetic variation in the grey long-

eared bat, Plecotus austriacus, a medium-sized insectivorous bat dis-

tributed from the northern Mediterranean to central Europe

(Spitzenberger et al. 2006). P. austriacus is considered to be at

relatively high risk from the effects of climate change due to its

limited vagility and restricted distribution compared with other

bat species (Sherwin et al. 2013). Although the ability to fly

means that bats may be able to shift their range in response to

climatic changes more readily than other small mammals, dispersal

is more limited in bats with wing morphologies that place high

energetic costs on long distance flight (Norberg & Rayner 1987).

As such these bats can offer meaningful estimates of the effects

of climate change on biodiversity in general, including non-volant

organisms.

Evolutionary processes shaping the genetic properties of individu-

als, populations and species are often stochastic and complex.

Therefore, understanding these processes necessitates the use of

probabilistic models with several interdependent parameters

(Beaumont & Rannala 2004). Approximate Bayesian Computation

(ABC) is widely used in population genetics and phylogeography to

reconstruct demographic history under complex evolutionary

scenarios in a Bayesian setting, without the need to compute the

likelihood function (Bertorelle et al. 2010). The inference is based

on large sets of stochastic simulations, parameters sampled from a

probability distribution and summary statistics that capture informa-

tion in the data (Csill�ery et al. 2010).

Ecological Niche Models (ENMs), on the other hand, are used to

predict the current and future distribution of species based on their

environmental requirements (reviewed in Elith & Leathwick 2009).

When hindcasting the past (palaeo-ENMs), these models can help

identify the location of glacial refugia and provide prior information

for parameterising evolutionary and demographic models (Knowles

& Alvarado–Serrano 2010). Despite their limitations due to lack of

incorporation of population dynamics, dispersal rates or biotic inter-

actions, ENMs greatly contributed to our understanding of factors

affecting the current distribution of species and the potential effects

of future climate change on biodiversity (Botkin et al. 2007).

Projecting the effects of future climate change on biodiversity is

complicated by the fact that a species’ current climatic niche does

not necessarily reflect future climatic tolerance (Guisan & Thuiller

2005). Therefore, before predicting the effects of future climates on

the distribution of species, it is recommended to assess whether

their climatic niche remained similar over time. Such niche conser-

vatism will result in geographical range shifts to track the distribu-

tion of a specific set of climatic conditions (Wiens et al. 2010).

Niche conservatism can be tested by validating with genetic data

the inference of palaeo-ENMs on the location of glacial refugia

(Cordellier & Pfenninger 2009). This phylogeographical approach is

an extension of the paleontological approach, which looks for range

shifts in response to changing climates (habitat tracking) in the fos-

sil record (Wiens et al. 2010), and is particularly relevant for groups

of species, like bats, that are underrepresented in the fossil record

(Teeling et al. 2005).

We combined phylogenetic analysis and ABC inference of evolu-

tionary history with ENMs across temporal scales to test the

hypothesis that the niche of P. austriacus has been conserved in term

of climatic tolerance and therefore can be projected into the future

to predict the genetic consequences of climate change. We also

assess the potential for future range shifts given the presence of

geographical barriers to movement, current patterns of gene flow

and recent changes in population size. Our overall aim is to show

how current genetic diversity has been shaped by climate change in

the past, and to predict how future patterns of genetic diversity

may be affected by contemporary climate change. We are especially

interested in determining whether current hotspots of genetic diver-

sity resulting from past climate changes are those most at risk from

future climate change.

MATERIAL AND METHODS

Sample collection and laboratory procedures

The 259 P. austriacus genetic samples included in this study were

collected or obtained from 82 geographical locations spanning the

entire known species’ range, representing six main geographical

populations separated by either mountain ranges or extensive water

[England: n = 54, Channel Isles: n = 24, Mainland Western Europe

(France, Belgium, Germany, Switzerland): n = 60, Iberia: n = 91,

Italy (including Corsica and Sardinia): n = 16, Balkans: n = 14;

Table S1, Fig. 3a].

Genomic DNA was extracted from all samples and amplified for

one mitochondrial (mtDNA) gene (747bp of Cytochrome b [Cyt b])

and genotyped at 23 autosomal microsatellite loci specifically designed

for this study (Table S2). Microsatellite library design, mtDNA prim-

ers, PCR reaction conditions, PCR cycle programs and microsatellite

loci selection procedures are outlined in Appendix S1.

Genetic analysis

We constructed Bayesian phylogenetic trees for the mtDNA region,

using sequences of two congenerics (Plecotus auritus, downloaded

from GenBank AY665169, and Plecotus macrobullaris, provided by

Antton Alberdi) and one species of the same family (Myotis bechstei-

nii, AF376843) as outgroups to root the tree (Appendix S1). Parsi-

mony haplotype networks for the Cyt b sequences were constructed

using the program NETWORK (v4.610, www.fluxus-engineering.

com). See Appendix S1 for analysis of mtDNA and microsatellite

genetic diversity.

Individual-based Bayesian assignment tests implemented in

STRUCTURE v2.3.3 (Pritchard et al. 2000) were used to infer pop-

ulation structure in the microsatellite data set, varying the number

of genetic clusters (K) between 1 and 13, and performing ten inde-

pendent runs for each K. We used the general admixture model

with correlated allele frequencies and 106 Markov Chain Monte

Carlo (MCMC) generations following a burn-in phase of 5 9 105

generations (Appendix S1).

We used the Bayesian approach implemented in BayesAss v3

(BA3) (Wilson & Rannala 2003) to estimate contemporary gene

flow (within the last few generations) and the direction of migration

© 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

Letter Effects of climate change on edge populations 1259



between the main geographical areas. We adjusted the MCMC mix-

ing parameter values of migration rates, allele frequencies and

inbreeding coefficients to obtain the recommended acceptance rates

for proposed changes. We performed five replicate runs with 107

MCMC iterations and a burn-in phase of 106 iterations, initializing

each run with a different random number generator seed to verify

convergence based on concordance between runs on the posterior

mean parameter estimates.

Ecological niche modelling procedure

ENMs were generated with the program Maxent (Phillips et al.

2006) to determine the potential distribution of P. austriacus across

its range under present, past [LGM ~21,000BP, and the Last Inter-

glacial period (LIG) ~130,000BP] and future (2080) climatic condi-

tions. Models were run at a resolution of approximately 5 km

(2.5 arc min). The study extent was set as the whole of Europe

including Mediterranean islands, because the Mediterranean Sea rep-

resents the southern limit of the species’ distribution (Spitzenberger

et al. 2006).

Climatic and topographic environmental layers were downloaded

from World Clim (http://www.worldclim.org). After removing

highly correlated variables (correlation coefficients ≥0.8) and vari-

ables that did not contribute to the ENMs, the following environ-

mental variables were included in the models: mean temperature of

the coldest quarter (BIO11), temperature annual range (BIO7),

annual mean temperature (BIO1), annual precipitation (BIO12),

slope, altitude, precipitation during the warmest quarter (BIO18)

and mean temperature of the warmest quarter (BIO10).

We ran 50 replicates of each model, each time randomly selecting

80% of locations to train the models and 20% to test them. The 50

replicates were averaged into a single model. Model performance

was evaluated based on the Area under the Curve (AUC) of the

Receiver Operator Characteristics (Appendix S1).

Models were projected into the past using the CCSM and MIR-

CO General Circulation Models (GCMs) for the LGM and one

LIG model (WorldClim http://www.worldclim.org). Areas that

were predicted to remain suitable across LIG, LGM and current

conditions were assigned as potential glacial refugia.

Future projections for 2080 were performed with three GCMs:

HadCM3, IPSL-CM4 and CCSM (GCM data portal http://www.

ccafs-climate.org/), using the A2 scenario (Appendix S1).

The results of future ENMs were used to estimate extent of

genetic diversity losses based on the number of unique haplotypes

and private alleles that will be found by 2080 in areas with unsuit-

able conditions. We assessed the accuracy of our estimate of haplo-

type diversity (degree of sampling completeness) using Species

Accumulation Curves (Appendix S1), based on the approach out-

lined in Pfenninger et al. (2012).

ABC inference of demographic history

We reconstructed the evolutionary and demographic history of P.

austriacus using the ABC approach implemented in DIYABC v1.0.4

(Cornuet et al. 2008, 2010). We carried out two sets of analyses

aimed to infer the source population and patterns of post-LGM

range colonisation from putative refugia locations identified in

palaeo-ENMs. Scenarios compared in the first analysis included

between one and three source populations (Iberia, Italy and

Balkans) and range colonisation from a single refugial population or

admixture between populations (Fig. S6a). A preliminary analysis

identified that the northern edge-of-the range was colonised in a

stepping-stone manner instead of long-range colonisation directly

from glacial refugia (Appendix S1, Fig. S7). Building on the results

of the first analyses, the second analysis included range colonisation

from an unsampled refugial population from southern France either

directly or through admixture with other populations, and the colo-

nisation of the northern edge-of-the range (Fig. S6b).

In addition, we carried out a demographic history analysis of the

northern edge English population to determine changes in popula-

tion size since colonisation. We compared a null model of no

change in population size to a model of a short bottleneck during

colonisation followed by population expansion, and a model of

recent change (increase or decrease) in population size (Fig. S8).

In all ABC analyses, we generated 106 simulations for each sce-

nario tested using the combined microsatellite and mtDNA data

sets (Appendix S1 for model parameters). The posterior probability

of scenarios was estimated using a weighted polychotomous logistic

regression on the 1% of simulated data sets that were closest to the

observed data set. Taking into account the criticism of ABC model

choice outlined in Robert et al. (2011), we empirically evaluated

the power of the model to discriminate among scenarios using a

Monte Carlo estimation of false allocation rates (type1 and 2 errors)

resulting from ABC posterior probabilities-based model selection

(Cornuet et al. 2010).

Testing for niche conservatism

We tested for niche conservatism by comparing the location of

Pleistocene glacial refugia identified through palaeo-ENMs, phyloge-

netic analysis and ABC inference of demographic history. A match

between predicted range of the species during the LGM based on

its current climatic requirements and phylogeographical inference of

LGM refugia can indicate that the climatic niche of the species was

conserved over time (Cordellier & Pfenninger 2009). The ABC

framework allowed us to statistically test whether ENM model pre-

dictions correspond to genetically determined model of LGM refu-

gia and post-LGM range colonisation. We assume that the climatic

tolerance of organisms to cold conditions represents their general

tolerance to climatic changes and their tendency to track the distri-

bution of a certain set of climatic conditions.

We conducted a MESS analysis in Maxent (Elith et al. 2010) to

determine whether climatic conditions in genetically determined

LGM refugia are similar to conditions present in the current range

of the species and to identify the most dissimilar climatic variables

between the two time periods.

RESULTS

Current patterns of genetic variation

The phylogenetic analysis of the mtDNA gene (Cyt b) in P. austriacus

identified 32 haplotypes across the species’ range, 27 of which were

confined to Iberian populations, which are located at the rear-edge-

of-the range (Fig. 1a). The Iberian population also contained the

highest microsatellite diversity and 76% of the private alleles identi-

fied in the species (Table 1). P. austriacus haplotypes were divided

into two main clades (100% posterior probability support), referred

© 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
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to henceforth as the south-eastern and north-western clades. All

samples from outside Iberia were nested within the south-eastern

clade forming a subgroup with two eastern Iberian haplotypes

located just south of the Pyrenees (Fig. 1a). The majority of sam-

ples from outside Iberia shared the common pan-European haplo-

type or have recently emerged from that haplotype following a star-

like pattern (Fig. 1a), indicating rapid population expansion during

colonisation. At the northern edge, the English population con-

tained one unique mtDNA haplotype (Fig. 1b) and two private

alleles, but levels of genetic diversity tended to be lower than in

rear-edge populations (Table 1).

Genetic differentiation at the mtDNA level was significant among

all populations, except those in Western Europe, England and the

Channel Isles. Particularly, high levels of differentiation were found

between Iberia and Italy and all other populations (hST = 0.61–0.83;

Table S3). At the microsatellite level, individual-based assignment

tests detected genetic structure across the range of P. austriacus,

(a) (b)

(c)

Figure 1 Population structure of Plecotus austriacus across its range. (a) Bayesian phylogenetic tree of Cyt b haplotypes showing posterior probability values > 0.75.

Asterisks represent unique haplotypes that may be lost due to future climate change. Haplotypes (Table S5) are colour-coded based on geographical areas. (b) Median-

joining network of Cyt b haplotypes, mapped based on the approximate location of samples and colour-coded based on their geographical areas. Circle size corresponds

to number of samples, and numbers represent connections separated by more than one mutation. (c) Results of the STRUCTURE analysis separating the microsatellite

data set into seven clusters, plotting individual samples based on their geographical location and cluster membership.

Table 1 Genetic diversity of Plecotus austriacus geographical populations based on

23 microsatellite loci (first three columns) and the Cyt b mtDNA gene (last two

columns), with sample sizes presented in brackets. Mean allelic richness and gene

diversity (� SD) were adjusted based on sample size

Mean allelic

richness

Mean gene

diversity

No. of

private

alleles

mtDNA

haplotype

diversity

mtDNA

nucleotide

diversity

England

(54)

4.89 � 1.9 0.68 � 0.2 2 0.14 0.0002

Channel

Isles (24)

5.06 � 1.9 0.68 � 0.2 0 0 0

Western

Europe

(60)

5.59 � 2.1 0.71 � 0.2 9 0.11 0.0001

Italy (16) 5.47 � 2.1 0.70 � 0.2 3 0.49 0.0033

Iberia (91) 6.23 � 2.3 0.74 � 0.2 83 0.82 0.0066

Balkans (14) 5.73 � 2.1 0.67 � 0.2 12 0.17 0.0005
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dividing the samples into seven clusters (Fig. S1), roughly corre-

sponding to the six main geographical areas separated by mountains

ranges or large expanses of water. Mainland Western European

samples, though belonging primarily to the Balkan cluster, showed

high levels of admixture (Fig. 1c), corresponding to the high esti-

mated gene flow into that population (Table S4).

Bayesian estimations of contemporary gene flow rates among

the six geographical populations (expressed as proportions of the

population migrating into other regions in the last few genera-

tions) indicate a predominately north-western migration direction

across the range of P. austriacus. High rates of gene flow were

estimated from Italy (0.24) and the Balkans (0.23) into Western

Europe and from Western Europe into England (0.17), while rates

of gene flow in the opposite (southern) direction were very low

(< 0.01). We found limited contemporary gene flow across the

Pyrenees both in and out of Iberia, with the majority of Iberian

bats remaining in Iberia in the last few generations (94%, Fig. 3b,

Table S4).

Ecological niche modelling across temporal scales

All models had high predictive ability and did not overfit presence data

(AUCtraining = 0.943 � 0.01, AUCtest = 0.9 � 0.02). The primary

environmental variables affecting habitat suitability for P. austriacus

across its range were winter temperature, temperature range, annual

temperature and annual rainfall. Palaeo-ENMs predicted that suitable

climatic conditions for P. austriacus during the LGM occurred in

Iberia, Italy and the Mediterranean coast of France and the Balkans,

but highly suitable conditions (habitat suitability > 0.7) only existed

along the east coast of Iberia (Fig. 2b). Suitable conditions persisted

in Iberia, Italy and southern France from the LGM till the present

and between the LIG and the LGM, suggesting that these areas had

potential to act as refugia across Pleistocene glaciation cycles

(Fig. 2d, Fig. S2).

A MESS analysis showed that climatic conditions in the whole of

Iberia during the LGM had parallels to conditions found within the

current range of P. austriacus. In contrast, northern, western and

central Europe experienced during the LGM summer temperatures,

annual temperatures and temperature ranges that are outside the

current climatic niche of the species (Fig. S3).

Future ENMs predict that climate change will result in a north-

western shift in the distribution of P. austriacus, with suitable condi-

tions restricted to northern parts of Iberia, areas north of the Alps

and to the north-west of the Balkans (Fig. 2c). The majority of sta-

ble areas from the LGM, in particular in Iberia and Italy, are likely

to become unsuitable by 2080 (Fig. 2d). Based on the results of a

MESS analysis, by 2080, most of Iberia as well as the Mediterranean

coast of Italy and the Balkans will experience novel climatic condi-

tions, currently not present in the species range, in particular in

terms of annual and winter temperatures (Fig. S4).

This will result in more than half of the species’ genetic diversity

(53% of haplotypes and 58% of private alleles) being located in

unsuitable areas or small isolated patches of suitable habitats. Losses

of genetic diversity are predicted to be particularly high in Iberia

(Fig. 1a). Accumulation Curves confirmed that our sampling at the

haplotype level was complete because the resampling curve reached

saturation (Fig. S5), showing that the sampled number of haplotypes

is an accurate reflection of the total number of haplotypes in the

sampling area.

(a)

(b)

(c)

(d)

Figure 2 Effects of climate changes on range suitability across temporal scales.

ENMs showing the predicted (a) current, (b) past Last Glacial Maximum (LGM

~ 21 000BP) and (c) future (2080, A2 scenario) distribution of suitable

conditions for Plecotus austriacus. Habitat suitability ranges between zero

(unsuitable, in grey) and > 0.7 (highly suitable, in yellow), with green and yellow

representing suitable areas. (d) Reclassified map of stable areas between the LGM

and present (in purple), currently suitable areas that will remain suitable until

2080 (pink), and areas that will remain stable between the LGM and 2080 (red).

© 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
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Model-based inference of demographic history

Model-based inference pointed to Iberia being the main Pleistocene

refugium for P. austriacus and the source population from which all

other European populations emerged (Fig. 3a). The Iberian source

population scenario was supported with maximum probability rela-

tive to around zero support for scenarios including Italian, Balkan

and unsampled refugia in southern France (Fig. S6). Confidence in

scenario choice was high, with low error rates (type 1 = 0.01–0.02;

type 2 = 0.01–0.05). Post-LGM range colonisation followed a step-

ping-stone model of north of range colonisation (Fig. S6a, S7),

whereby Western Europe and Italy were colonised directly from

Iberia, while the Balkans and at a later stage England were colon-

ised from Western Europe (Fig. 3a).

Within the northern edge-of-the range, ABC inference indicated a

recent trend of decline in the English population with the current

effective population size estimated at more than 30-fold smaller

than the historic size. Support for the recent decline scenario was

(a)

(b)

Figure 3 Patterns of movement across the range of Plecotus austriacus. (a) The geographical location of P. austriacus genetic samples included in the study plotted over an

elevation map, with the location of the six populations marked and colour coded. Arrows indicate patterns of post-Last Glacial Maximum range colonisation from the

Iberia refugium based on ABC model inference. The selected demographic history scenario is presented in the insert. (B) Estimates of contemporary gene flow plotted

over an elevation map, showing the proportion of the population that migrated in the direction of the arrow in the last few generations (black arrows – northern

migration, while arrows – southern migration).
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high (around 90%) relative to zero support for the bottleneck sce-

nario and around 10% support for the no change in population size

model (Fig. S8). Error rates were estimated at 0.14 and 0.04 for

type 1 and 2 errors respectively.

DISCUSSION

This study highlights the importance of combining a historic per-

spective with future predictions to understand the genetic conse-

quences of climate change. We show that historic climate changes

and geographical barriers played an important role in shaping pat-

terns of genetic variation in P. austriacus, and that future climate

change is likely to reshape these patterns resulting in extensive

losses of genetic diversity and pose the greatest threat to former

refugial populations with the highest genetic diversity. This pattern

is likely to be common to many temperate European species that

survived Pleistocene glaciation events in Mediterranean refugia.

Reconstructing the historic distribution of genetic variation

ABC demographic history inference indicates that Iberia was the

main Pleistocene glacial refugium of P. austriacus and that all other

populations emerged from the Iberian population, an inference sup-

ported by palaeo-modelling and the phylogenetic analysis. Evidence

from the fossil record also supports the Iberian origin of P. austria-

cus, and suggests that it did not appear in central Europe before the

mid-Holocene (Juste et al. 2004). In agreement with the ABC infer-

ence, all non-Iberian samples are located within the south-eastern

Iberian clade and the haplotype network shows a single star-shaped,

rapid population expansion event across Europe. Palaeo-ENMs for

the LIG confirm that suitable conditions for P. austriacus existed in

Iberia for at least 130 000 years, thus suggesting that Iberia repre-

sents a ‘stable rear-edge’ population (Hampe & Petit 2005).

Iberia harbours substantially higher levels of mitochondrial and

nuclear DNA diversity than the rest of the range and the greatest

number of unique haplotypes and private alleles, a further testimony

to the long-term stability of Iberian populations (Hewitt 2000). The

persistence of stable populations in parts of Iberia throughout a full

series of glacial-interglacial cycles, combined with disproportionately

higher levels of genetic diversity, indicate that this long-term refu-

gium is of high evolutionary importance (Stewart et al. 2010).

Despite being recognised as an important glacial refugium for

most European bat species studied so far (e.g. Rebelo et al. 2012),

the Balkans were not identified as the source population of P. aus-

triacus. This may be due to the presence of a cryptic sister species,

Plecotus kolombatovici, in the area (Juste et al. 2004). Similarly, Italy

was not identified as an LGM refugium for P. austriacus despite the

predicted suitable conditions in Italy during the LIG and LGM and

despite the presence of a unique Italian mtDNA haplotype and mi-

crosatellite cluster. Absence of sufficient samples from the Mediter-

ranean coast of France meant that inference regarding the role of

this potential refugium could only be made by including a ghost,

unsampled population in the analysis.

Concordance between the location of glacial refugia identified in

this study through genetic analysis and ecological niche modelling

indicates that the climatic niche of P. austriacus is likely to be

conserved and therefore can be projected to estimate habitat suit-

ability under future climate change (Cordellier & Pfenninger 2009).

Moreover, the MESS analysis confirmed that climatic conditions

experienced by P. austriacus in Iberia during the LGM are similar to

current conditions found across its range. Although niche conserva-

tism in terms of tolerance to cold is not necessarily an indication of

future tolerance to warming conditions, rates of future changes may

be too fast for the climatic niche to evolve (Quintero & Wiens

2013).

Forecasting effects of future climate change

A species’ ability to respond to future climate change depends on

intrinsic factors, including physiological sensitivity to changes,

genetic adaptive capacity and dispersal ability, the latter being

affected by extrinsic factors such as geographical barriers (Dawson

et al. 2011). Despite their high potential for dispersal by flight, bat

species show different patterns of population structure due to dif-

ferences in movement abilities, migration and mating behaviour

(Burland & Worthington Wilmer 2001). In particular, species with

wing morphologies that limit long-distance flight, like P. austriacus

(Norberg & Rayner 1987), are potentially less able to respond to cli-

mate-induced range shifts and tend to be generally more vulnerable

to extinction (Safi & Kerth 2004).

In line with previous broad-scale predictions for other temperate

European bat species (Rebelo et al. 2010), our models predict north-

ern range expansion and southern range contraction by the end of

the century. Increase in temperatures and aridity around the Medi-

terranean is predicted to result in most stable LGM refugial areas

becoming climatically unsuitable for P. austriacus. These predictions

are of great concern given the genetic impoverishment evident in

northern parts of the range of P. austriacus, and the genetic evidence

from an ancient DNA study questioning the ability of species to

track decreases in availability of suitable habitats under climate

change (Dal�en et al. 2007). Widespread range retraction and popula-

tion extinctions relating to recent climatic changes are already evi-

dent in several butterfly and frog species (Thomas et al. 2006).

While losses of genetic diversity and the disappearance of evolution-

ary lineages are predicted for other European taxa (B�alint et al.

2011; Provan & Maggs 2012); here, we show that losses are likely

to be most extensive where genetic diversity is highest.

It has been debated whether ENM predictions relate to the

realised rather than fundamental niche of species, and as such

reflect the effects of barriers to colonisation and interspecific

interactions rather than the environmental tolerance of species

(Elith & Leathwick 2009). However, we believe that in our study

the modelled niche of P. austriacus indeed represents its climatic

tolerance. P. austriacus is absent from North Africa and the Middle

East (Spitzenberger et al. 2006), where climatic conditions are more

arid, despite its ability to colonise islands separated by larger

expanses of water than the Gibraltar Straits (Garc�ıa Mudarra et al.

2009) and the fact it is found in sympatry with other Plecotus species

across Europe. Moreover, differences between the fundamental and

realised niche may be generally small in bats because flight allows

bats to disperse widely and colonise the entire potential geographical

niche space (Rebelo & Jones 2010).

The predominantly north-western direction of current gene flow

in P. austriacus, from Italy and the Balkans into Western Europe and

from Western Europe into England, may already reflect ongoing

northward shifts in distribution in response to climate change.

However, despite the relatively high rates of estimated gene flow

into the English population, we found evidence of a recent decline

© 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
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in population size. This trend of decline suggests that although

favourable climatic conditions increased in the past few decades at

the northern edge, other factors like habitat loss and modification

may limit future range expansions, as has already been shown to be

the case for northern-edge butterfly populations in the United King-

dom (Warren et al. 2001).

Availability of suitable climatic conditions at the northern edge

does not imply that the ecological conditions necessary for the

colonisation and formation of viable populations will be present

(Pearson & Dawson 2003). Therefore, ENM predictions may be

an over-estimation of future range suitability. Beyond dispersal

limitations, population expansion in intensively farmed areas, like

England, may be limited by the scarcity of suitable foraging habitats

such as unimproved grasslands (Razgour et al. 2011).

Limited contemporary gene flow across the Pyrenees indicates

that this mountain barrier may impede migration out of Iberia. The

Pyrenees are likely to remain a barrier for the dispersal of P. austria-

cus even if climate change will result in warmer conditions because

of their physical structure and the role of altitude in limiting the dis-

tribution of this species. P. austriacus is commonly found at low ele-

vations (Spitzenberger et al. 2006), and its limited long-distance

flight ability suggests that crossing such physical barriers may be a

rare event. Indeed, the current low genetic diversity outside Iberia

and the emergence of all European haplotypes from a single north-

eastern Iberian haplotype suggests that during the Holocene, when

this species expanded its range out of Iberia, only a limited number

of individuals from a population adjacent to the Pyrenees crossed

this geographical barrier.

Due to the Pyrenees barrier, much of Iberian genetic diversity may

become ‘locked’ inside the peninsula, and population persistence will

depend on the phenotypic plasticity or genetic adaptability of Iberian

populations. However, evidence of niche conservatism, combined

with a slow reproductive rate and a long lifespan, suggest that

P. austriacus may have limited ability to evolve fast enough to respond

to rapid climatic changes (Hoffmann & Sgr�o 2011), especially as adap-

tations may require unprecedented rates of climatic niche evolution

(Quintero & Wiens 2013). Hence, population extinctions and loss of

around half of the species’ genetic diversity may be a likely outcome,

especially given the increased fragmentation and isolation of remain-

ing suitable areas, factors already implicated in the recent climate-

induced genetic erosion of an alpine mammal (Rubidge et al. 2012).

These losses are particularly concerning because of the importance of

stable refugial populations as long-term reservoirs of genetic diversity

for species survival and evolution (Hampe & Petit 2005). Given the

relatively high dispersal potential of bats, genetic consequences of

climate change for non-volant species may be even more severe.

CONCLUSIONS

This study provides a new slant on the importance of conserving

edge-of-range populations. We show that former refugial popula-

tions that contain the highest genetic diversity due to past climate

change are highly endangered due to future climate change. These

predictions are relevant to much of European biodiversity that dis-

plays similar phylogeographical patterns, and therefore may experi-

ence a similar fate. Conservation efforts should also recognise the

importance of leading-edge populations, regardless of their current

size, due to their role in range shifts and the future spread of

genetic diversity. Evolution in marginal atypical environments may

allow edge populations to better respond to environmental changes

and expand into new habitats, and therefore lead range shifts in

response to climate change (Hunter & Hutchinson 1994). However,

range shifts and successful population establishment depend on the

availability of suitable habitats in the industrialised, urbanised and

intensive agricultural landscape of north-western Europe. Therefore,

the conservation of edge populations is integral for ensuring the

long-term maintenance of temperate genetic diversity.
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