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Abstract. Systems of mixed hyperbolic-elliptic conservation laws can serve as models for the evolu-
tion of a liquid-vapor fluid with possible sharp dynamical phase changes. We focus on the equations
of ideal hydrodynamics in the isothermal case and introduce a thermodynamically consistent solution
of the Riemann problem in one space dimension. This result is the basis for an algorithm of ghost
fluid type to solve the sharp-interface model numerically. In particular the approach allows to resolve
phase transitions sharply, i.e., without artificial smearing in the physically irrelevant elliptic region.
Numerical experiments demonstrate the reliability of the method.
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Introduction

We consider the flow of a compressible fluid that can appear in two phases, lets say, in a liquid and a vapor
phase. Mathematical models for phase transition problems split up into so-called sharp-interface models and
phase field models. While in the latter approach phase changes are modeled as steep but continuous solutions
of the underlying evolution equations the sharp-interface ansatz leads to discontinuous solutions with exactly
localized phase transitions.

In this paper we concentrate on a sharp-interface model in one space dimension where phase transitions can
be represented as a type of shock wave. More precisely our model consists of the equations of hydrodynamics for
an isothermal fluid described by the two conservation laws for density ρ : R× [0,∞) → (0, 1/b) and momentum
m := ρv : R × [0,∞) → R given by

ρt + mx = 0

mt +
(

m2

ρ
+ p(ρ)

)
x

= 0 in R × (0,∞). (1)

Keywords and phrases. Dynamical phase transitions in compressible media, van-der-Waals pressure, kinetic relations, Riemann
solver, ghost fluid approach.

1 Abteilung für Angewandte Mathematik, lbert-Ludwigs-Universität Freiburg, Hermann-Herder Str. 10, 79104 Freiburg,
Germany. christian@mathematik.uni-freiburg.de
2 Institut für Angewandte Mathematik und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart,
Germany.

c© EDP Sciences, SMAI 2007

Article published by EDP Sciences and available at http://www.esaim-m2an.org or http://dx.doi.org/10.1051/m2an:2007048

http://www.edpsciences.org
http://www.esaim-m2an.org
http://dx.doi.org/10.1051/m2an:2007048


1090 C. MERKLE AND C. ROHDE

ρellipt
maxρ1 ρ2

vapor liquid

ρellipt
min ρ

p(ρ)

τ∗∗ τ∗ τ7τ8 τ

p̃(τ )

Figure 1. Graph of the van-der-Waals pressure function p = p(ρ) and the associated
Lagrangian pressure p̃ = p̃(τ) with p̃(τ) = p(1/τ) for sufficiently low temperature.

We consider the Cauchy problem for (1) and, for initial density ρ0 : R → (0, 1/b) and velocity v0 : R → R,
enforce the conditions

ρ(., 0) = ρ0, m(., 0) = ρ0v0 in R. (2)
Here b is a positive number and for the smooth pressure function p : (0, 1/b) → (0,∞) we suppose that there
are numbers ρellipt

min , ρellipt
max ∈ (0, 1/b) with ρellipt

min < ρellipt
max such that p is monotone increasing in the admissible

range
A := (0, ρellipt

min ) ∪ (ρellipt
max , 1/b)

and monotone decreasing in the elliptic region

(0, 1/b) \ A = [ρellipt
min , ρellipt

max ].

We refer to Figure 1 for the typical graph of p and to Section 1 for precise assumptions. On this general
level it is only important that the non-monotone shape of p allows to define phases. A state (ρ, ρv) in the
physical state space A × R is called a liquid (vapor) state if ρ ∈ (0, ρellipt

min ] (ρ ∈ [ρellipt
max , 1/b)) holds. As a

consequence of the non-monotone shape of p the first-order system (1) is hyperbolic for states if and only if the
states are liquid or vapor. The system (or more exactly its linearized version) is elliptic for density values in
(0, 1/b) \ A. Altogether we obtain a mixed-type system. Mixed-type systems are frequently used as models for
phase transitions in compressible media (cf. [1, 12]).

Our ultimate goal is to design a numerical method to solve the multidimensional version of the sharp-interface
model (1). In this paper we restrict ourselves to the 1D-case such that curvature effects play no role. Usually
in many phase transition and phase separation problems the correct treatment of curvature effects is one of the
main challenges. We would like to stress that here – due to the interaction of flow and phase transition effects
– even the 1D-case is by far not trivial. In the rest of the introduction we give an outline of the paper’s content
and indicate the specific difficulties in this sharp-interface model.

The basis of our numerical method is the exact treatment of the Riemann problem for the conservation
law (1), that is the special initial data choice

(
ρ

m

)
(x, 0) =

{ (
ρL

mL:=ρLvL

)
: x < 0(

ρR

mR:=ρRvR

)
: x > 0

(ρL, ρR ∈ A, vL, vR ∈ R). (3)

System (1) has the form of a conservation law, however the standard solution theory for hyperbolic conservation
laws does not apply (see e.g. [11,23,36]). This is first due to the fact that the elliptic region separates the state
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space into two disjoint sets where (1) is hyperbolic. Secondly, the system is not genuinely nonlinear in the vapor
phase anymore which requires to build Riemann patterns with attached-wave structures. Moreover, phase tran-
sitions – static as well as dynamical ones – are naturally modeled as shock waves and thus appear automatically
as sharp interfaces. But they are (partly) not Laxian-type shock waves but of the nonclassical undercompressive
type. Let us also stress as a striking property of the system (1) that the Clausius-Duhem inequality is not
enough to ensure the unique solvability of the Riemann problem (see [23]). To overcome these difficulties we
follow the approach developed by LeFloch and co-workers [5, 17, 24] which relies on the concept of the kinetic
relation [1, 39, 40]. The main existence result for a thermodynamically admissible Riemann problem solution is
then presented at the end of Section 3 (Thm. 3.6). The preceding sections serve to introduce the model (Sect. 1)
and to present a careful analysis for all possible wave types and their thermodynamical admissibility including
shock waves, rarefaction waves, attached waves and phase transitions (Sect. 2). In this context we mention the
publications [9,10,16,30] on the existence and stability of solutions for the Riemann problem for related systems.

A well-developed class of methods to solve the Euler equations for compressible one-phase fluids is provided
by upwind finite volume schemes based on approximate Riemann solvers. In Section 4 we propose a similar
class of methods for the Cauchy problem (1), (2). However standard averaging techniques can not be used in
our case since this – due to the non convex state space – might lead to approximate cell average states in the
elliptic region.

To circumvent this difficulty we suggest a ghost-fluid type algorithm, motivated but different from the algo-
rithm in the seminal paper [13] (see [2, 4, 14, 20, 26] for other applications). The crucial analytical basis of the
ghost fluid algorithm is the Riemann solver which has been developed in the first part of the paper (cf. Sects. 2
and 3). Finally, we test the algorithm on problems with known exact solution and report on a number of
numerical experiments. We have not been able to prove rigorously the convergence of our algorithm as the
mesh parameter tends to zero but we present a convergence result for simple phase transition solutions with
Proposition 4.5. In forthcoming papers we extend the approach to multiple space dimensions (see in particu-
lar [27]) and address curvature effects and the non-isothermal situation.

Another direct numerical method for the mixed-type Cauchy problem (1), (2) apart from the one presented
here is not known to us. However we have to refer to several related publications. A different approach to avoid
averaging effects is the DEM-method due to Abgrall and Saurel [3] which has been used in [21] to simulate
evaporation fronts. For the numerical solution of the sharp interface model with additional kinetic relations
there has been proposed the Glimm-Scheme [8,22], front-tracking schemes [41], artificial dissipation methods [25]
and a level-set scheme [18,28]. The latter one is different from the one presented here since the authors extend
the kinetic relation to the whole computational domain. Recently Chalons has developed a new deterministic
method to treat nonclassical shocks with kinetic relations in hyperbolic equations [7].

1. Basic properties of the mixed-type system

In this section we detail all assumptions on the system (1) and introduce fundamental notations. Furthermore
we review the spectral properties of the nonlinear flux in (1) and the structure of the associated characteristic
fields.

Assumption 1.1 (Pressure function).

(i) The function p ∈ C2((0, 1/b), (0,∞)) is supposed to satisfy

p′(ρ) > 0, p′′(ρ) < 0 for ρ ∈ (0, ρellipt
min ),

p′(ρ) > 0, p′′(ρ) > 0 for ρ ∈ (ρellipt
max , 1/b),

p′(ρ) < 0 for ρ ∈ (ρellipt
min , ρellipt

max ).
(4)
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(ii) Furthermore, we have

lim
ρ→0

p(ρ) = lim
ρ→0

p′(ρ)ρ2 = 0, lim
ρ↗1/b

p(ρ) = ∞. (5)

The typical shape of such a pressure function is shown in Figure 1 (left graph). Due to the fundamental laws
of thermodynamics the associated energy density function W ∈ C1(0, 1/b) is given up to an unimportant free
constant by the relation

p(ρ) = ρW ′(ρ) − W (ρ). (6)

Furthermore, from (4) it is clear (see also Fig. 1) that there are unique densities ρ1 ∈ (0, ρellipt
min ) and ρ2 ∈

(ρellipt
max , 1/b) such that we have

p(ρ1) = p(ρellipt
max ) and p(ρ2) = p(ρellipt

min ). (7)

The Maxwell states are defined as the two points ρM
vapor and ρM

liquid such that

W ′(ρM
vapor) = W ′(ρM

liquid) =
W (ρM

liquid) − W (ρM
vapor)

ρM
liquid − ρM

vapor

· (8)

That means the straight line connecting (ρM
vapor, W (ρM

vapor)) and (ρM
liquid, W (ρM

liquid)) has the same slope as W at
ρM
vapor and ρM

liquid (cf. Fig. 1). A short calculation using (6) and (8) leads to the property

p(ρM
vapor) = p(ρM

liquid). (9)

In our Riemann solution for (1), (3) later on static equilibria occur if and only if the connecting states are the
Maxwell states.

Remark 1.2. For appropriate choices of the constant temperature T > 0 and constants a, R > 0 a pressure
function satisfying (4) and (5) can be realized as the van-der-Waals function

p(ρ) =
ρRT

1 − bρ
− aρ2. (10)

Actually all figures and numerical calculations in the following are performed with the constants a = 3, b =
1/3, R = 8, T = 98/300.

The eigenvalues and corresponding eigenvectors of the Jacobian of the flux in (1) are

λ1/2(ρ, m) =
m

ρ
∓

√
p′(ρ), �r1/2(ρ, m) =

(
1

m
ρ ∓√

p′(ρ)

)
. (11)

We observe that the system (1) is hyperbolic for states (ρ, m) ∈ A×R, if and only if p′(ρ) > 0 holds, that is, if
and only if the state is a liquid or vapor state.

We compute for (ρ, m) ∈ A × R the characteristic fields of the flux and get the following expression inde-
pendent of momentum:

∇λ1/2(ρ, m) · �r1/2(ρ, m) = ∓
(

p′′(ρ)
2
√

p′(ρ)
+

√
p′(ρ)
ρ

)
=: Λ∓

(
1
ρ

)
·
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Rewriting the last equations in terms of τ = 1/ρ we obtain

Λ∓(τ) = ∓
(

2τ2p̃′(τ) + τ3p̃′′(τ)
2
√−p̃′(τ)

+ τ2
√
−p̃′(τ)

)
. (12)

Here we used the Lagrangian pressure p̃ : (b,∞) → (0,∞) defined by

p̃(τ) := p(1/τ)
(
τ ∈ (b,∞)

)
.

We refer to Figure 1, right graph, for a visualization of p̃. From (4), (5) we see that p̃′(1/ρellipt
min ) = 0 and

limτ→∞ p̃′(τ) = 0 hold. Therefore, there exists an inflection point τ∗ ∈ (1/ρellipt
min ,∞) and another inflection

point τ∗∗ of the function p̃ for which

ρ∗∗ :=
1

τ∗∗
is located in the elliptic region. Define also

ρ∗ :=
1
τ∗ ∈

(
0, ρellipt

min

)
.

Note, that p̃ is convex in (b, τ∗∗) ∪ (τ∗,∞) and concave in (τ∗∗, τ∗). We refer to Figure 1 for the graph of p̃.
Returning to (12) we see that Λ∓ = Λ∓(τ) vanishes for τ ∈ (b,∞) if and only if we have

1
2
(
2τ2p̃′(τ) + τ3p̃′′(τ)

) − τ2p̃′(τ) = p̃′′(τ) = 0.

Thus both characteristic fields of the flux in (1) fail to be genuinely nonlinear for liquid states with ρ = ρ∗.

2. Basic elementary waves and thermodynamical admissibility

In this section we consider all elementary waves which we need in the construction of the weak solution for
the Riemann problem (1), (3) in Section 3 below. We start with shock waves and general phase boundaries.
To detect the physically admissible shock waves we analyze the entropy dissipation function and to solve the
problem of the failure of genuine nonlinearity we carefully consider the location of associated end states in the
phase plane. Finally we discuss rarefaction waves resp. attached waves and – last but not least – non-Laxian
shock waves that satisfy a given kinetic relation.

2.1. Rankine-Hugoniot conditions, shock waves, and phase transitions

Basic elementary waves for the solution of the Riemann problem for (1) are shock waves. A shock wave1 with
speed s ∈ R connecting a state (ρl, ml) ∈ A×R with a state (ρr, mr) ∈ A×R (we also write (ρl, ml)

s→ (ρr, mr))
is a discontinuous function of the type(

ρ

m

)
=

(
ρ(x, t)
m(x, t)

)
=

{
(ρl, ml)T : x < st,
(ρr, mr)T : x > st,

(13)

that fulfills the Rankine-Hugoniot jump conditions

s�ρ� = �m� and s�m� =
�

m2

ρ
+ p(ρ)

�
. (14)

1The notation is sloppy since usually discontinuous traveling waves satisfying the Rankine-Hugoniot conditions but having zero
entropy dissipation are not called shock waves. For the sake of simplicity we include them here.
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In (14) is and henceforth will be used the notation �a� := al−ar for some general variable a. The conditions (14)
imply in particular that (13) is a weak solution of (1).

Now, fixing a state (ρl, ml) ∈ A × R we can determine the set of states (ρr, mr) hat can be connected to
(ρl, ml) ∈ A × R by a shock wave, the so called Rankine-Hugoniot set for (ρl, ml). For first-order conservation
laws the Rankine-Hugoniot set can be characterized easily provided there is an open set containing (ρl, ml)
where the system is hyperbolic. In our case this is true within each phase and we have the following result (see
e.g. [15], Thm. 4.1).

Theorem 2.1. Let (ρl, ml) ∈ A × R. There exists a number ε0 > 0, functions Φk : (−ε0, ε0) → A × R,
k = 1, 2, and a neighborhood of (ρl, ml) such that the set {Φk(ε) | ε ∈ (−ε0, ε0), k = 1, 2} coincides with the
Rankine-Hugoniot set for (ρl, ml) in this neighborhood. Moreover we have for ε ∈ (−ε0, ε0) and k = 1, 2

Φk(ε) = (ρl, ml)T + ε�rk(ρl, ml) + O(ε2) (15)

and
s = s((ρl, ml), Φk(ε)) = λk(ρl, ml) + O(ε). (16)

According to the numbering of the curves in Theorem 2.1 we speak of k-shock waves. In the case of a 1-shock
wave a specific parameterization as in (15) is given by(

ρr

mr

)
= Φ1(ε) =

(
ρl

ml

)
+ ε

(
1

ml

ρl
−√

p′(ρl)

)
+ O(ε2).

It follows for ε ∈ (−ε0, ε0)

vr − vl

ρr − ρl
= −

√
p′(ρl)
ρr

+ O(ε).

Therefore we have
vr − vl ≥ 0 (≤ 0) for ρr ≤ ρl (ρr ≥ ρl). (17)

Returning to the global situation system (14) consists of two equations with three unknowns ρr, vr and s. These
can be reformulated for vr and s depending on ρr:

vr(ρr) = vl ∓
√

ρr − ρl

ρrρl
(p(ρr) − p(ρl)), (18)

s(ρr) = vl ∓
√

ρr

ρl

p(ρr) − p(ρl)
ρr − ρl

= vr ∓
√

ρl

ρr

p(ρr) − p(ρl)
ρr − ρl

· (19)

We observe that globally the Rankine-Hugoniot set consists of two curves also called k-shock wave curves.
Comparing (18) with the local parameterization (17) we conclude: The 1-shock wave curve is given by

vr − vl =

⎧⎨
⎩ +

√
ρr−ρl

ρlρr
(p(ρr) − p(ρl)) : ρr ≤ ρl,

−
√

ρr−ρl

ρlρr
(p(ρr) − p(ρl)) : ρr ≥ ρl.

(20)

Equivalently, 2-shock wave curve is given by

vr − vl =

⎧⎨
⎩ −

√
ρr−ρl

ρlρr
(p(ρr) − p(ρl)) : ρr ≤ ρl,

+
√

ρr−ρl

ρlρr
(p(ρr) − p(ρl)) : ρr ≥ ρl.

(21)
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Remark 2.2. The parameterizations of the Rankine-Hugoniot sets (20) and (21) with vr seen as function of
the right-hand state ρr ∈ A satisfy the monotonicity property

dvr

dρr
(ρr) < 0 (> 0) for a 1-shock wave (a 2-shock wave).

To prove this for a 1-shock wave consider

dvr

dρr
(ρr) = ±

(
ρr − ρl

ρ2
r

)(√
ρr − ρl

ρlρr
(p(ρr) − p(ρl))

)− 1
2
(

p(ρr) − p(ρl)
ρr − ρl

+
ρr

ρl
p′(ρr)

)
︸ ︷︷ ︸

>0

,

where the + sign is valid if ρr ≤ ρl and the − sign if ρr > ρl. Hence, dvr

dρr
(ρr) < 0 for a 1-shock wave. For a

2-shock wave the calculation works the same replacing “±” by “∓”.

2.2. Entropy dissipation and characteristic structure

Physically meaningful shock waves (ρl, ml)
s→ (ρr, mr) also have to satisfy the entropy dissipation inequality

or Clausius-Duhem condition, that is,

s�E(ρ, v)� − �F (ρ, v)� ≤ 0. (22)

The entropy E : (0, 1/b)× R −→ R and the entropy flux F : (0, 1/b)× R −→ R are given by

E(ρ, v) =
1
2
ρv2 + W (ρ), F (ρ, v) = v

(
1
2
ρv2 + W (ρ) + p(ρ)

)
, (23)

where W = W (ρ) is the free energy of the system (cf. (6)). A shock wave that satisfies (22) is called entropy-
dissipative.

Later on in this section we need a reformulation of the entropy dissipation which we derive now. We get
from (14), (22), (23), and (6)

s�E(ρ, v)� − �F (ρ, v)� = s

(
1
2
ρlv

2
l + W (ρl) − 1

2
ρrv

2
r − W (ρr)

)
− vl

(
p(ρl) +

1
2
ρlv

2
l + W (ρl)

)
+ vr

(
p(ρr) +

1
2
ρrv

2
r + W (ρr)

)

= − j

2

(
v2

l − v2
r

)
− s�p� − j�W ′(ρ)�

= − j

2

(�v�(vl + vr − 2s) + �W ′(ρ)�).

Here we used j := ρl(vl − s) = ρr(vr − s). A straightforward computation using (18), (19) leads for ρl 
= ρr to

s�E(ρ, m)� − �F (ρ, m)� =
−j �ρ�3
2ρlρr

(
(ρl + ρr)

�W (ρ)��ρ�3 − ρlW
′(ρl) + ρrW

′(ρr)�ρ�2
)

=:
−j �ρ�3
2ρlρr

∆(ρl, ρr). (24)
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Moreover, defining ∆̃(τl, τr) := ∆
(

1
τl

, 1
τr

)
and using relation (6) yields

− �ρ�3
2ρlρr

∆(ρl, ρr) = − �ρ�3
2ρlρr

∆̃ (τl, τr)

=
p̃(τl) + p̃(τr)

2
(τr − τl) −

τr∫
τl

p̃(s) ds

=

τr∫
τl

(
p̃(τl) +

p̃(τr) − p̃(τl)
τr − τl

(s − τl) − p̃(s)
)

ds. (25)

This formulation allows a nice geometrical interpretation to determine the sign and the zero level set of the
function ∆. Let τl, τr ∈ (b,∞). Then we have ∆̃(τl, τr) = 0 if and only if

τr∫
τl

(
p̃(τl) +

p̃(τr) − p̃(τl)
τr − τl

(s − τl) − p̃(s)
)

ds = 0, (26)

i.e. if the (signed) area between the straight line connecting p̃(τl) and p̃(τr) and the graph of p̃ is zero. As we
are interested in the zero dissipation level set we define the set

Γ∆ :=
{
(ρl, ρr) ∈ (0, 1/b)2 |∆(ρl, ρr) = 0, ρl 
= ρr

} ∪ (ρ∗, ρ∗) ∪ (ρ∗∗, ρ∗∗) . (27)

Note that the function ∆ is only defined for ρl 
= ρr but there is a continuous extension since

lim
ρ̃→ρ

∆(ρ̃, ρ) = −1
6

(p′′(ρ) + 2p′(ρ)) = −1
6
τ4p̃ττ(τ).

The latter expression vanishes exactly for τ = τ∗, τ∗∗ and therefore we added the points (ρ∗, ρ∗) and (ρ∗∗, ρ∗∗)
in definition (27).

We observe that Γ∆ is symmetric with respect to the axis {(ρ, ρ) | ρ ∈ (0, 1/b)} and also deduce from (8)

(ρM
vapor, ρ

M
liquid), (ρ

M
liquid, ρM

vapor) ∈ Γ∆. (28)

Moreover, the set Γ∆ is a closed curve in (0, 1/b)2, which follows from the geometrical interpretation (26) and
Assumption 1.1 on the pressure function p.

For the further analysis it is important to classify shock waves according to the following standard system.
For k ∈ {1, 2} a k-shock wave is called a Laxian (or Lax-compressive) shock wave if the condition

λk(ρl, ml) ≥ s ≥ λk(ρr, mr) (29)

is satisfied. If one of the relations in (29) holds with equality the corresponding shock wave is called characteristic.
Furthermore, in the context of this paper a shock wave is called an undercompressive shock wave if

λ2(ρl, ml) > s > λ1(ρr, mr) and λ2(ρr, mr) > s > λ1(ρl, ml) (30)

is satisfied. The definitions are illustrated in Figure 2. In the framework of the first-order system (1) it is
natural to view phase jumps as shock waves: a shock wave (ρl, ml)

s→ (ρr, mr) is called a phase transition, if
the left and the right states are located in different phases (see Fig. 1). In this case we also use the notation
(ρl, ml)

pt→ (ρr, mr). We will see that in our case undercompressive shock waves will only appear as phase
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x

t

s = x
t

(ρl, vl)

(ρr, vr)

x

t

s = x
t

(ρl, vl)

(ρr, vr)

Figure 2. Laxian 2-shock wave (left) and undercompressive shock wave (right). Shock lines
for shocks with speed s and some characteristic curves (dashed lines) in the (x, t)-half plane.

transitions while Laxian waves can be purely hydrodynamical shock waves or phase transitions. Equation (29)
is – using τ = 1/ρ and p̃(τ) = p(1/τ) – equivalent to

p̃τ (τl) ≤ p̃(τr) − p̃(τl)
τr − τl

≤ p̃τ (τr) (31)

for Laxian 1-shock waves and

p̃τ (τl) ≥ p̃(τr) − p̃(τl)
τr − τl

≥ p̃τ (τr) (32)

for Laxian 2-shock waves.
In the hyperbolic case (in each phase in our case), it can be shown that shock waves (13) that satisfy the

Lax condition (29) are entropy solutions, i.e. (22) holds. To account for the possible difference between Laxian
shocks and entropy dissipative Laxian shocks in the two-phase case we define the following sets:

M1 := {(ρl, ρr) ∈ A2 | ∃ (ml, mr, s) ∈ R
3 : (14) and (31) hold},

M2 := {(ρl, ρr) ∈ A2 | ∃ (ml, mr, s) ∈ R
3 : (14) and (32) hold}.

The sets M1 and M2 are displayed in Figure 3. Since we are interested in entropy dissipative Laxian shock
waves we introduce the subsets

M1
diss := {(ρl, ρr) ∈ A2 | ∃ (ml, mr, s) ∈ R

3 : (14), (31) and (22) hold},
M2

diss := {(ρl, ρr) ∈ A2 | ∃ (ml, mr, s) ∈ R
3 : (14), (32) and (22) hold}.

Thus M1
diss and M2

diss are bounded by (parts of) the boundary of A × A, the curves Γ∆, Γ1,l
char, Γ1,r

char, Γ2,l
char,

Γ2,r
char, which are given for k = 1, 2 by

Γk,l
char :=

{
(ρl, ρr) ∈ A2, ρl 
= ρr | ∃ (ml, mr, s) ∈ R

3 : (14), (22) and λk(ρl, ml) = s
} ∪ (ρ∗, ρ∗),

Γk,r
char :=

{
(ρl, ρr) ∈ A2, ρl 
= ρr | ∃ (ml, mr, s) ∈ R

3 : (14), (22) and λk(ρr, mr) = s
} ∪ (ρ∗, ρ∗).

(33)

We note, that the conditions λk(ρl/r, ml/r) = s in (33) are equivalent to

√
p̃τ (τl) =

√
p̃(τr) − p̃(τl)

τr − τl
or

√
p̃τ (τr) =

√
p̃(τr) − p̃(τl)

τr − τl
· (34)
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Figure 3. Regions of density values which can be connected by Laxian shock waves (left
figure) and dissipative Laxian shock waves (right figure) are hatched. Note that Laxian waves
can only be ruled out due to non-dissipativity if the states are in different phases. We recall
that Γp denotes the density pairs with identical pressure and Γ∆ the pairs with zero entropy
dissipation while point on the curves Γ1/2,l/r

char correspond to characteristic waves (cf. (33)). For
ρ1 and ρ2 we refer to (7).

They are in particular independent of momentum.
Assumption 1.1 ensures that there are exactly two specific densities τ7, τ8 with 0 < ρ8 < ρellipt

min < ρellipt
max < ρ7

such that the slope of p̃ in both points and the slope of the straight line connecting (τ8, p̃(τ8)) with (τ7, p̃(τ7))
takes the same value (see Fig. 1). In view of the fact that intersection points of the curves defined in (33) have to
satisfy both relations in (34) we conclude that there is exactly one intersection point in (0, ρellipt

min )× (ρellipt
max , 1/b)

as well as one in (ρellipt
max , 1/b)× (0, ρellipt

min ), namely (cf. Fig. 4)

(ρ8, ρ7) and (ρ7, ρ8). (35)

In the next step we define the set

Γp := {(ρl, ρr) ∈ A2 | p(ρl) = p(ρr), ρl 
= ρr}.

We observe that Γp is symmetric with respect to the axis {(ρ, ρ) | ρ ∈ (0, 1/b)}.
Due to (34) and (7) the union of Γ1,l

char, Γ1,r
char, Γ2,l

char, Γ2,r
char and the curve Γp has four intersection points

(ρellipt
min , ρ2), (ρ2, ρ

ellipt
min ), (ρellipt

max , ρ1), and (ρ1, ρ
ellipt
max ). (36)

The strict inequalities in (4) show that the points in (36) are the only ones.
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Recall from (24) that the entropy dissipation vanishes if and only if either ρl = ρr, ∆ = 0 or vl = vr = s
hold. The latter case implies for states satisfying the Rankine-Hugoniot shock speed formula (19) that

�p� = 0 (37)

is valid.
Note, that due to (9) and (28) the curves Γ∆ and Γp intersect in the Maxwell points. These are the only

intersection points, which can be seen easily from (26).
In the vapor phase the genuine nonlinearity breaks down exactly at states with ρ = ρ∗. As (ρ∗, ρ∗) ∈ Γ∆ the

curves from (33) and Γ∆ intersect at the point (ρ∗, ρ∗) in the vapor phase. This is the only intersection point
in the vapor phase, which follows from the shape of p (cf. Assumption 1.1) and (26).

There are exactly four further intersection points within A2 of Γ∆ and the curves from (33) (see Fig. 4),
namely

(ρ3, ρ4), (ρ4, ρ3), (ρ5, ρ6), and (ρ6, ρ5). (38)

For simplicity we only show that (ρ4, ρ3) ∈ (ρellipt
max , 1/b)× (0, ρellipt

min ) belongs to Γ∆ while it is also an end point
of Γ1,r

char and Γ2,r
char (see Fig. 4). Due to Assumption 1.1 there is a point τ̂ ∈ (b, 1/ρellipt

max ) such that

√
p̃τ (τ∗) =

√
p̃(τ∗) − p̃(τ̂ )

τ∗ − τ̂

holds, i.e. (τ̂ , τ∗) satisfies (34) and due to (25) the relation ∆̃(τ̂ , τ∗) < 0.
On the other hand, for (ρ7, ρ8) ∈ Γk,r

char (see (35)) it holds ∆̃(1/ρ7, 1/ρ8) > 0. Therefore, there is an intersection
point (ρ4, ρ3) ∈ (ρellipt

max , 1/b)× (0, ρellipt
min ) of Γ∆ and the curves from (33).

With help of monotonicity arguments and p̃ττ > 0 in (b, 1/ρellipt
max ) and p̃ττ > 0 in (τ∗, 1/ρ8) one can show the

uniqueness of this intersection point.

Remark 2.3 (Ordering and end points).
(i) For the intersection points identified above we have the ordering relations

ρ6 < ρ8 < ρ3 < ρellipt
min < ρellipt

max < ρ5 < ρ7 < ρ4,

ρ1 < ρM
vapor < ρellipt

min < ρellipt
max < ρM

liquid < ρ2,

ρ3 < ρM
vapor < ρellipt

min < ρellipt
max < ρM

liquid < ρ4.

The inequalities ρ6 < ρ8 < ρ3 < ρellipt
min as well as ρellipt

max < ρ5 < ρ7 < ρ4 can be verified using the
definition of the curves Γ1/2,l/r

char and Γ∆ (cf. (25)) and Assumption 1.1.
ρ1 ≤ ρM

vapor ≤ ρellipt
min ≤ ρellipt

max ≤ ρM
liquid ≤ ρ2 follows directly from the definition of the points (see Fig. 1).

The strict inequality “<” then follows from (26).
For ρ4 > ρ3 it holds p(ρ4) > p(ρ3) because (ρ4, ρ3) ∈ Γ1/2,r

char and therefore satisfies the Rankine-Hugoniot
jump condition (14) for some vl, vr ∈ R. Moreover, it holds ∆(ρ4, ρ3) = 0 as we have (ρ4, ρ3) ∈ Γ∆

(cf. (38)). Now suppose ρ3 > ρM
vapor (ρ4 < ρM

liquid analogously). Then

p(ρ4) > p(ρ3) > p(ρM
vapor) = p(ρM

liquid)

and due to (26) ∆(ρ4, ρ3) 
= 0. Therefore, the statement follows.
(ii) The endpoints of Γ1/2,r

char lying in A2 are exactly (ρ4, ρ3) and (ρ6, ρ5). Endpoints of Γ1/2,l
char lying in A2 are

exactly (ρ3, ρ4) and (ρ5, ρ6).
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Figure 4. Graphs of the functions λ1,l
s , λ1,r

s and λ2,l
s as defined in Lemma 2.4 and pl=r from

Lemma 2.5. They consist of parts of the characteristic curves and the equal-pressure curve.

To prove this note that for all (ρl, ρr) satisfying (34) there exists (ml, mr, s) ∈ R
3 such that (14)

holds. Therefore, the only possible endpoints of Γ1/2,r
char within A2 are the points where the sign of the

entropy dissipation changes, i.e. intersection points of Γ1/2,r
char and the set of points where the entropy

dissipation (22) is zero. Due to (24) this can happen if p(ρl) = p(ρr) (cf. (37)) or if ∆(ρl, ρr) = 0 holds.
Intersection points of Γp and Γ1/2,r

char are not in A2 (cf. (36)). Therefore, endpoints of Γ1/2,r
char within A2

have to be elements of Γ∆. Due to (38) this is the case for (ρ4, ρ3), (ρ6, ρ5).
The second part of the remark follows by symmetry.

With the above remarks we obtain the configuration as depicted in Figures 3 and 4. The complexity of
the two-phase case becomes visible if one recalls that the one-phase case for a perfect fluid leads to the simple
situation in the liquid box (ρellipt

max , 1/b)2.
Parts of the sets Γ1,l

char, Γ1,r
char, Γ2,l

char and Γ2,r
char are graphs of functions depending on ρl or ρr. We will define

those functions by the subsequent lemma (cf. also Fig. 4) as we need them in the remainder of the paper.

Lemma 2.4. There exist functions

λ1,r
s : (0, ρ4) −→ (0, ρellipt

min ),

λ1,l
s : (ρ3, ρ

ellipt
min ) −→ (

ρellipt
max , 1/b

)
,

λ2,l
s : (0, ρ4) −→ (0, ρellipt

min )

such that
(i) Γ1,r

char ∩ {(ρl, ρr)|ρr ∈ (0, ρellipt
min )} = {(ρl, λ

1,r
s (ρl)) | ρl ∈ (0, ρ4)},
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(ii) Γ1,l
char ∩ {(ρl, ρr)|ρl ∈ (0, ρellipt

min )} = {(ρl, λ
1,l
s (ρl)) | ρl ∈ (ρ3, ρ

ellipt
min )},

(iii) Γ2,l
char ∩ {(ρl, ρr)|ρl ∈ (0, ρellipt

min )} = {(λ2,l
s (ρr), ρr) | ρr ∈ (0, ρ4)}.

Proof. We prove (i) explicitly and note that (ii), (iii) can be done in the same manner. For ρl ∈ (0, ρ4) there
are two solutions of the equation

p̃τ (τ) =
p̃(τ) − p̃(τl)

τ − τl
, τl =

1
ρl
· (39)

Define

λ1,r
s (ρl) := min

{
1
τ

∣∣∣∣τ solves (39)
}

.

Then, λ1,r
s (ρl) ∈ (0, ρellipt

min ), due to the shape of p (cf. Assumption 1.1).
Moreover we get (ρl, λ

1,r
s (ρl)) ∈ Γ1,r

char as the condition λ1(ρ, m) = s is equivalent to (39) and the corresponding
shocks are entropy dissipative (22). We show the latter statement for a single point (ρl, λ

1,r
s (ρl)) with ρl ∈

(0, ρellipt
min ). Then, the argument can be extended to ρl ∈ (0, ρ4) as the sign of the entropy dissipation does not

change until the intersection point with Γ∆, i.e. (ρ4, ρ3) (cf. Rem. 2.3(ii)). Let for simplicity ρl ∈ (ρ∗, ρellipt
min ).

Due to (24) we can calculate the sign of the entropy dissipation explicitly. As for (ρl, λ
1,r
s (ρl)) the condition

λ1(ρl, ml) = s holds the corresponding shock wave can due to (29) only be a 1-shock wave. Therefore, j =
ρl(vl − s) > 0 due to (19) (with − sign for a 1-shock wave).

Moreover we have �ρ�3 > 0 as ρl > λ1,r
s (ρl) and ∆(ρl, λ

1,r
s (ρl)) > 0 due to (25).

Altogether, the entropy dissipation (24) is negative. �
Accordingly, part of the set Γp can be seen as the graph of a function depending on ρr.

Lemma 2.5. There is a function
pl=r : (ρ1, ρ

ellipt
min ) ∪ (ρellipt

max , ρ2) −→ (ρ1, ρ
ellipt
min ) ∪ (ρellipt

max , ρ2) such that

Γp = {(pl=r (ρr) , ρr) | ρr ∈ (ρ1, ρ
ellipt
min ) ∪ (ρellipt

max , ρ2)}.

Proof. Without loss of generality let ρ ∈ (ρ1, ρ
ellipt
min ). Due to Assumption 1.1 there is exactly one ρ̂ ∈ (

ρellipt
max , ρ2

)
such that p(ρ̂) = p(ρ) holds. The statement follows with pl=r (ρ) := ρ̂. �

Out of points on the Rankine-Hugoniot curves let us now select (the ρ-components) of those shock waves
that satisfy the Lax entropy condition (29) and are entropy-dissipative.

Lemma 2.6 (1-shock waves). Let (ρl, vl) and (ρr, vr) ∈ A×R be in one phase, such that (20) holds. Then (31)
holds, if and only if we have

(ρl, ρr) ∈ S1 := {(ρl, ρr)|ρl ∈ (0, ρ∗), ρr ∈ (ρl, λ
1,r
s (ρl)]} ∪ {(ρl, ρr)|ρl ∈ (ρ∗, ρellipt

min ), ρr ∈ [λ1,r
s (ρl), ρl)}

∪{
(ρl, ρr)|ρl ∈ (ρellipt

max , 1/b), ρr ∈ (ρl, 1/b)
}

.

Moreover we have (ρl, ρr) ∈ M1
diss, thus the waves are entropy-dissipative.

Proof. We show the statement for ρl ∈ (0, ρ∗). The other cases are proved similarly. Let (ρl, ml) and (ρr, mr) ∈
A × R be in one phase, such that (20) holds. We have to verify (31) for ρr ∈ (ρl, λ

1,r
s (ρl)). Therefore, first

assume ρl > ρr, i.e. τl < τr. Then as τl > τ∗ and p̃ττ (τ) > 0 for τ > τ∗ the following relation holds (cf. Fig. 5a):

p̃τ (τl) <
p̃(τr) − p̃(τl)

τr − τl
< p̃τ (τr)

and therefore, (31) does not hold. Hence, equation (29) does not hold for ρl > ρr.
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τ∗
τl τr1/ρmin

ellipt

p̃(τ )

τ

(a)

τ∗
τrτ̂l τl

1/ρmin

ellipt

p̃(τ )

τ

(b)

Figure 5. Auxiliary illustration for the proof of Lemma 2.6.

Now assume ρr > ρl, i.e. τl > τr, then as τl > τ∗ (31) holds, as long as τr > τ̂l (i.e. ρr < ρ̂l := 1
τ̂l

), where τ̂l

is defined as the unique solution of (see Fig. 5b)

p̃(τ̂l) − p̃(τl)
τ̂l − τl

= p̃τ (τ̂l).

The uniqueness follows from the shape of the function p.
Now it remains to prove ρ̂l = λ1,r

s (ρl). This is true due to the definition of the function λ1,r
s . Therefore, (29)

is valid for ρr ∈ (ρl, λ
1,r
s (ρl)). The cases ρl ∈ (ρ∗, ρellipt

min ) and ρl ∈ (ρellipt
max , 1/b) are proved similarly. Finally, we

observe from the location of M1
diss the inclusion S1 ⊂ M1

diss which concludes the proof. �
Equivalently for 2-shock waves the following lemma is valid:

Lemma 2.7 (2-shock waves). Let (ρl, vl) and (ρr, vr) ∈ A×R be in one phase, such that (21) holds. Then (32)
holds, iff

(ρl, ρr) ∈ S2 := {(ρl, ρr)|ρr ∈ (0, ρ∗), ρl ∈ (ρr, λ
2,l
s (ρr))} ∪ {(ρl, ρr)|ρr ∈ (ρ∗, ρellipt

min ), ρl ∈ (λ2,l
s (ρr), ρr)}

∪{
(ρl, ρr)|ρr ∈ (ρellipt

max , 1/b), ρl ∈ (ρr, 1/b)
}

.

Moreover we have (ρl, ρr) ∈ M2
diss.

The sets S1 and S2 are shown in Figures 6 and 7.

2.3. Rarefaction waves and attached waves

Next let us review the structure of rarefaction waves. Let (ρl, ml), (ρr, mr) ∈ A × R with ρl and ρr from the
same phase be given. For k ∈ {1, 2} a k-rarefaction wave (denoted by (ρl, ml)

rare→ (ρr, mr)) is a weak solution
(ρ, m)T : R × [0,∞) → A × R of (1) of the type

(
ρ(x, t)
m(x, t)

)
=

⎧⎪⎪⎨
⎪⎪⎩

(
ρl

ml

)
: x ≤ ξk

1 t,( ρ̄(x/t)
m̄(x/t)

)
: ξk

1 t < x < ξk
2 t,(

ρr

mr

)
: x ≥ ξk

2 t.

(40)
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Figure 6. Classical 1-waves: density components of states (ρl, vl) and (ρr, vr) within one phase
can be connected by a classical 1-wave. S1 corresponds to an 1-shock wave (cf. Lem. 2.6), R1

to a 1-rarefaction wave (cf. Lem. 2.9) and A1 to an attached 1-wave (cf. Lem. 2.10).

Here (ρ̄, m̄)T ∈ C1((ξi
1, ξ

i
2),A × R) has to be chosen such that (ρ, m)T is a classical solution of (1) for ξk

1 t <
x < ξk

2 t with the property

ρ̄(ξk
1 ) = ρl, ρ̄(ξk

2 ) = ρr, m̄(ξk
1 ) = ρ̄v̄(ξk

1 ) = ml, m̄(ξk
2 ) = ρ̄v̄(ξk

2 ) = mr, (41)

where we have
ξk
1 = λk(ρl, ml), ξk

2 = λk(ρr, mr).
For the hydrodynamical equations (1) the functions ρ̄ and m̄ = ρ̄v̄ have to satisfy (41) and for ξ ∈ (ξk

1 , ξk
2 ) have

to be real solutions of the system of ordinary differential equations

ρ̄ ′
1/2(ξ) = ∓ 2ρ̄(ξ)

√
p′(ρ̄(ξ))

ρ̄(ξ)p′′(ρ̄(ξ)) + 2p′(ρ̄(ξ))
,

(ρ̄v̄) ′
1/2(ξ) = ρ̄ ′

1/2(ξ)
(
v̄(ξ) ∓

√
p′(ρ̄(ξ))

)
.

(42)

Eliminating ξ in the above equations we can express v̄ in terms of ρ̄:

v̄(ρ̄) = vl ∓
∫ ρ̄

ρl

√
p′ (r)
r

dr. (43)

With (43) we have got a parameterization in the (ρ, m)-plane of the rarefaction curves, i.e. the set of states
(ρr, mr) ∈ A × R that can be connected by a k-rarefaction wave to (ρl, ml).
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Figure 7. Classical 2-waves: density components of states (ρl, vl) and (ρr, vr) within one phase
can be connected by a classical 2-wave. S2 corresponds to a 2-shock wave (cf. Lem. 2.7), R2

to a 2-rarefaction wave (cf. Lem. 2.9) and A2 to an attached wave (cf. Lem. 2.10).

Remark 2.8. The parameterizations of the rarefaction curves given in (42) with vr as a function of ρr have
the monotonicity property

dvr

dρr
(ρr) < 0 (> 0) for a 1-rarefaction wave (2-rarefaction wave).

This can be seen from

dvr

dρr
(ρr) = ∓

√
p′(ρr)
ρr

,

with “−” for a 1-rarefaction wave and “+” for a 2-rarefaction wave.

It is well-known (see [11]) that the system of ordinary differential equations (42) has a unique solution if the
condition (cf. (12))

Λ∓ = ∇λk · �ri > 0, k ∈ {1, 2} (44)
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is satisfied along the wave. This leads to:

Lemma 2.9 (1/2-rarefaction waves). Let (ρl, ml) and (ρr, mr) ∈ A × R be within one phase such that (43)
holds. Then (44) holds, if and only if

(ρl, ρr) ∈ R1 := {(ρl, ρr)|ρl ∈ (0, ρ∗), ρr ∈ (0, ρl)} ∪ {(ρl, ρr)|ρl ∈ (ρ∗, ρellipt
min ), ρr ∈ (ρl, ρ

ellipt
min )}

∪ {(ρl, ρr)|ρl ∈ (ρellipt
max , 1/b), ρr ∈ (ρellipt

max , ρl)},

for a 1-rarefaction wave and

(ρl, ρr) ∈ R2 := {(ρl, ρr)|ρr ∈ (0, ρ∗), ρl ∈ (0, ρr)} ∪ {(ρl, ρr)|ρr ∈ (ρ∗, ρellipt
min ), ρl ∈ (ρr, ρ

ellipt
min )}

∪ {(ρl, ρr)|ρr ∈ (ρellipt
max , 1/b), ρl ∈ (ρellipt

max , ρr)},

for a 2-rarefaction wave.

Proof. Note that for a 1-rarefaction wave (cf. (12))

Λ∓(τ) > 0 ⇐⇒ p̃′′(τ) < 0 ⇐⇒ ρ ∈ (ρ∗, ρ∗∗)

holds. Now let (ρl, vl) and (ρr, vr) be two states on the rarefaction wave (43) (with negative sign for a 1-
rarefaction wave).

If ρl ∈ (ρ∗, ρellipt
min ) ⊂ (ρ∗, ρ∗∗) holds then we have λ1(ρr, mr) > λ1(ρl, ml) for ρr ∈ (ρl, ρ

ellipt
min ) since ∇λ1 ·�r1 > 0

on the wave.
If ρl ∈ (0, ρ∗) ∪ (ρ∗∗, 1/b) holds then we have λ1(ρr, mr) > λ1(ρl, ml) for ρr < ρl.
The statement for 2-rarefaction waves is proved analogously. �
The sets R1 and R2 are shown in Figures 6 and 7. Note that we have no difficulties to satisfy the Clausius-

Duhem inequality (22) for rarefaction waves as continuous weak solutions.
We observe from Figure 6 that we cannot connect all states in a single phase by only Laxian shock waves

and rarefaction waves. Furthermore, we need attached waves.
Let (ρl, ml), (ρr, mr) ∈ A × R. If there exists a state (ρ̂, m̂) such that an 1-shock wave (ρl, ml)

s→ (ρ̂, m̂)
with speed s = λ1(ρ̂, m̂) and an 1-rarefaction wave (ρ̂, m̂) rare→ (ρr, mr) exist we say that (ρl, ml) and (ρr, mr)
can be connected by an 1-attached wave (with notation (ρl, ml)

att→ (ρr, mr). Obviously, the function

( ρ(x,t)
m(x,t)

)
=

⎧⎪⎪⎨
⎪⎪⎩

(
ρl

ml

)
: x < λ1(ρ̂, m̂)t,( ρ̄(x/t)

m̄(x/t)

)
: λ1(ρ̂, m̂)t ≤ x < λ1(ρr, mr)t,(

ρr

mr

)
: x ≥ λ1(ρr, mr)t

(45)

is then a weak solution of (1), where ρ̄, m̄ are defined analogously as in (40) but with (ρ̂, m̂) as lefthand state.
Similarly, if there exists a state (ρ̂, m̂) such that a 2-rarefaction wave (ρl, ml)

rare→ (ρ̂, m̂) and a 2-shock wave
(ρ̂, m̂) s→ (ρr, mr) with speed s = λ2(ρ̂, m̂) exist we say that (ρl, ml) and (ρr, mr) can be connected by an
2-attached wave. Then, the function

( ρ(x,t)
m(x,t)

)
=

⎧⎪⎪⎨
⎪⎪⎩

(
ρl

ml

)
: x < λ2(ρl, ml)t,(

ρ̄(x/t)
m̄(x/t)

)
: λ2(ρl, ml)t ≤ x < λ2(ρ̂, m̂)t,(

ρr

mr

)
: x ≥ λ2(ρ̂, m̂)t

(46)

is a weak solution of (1), where ρ̄, m̄ are defined analogously as in (40) but with (ρ̂, m̂) as righthand state.
The attached waves within one phase are described in the following lemma.
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Lemma 2.10 (1/2-attached waves). Let (ρl, vl), (ρr, vr) ∈ A × R with densities in the vapor phase. They can
be connected by an 1-attached wave (ρl, ml)

att→ (ρr, mr), if and only if we have (cf. Fig. 6)

(ρl, ρr) ∈ A1 := {(ρl, ρr)|ρl ∈ (0, ρ∗), ρr ∈ (λ1,r
s (ρl), ρ

ellipt
min )} ∪ {(ρl, ρr)|ρl ∈ (ρ∗, ρellipt

min ), ρr ∈ (0, λ1,r
s (ρl))},

and by a 2-attached wave (ρl, ml)
att→ (ρr, mr), if and only if we have (cf. Fig. 7)

(ρl, ρr) ∈ A2 := {(ρl, ρr)|ρr ∈ (0, ρ∗), ρl ∈ (λ2,l
s (ρr), ρ

ellipt
min )} ∪ {(ρl, ρr)|ρr ∈ (ρ∗, ρellipt

min ), ρl ∈ (0, λ2,l
s (ρr))}.

In both cases the Clausius-Duhem inequality (22) is satisfied.

Proof. The proof is done for the case of a 1-attached wave and for simplicity we only consider the case of
ρl ∈ (0, ρ∗). Values of ρr ∈ (

0, λ1,r
s (ρl)

)
can only be reached by a single 1-rarefaction or one-shock wave. Bigger

values of ρr cannot be connected to ρl by a single shock or rarefaction wave (Lems. 2.6 and 2.9).
The only way to connect (ρl, ml) to (ρr, mr) is therefore by a characteristic 1-shock wave (ρl, ml)

s→ (ρ̂ :=
λ1,r

s (ρl), m̂) with speed s followed by an one-rarefaction wave (ρ̂, m̂) rare→ (ρr, mr). For this construction
s = λ1 (ρ̂, m̂) holds which follows from the definition of λ1,r

s . This defines also uniquely the intermediate
momentum m̂ by the Rankine-Hugoniot conditions. The location of the set M1

diss shows that the characteristic
shock wave is entropy dissipative and thus (22) is satisfied for the whole attached curve. �

The corresponding sets A1 and A2 are shown in Figures 6 and 7.

Remark 2.11. With the consecutive use of (20), (21) and (43) there is a parameterization of the k-attached
waves, k ∈ {1, 2}, in the (ρ, v)-plane and due to the monotonicity properties of the parameterizations of the
k-shock and k-rarefaction curves (see Rems. 2.2 and 2.8) it holds that vr = vr(ρr) is monotone decreasing for a
1-attached wave and monotone increasing for a 2-attached wave.

2.4. Kinetic relation and subsonic phase transitions

Up to now we have clarified the possible wave structure in one phase. To take into account phase transition let
us note that the solution of the Riemann problem containing undercompressive shock waves which turns out to be
necessary is – in contrast to the classical hyperbolic case – not unique any more [23]. One remedy of this problem
is to admit only those undercompressive shock waves that satisfy an additional single algebraic constraint, the
so-called kinetic relation. Note that undercompressive shock waves are automatically phase transitions in our
case. The kinetic relation was first proposed by [1] (see also [39,40]) and motivated by experiments in the case
of nonlinear elasticity. For the system (1) mathematically a similar situation occurs [6, 12] so that it suggests
itself to carry over this concept.

In the following we work with a specific kinetic relation.

Definition 2.12 (Kinetic relation). Let ρkr ∈ (ρM
vapor, ρ4).

The function Ψ : (λ1,r
s (ρkr), ρ

ellipt
min ) ∪ (ρellipt

max , λ1,l
s (ρ∗)) −→ (ρ∗, ρellipt

min ) ∪ (ρellipt
max , ρkr) given by

Ψ(ρ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρM
liquid +

ρkr−ρM

liquid

λ1,r
s (ρkr)−ρM

vapor

(
ρ − ρM

vapor

)
: λ1,r

s (ρkr) ≤ ρ < ρM
vapor,

pl=r(ρ) : ρM
vapor ≤ ρ < ρellipt

min ,

pl=r(ρ) : ρellipt
max < ρ ≤ ρM

liquid,

ρ∗ +
ρM
vapor−ρ∗

ρM

liquid
−λ1,l

s (ρ∗)

(
ρ − λ1,l

s (ρ∗)
)

: ρM
liquid < ρ ≤ λ1,l

s (ρ∗)

(47)

is called kinetic relation.
A phase transition (ρl, ml)

pt→ (ρr, mr) is called Ψ-admissible if and only if ρl = Ψ(ρr) holds.



THE SHARP-INTERFACE APPROACH FOR FLUIDS WITH PHASE CHANGE 1107

As can be checked easily using ρ4 > ρM
liquid and ρ3 < ρM

vapor (see Rem. 2.3) the kinetic relation from Defini-
tion 2.12 satisfies

∂

∂ρr
Ψ (ρr) < 0 for ρr ∈ (

λ1,r
s (ρkr) , ρM

vapor

) ∪ (
ρM
liquid, λ

1,l
s (ρ∗)

)
. (48)

In fact (48) is the crucial property to construct solutions for the Riemann problem (see Lem. 3.1) and we can
formulate similar existence theorems for more general kinetic relations satisfying (48).

Remark 2.13.
(i) Up to our knowledge explicit formulae for kinetic relations in the case of liquid vapor have not been

suggested. In this sense Definition 2.12 appears to be quite arbitrary. However, note that the Maxwell
states ρM

vapor and ρM
liquid are connected by the kinetic relation so that the equilibrium configuration

connecting the Maxwell states is Ψ-admissible. Then we use Laxian shocks whenever possible which
implies that the kinetic relation is chosen to end in the characteristic curves and is not extended further.
As the most simple choice we then take a linear function.

(ii) Mathematically one has to study whether the solution of the Riemann problem depends continuously
on the choice of the kinetic function. Our conjecture is that the qualitative structure of the solution
of the Riemann problem does not depend sensitively on the kinetic function (see [27], Sect. 2.3.1.8)
for Riemann solutions to different kinetic relations). A general theory on continuous dependence with
respect to the kinetic relation can be found in [9]. It is out of the scope of this work to apply the theory
in [9] to our case but it is likely that continuous dependence can be proven rigorously.

(iii) A Ψ-admissible phase transition (ρl, ml)
pt→ (ρr, mr) is entropy-dissipative: it is clear that it satisfies

the inequality if one of the density states is given by the function pl=r since these jumps have zero
entropy dissipation. In the other cases it follows from the location of the curve Γ∆ with respect to the
connecting states (see Fig. 8).

3. Generalized wave curves and solution of the Riemann problem

3.1. Generalized 1-wave curve

Before we can state the main theorem – the construction of a generalized 1-wave curve – we need to define
an additional function g which we will use in its proof. With the help of this function we make sure that the
speeds of the elementary waves within the generalized 1-wave curve are such that they do not interact.

Lemma 3.1. There exists a function g : (0, ρellipt
min ) −→ (ρM

liquid, λ
1,l
s (ρ∗)), such that for ρl ∈ (0, ρellipt

min )

p̃
(
g (ρl)

−1
)
− p̃

(
Ψ (g (ρl))

−1
)

g(ρl)−1 − Ψ(g(ρl))−1
=

p̃
(
ρ−1

l

)− p̃
(
Ψ (g (ρl))

−1
)

ρ−1
l − Ψ(g(ρl))−1

·

Proof. Let us first define the functions h1, h2,l : [1/λ1,l
s (ρ∗), 1/ρM

liquid] → R as

h1(τ) :=
p̃(τ) − p̃(Ψ̃(τ))

τ − Ψ̃(τ)
and h2,l(τ) :=

p̃(τl) − p̃(Ψ̃(τ))
τl − Ψ̃(τ)

,

where Ψ̃(τ) := 1/Ψ(1/τ). Then, it holds

h1(1/λ1,l
s (ρ∗)) =

p̃
(
1/λ1,l

s (ρ∗)
)− p̃

(
1/Ψ

(
λ1,l

s (ρ∗)
))

1/λ1,l
s (ρ∗) − 1/Ψ

(
λ1,l

s (ρ∗)
) =

p̃
(
1/λ1,l

s (ρ∗)
)− p̃ (1/ρ∗)

1/λ1,l
s (ρ∗) − 1/ρ∗

= p̃τ (τ∗),
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Figure 8. The graph of the kinetic relation (bold solid line) is displayed as given in Defini-
tion 2.12 is displayed. Furthermore the entropy dissipation curve Γ∆ (dashed line), and the
characteristic curves (solid lines) are shown which impose some restrictions on the choice of the
kinetic relation as discussed in Remark 2.13.

due to the definition of λ1,l
s and

h1(1/ρM
liquid) =

p̃(1/ρM
liquid) − p̃

(
1/Ψ(ρM

liquid)
)

1/ρM
liquid − 1/Ψ(ρM

liquid)
=

p̃(1/ρM
liquid) − p̃(1/ρM

vapor)
1/ρM

liquid − 1/ρM
vapor

= 0.

A short calculation using (4) (cf. Assumption 1.1) and the monotonicity of Ψ (48) shows

dh1

dτ
(τ) > 0.

On the other hand for all ρl ∈ (0, ρellipt
min ) we have

h2,l(1/λ1,l
s (ρ∗)) =

p̃(1/ρl) − p̃
(
1/Ψ(λ1,l

s (ρ∗))
)

1/ρl − 1/Ψ
(
λ1,l

s (ρ∗)
) =

p̃(1/ρl) − p̃(1/ρ∗)
1/ρl − 1/ρ∗

> p̃τ (τ∗),

h2,l(1/ρM
liquid) =

p̃(1/ρl) − p̃
(
1/Ψ(ρM

liquid)
)

1/ρl − 1/Ψ(ρM
liquid)

=
p̃(1/ρl) − p̃(1/ρM

vapor)
1/ρl − 1/ρM

vapor

< 0,

and with the same arguments as above

dh2,l

dτ
(τ) < 0.
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Therefore, there is exactly one τ̂l ∈ (1/λ1,l
s (ρ∗), 1/ρM

liquid) such that h1(τ̂l) = h2,l(τ̂l). Now the statement follows
from

g(ρl) := τ̂−1
l ∈ (

ρM
liquid, λ

1,l
s (ρ∗)

)
. �

Now we proceed to the main theorem recalling that we denote by a classical k-wave a k-shock/rarefaction/attached
wave.

Theorem 3.2 (Generalized 1-wave curve). Let vl ∈ R and ρl ∈ A.
Case 1. ρl ∈ (0, ρ∗]:

• For ρr ∈
(
0, ρellipt

min

)
there exists a unique vr ∈ R, such that (ρl, vl) can be connected to (ρr, vr) by a

classical 1-wave.
• For ρr ∈ (

ρellipt
max , g (ρl)

]
:

– If Ψ (ρr) ∈
(
λ1,r

s (ρl) , ρellipt
min

)
there exists a unique vr ∈ R, such that (ρl, vl) can be connected to

(ρr, vr) by an 1-attached wave (ρl, vl)
att→ (Ψ (ρr) , v) for some v ∈ R followed by a phase transition

(Ψ (ρr) , v)
pt→ (ρr, vr).

– If Ψ (ρr) ∈
(
ρ∗, λ1,r

s (ρl)
)
: there exists a unique vr ∈ R, such that (ρl, vl) can be connected to (ρr, vr)

by a Laxian 1-shock wave (ρl, vl)
s→ (Ψ (ρr) , v) for some v ∈ R followed by a phase transition

(Ψ (ρr) , v)
pt→ (ρr, vr).

• For ρr ∈ (g (ρl) , 1/b) there exists a unique vr ∈ R, such that (ρl, vl) can be connected to (ρr, vr) by a
Laxian 1-shock wave.

Case 2. ρl ∈
(
ρ∗, ρellipt

min

)
:

• For ρr ∈
(
0, ρellipt

min

)
there exists a unique vr ∈ R, such that (ρl, vl) can be connected to (ρr, vr) by a

classical 1-wave.
• For ρr ∈ (

ρellipt
max , g (ρl)

]
:

– If Ψ (ρr) ∈
(
ρl, ρ

ellipt
min

)
there exists a unique vr ∈ R, such that (ρl, vl) can be connected to (ρr, vr)

by an 1-rarefaction wave (ρl, vl)
rare→ (Ψ (ρr) , v) for some v ∈ R followed by a phase transition

(Ψ (ρr) , v)
pt→ (ρr, vr).

– If Ψ (ρr) ∈ (ρ∗, ρl) there exists a unique vr ∈ R, such that (ρl, vl) can be connected to (ρr, vr)
by a Laxian 1-shock wave (ρl, vl)

s→ (Ψ (ρr) , v) for some v ∈ R followed by a phase transition
(Ψ (ρr) , v)

pt→ (ρr, vr).
• For ρr ∈ (g (ρl) , 1/b) there exists a unique vr ∈ R, such that (ρl, vl) can be connected to (ρr, vr) by a

Laxian 1-shock wave.

Case 3. ρl ∈
(
ρellipt
max , 1/b

)
:

• For ρr ∈ (
0, λ1,r

s (ρkr)
)
:

– If ρl ∈ (ρkr, 1/b) there exists a unique vr ∈ R, such that (ρl, vl) can be connected to (ρr, vr)
by an 1-rarefaction wave (ρl, vl)

rare→ (ρkr , vkr) for some vkr ∈ R followed by a phase tran-
sition (ρkr, vkr)

pt→ (
λ1,r

s (ρkr) , v
)

for some v ∈ R followed by an attached 1-rarefaction wave(
λ1,r

s (ρkr) , v
) rare→ (ρr, vr).

– If ρl ∈
(
ρellipt
max , ρkr

)
there exists a unique vr ∈ R, such that (ρl, vl) can be connected to (ρr, vr) by a

Laxian 1-shock wave (ρl, vl)
s→ (ρkr , vkr) followed by a phase transition (ρkr , vkr)

pt→ (
λ1,r

s (ρkr) , v
)

for some v ∈ R followed by an attached 1-rarefaction wave
(
λ1,r

s (ρkr) , v
) rare→ (ρr, vr).



1110 C. MERKLE AND C. ROHDE

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

 0

 0.2

 0.4

 0.6

 1

 1.2

 1.4

 1.6
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phase transition
one-wave +

one-rarefaction

Laxian one-shock

one-wave +

kinetic
relation

one-wave + phase transition

phase transition+

g (ρl)

Figure 9. Structure of the generalized 1-wave curve (cf. Def. 3.2). Combinations of states ρl

and ρr can be connected by a combination of rarefaction-waves, Laxian shock-waves and un-
dercompressive shock-waves satisfying the kinetic relation.

• For ρr ∈
(
λ1,r

s (ρkr) , ρellipt
min

)
:

– If ρl ∈ (Ψ (ρr) , 1/b) there exists a unique vr ∈ R, such that (ρl, vl) can be connected to (ρr, vr)
by an 1-rarefaction wave (ρl, vl)

rare→ (Ψ (ρr) , v) for some v ∈ R followed by a phase transition
(Ψ (ρr) , v)

pt→ (ρr, vr).
– If ρl ∈

(
ρellipt
max , Ψ (ρr)

)
there exists a unique vr ∈ R, such that (ρl, vl) can be connected to (ρr, vr)

by a Laxian 1-shock wave (ρl, vl)
s→ (Ψ (ρr) , v) for some v ∈ R followed by a phase transition

(Ψ (ρr) , v)
pt→ (ρr, vr).

• If ρr ∈ (
ρellipt
max , 1/b

)
there exists a unique vr ∈ R, such that (ρl, vl) can be connected to (ρr, vr) by a

classical 1-wave.

All shock waves are entropy-dissipative.

Proof. The existence and uniqueness and thermodynamical admissibility of the constructions above follows from
Lemmas 2.6, 2.9, 2.10, the definition of the kinetic relation (Def. 2.12) and Remark 2.13.

For the well-posedness of the constructions above we have to check that in each case the elementary waves
do not interact:
Case 1. ρl ∈ (0, ρ∗]:

For ρr ∈ (0, ρellipt
min ) the solution consists of a single classical elementary wave (cf. Lems. 2.6, 2.9 and 2.10).
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For ρr ∈ (
ρellipt
max , g(ρl)

)
and Ψ(ρr) ∈

(
λ1,r

s (ρl), ρ
ellipt
min

)
: The rightmost speed of the 1-attached wave (ρl, vl)

att→
(Ψ(ρr), v) for some v ∈ R (cf. Lem. 2.10) is smaller than the speed of the succeeding phase transition (Ψ(ρr), v)

pt→
(ρr, vr) because of (30). So this construction is always Ψ-admissible.

If ρr ∈ (
ρellipt
max , g(ρl)

)
and Ψ(ρr) ∈ (

ρ∗, λ1,r
s (ρl)

)
: The speed s of the preceding 1-shock wave (ρl, vl)

s→
(Ψ(ρr), v) for some v ∈ R has to be smaller than the speed sph of the following phase transition (Ψ(ρr), v)

pt→
(ρr, vr):

v −
(

ρl

Ψ (ρr)
p (Ψ (ρr)) − p (ρl)

Ψ (ρr) − ρl

) 1
2

︸ ︷︷ ︸
s

< v −
(

ρr

Ψ (ρr)
p (ρr) − p (Ψ (ρr))

ρr − Ψ (ρr)

) 1
2

︸ ︷︷ ︸
sph

.

Using the Lagrangian pressure p̃ this is equivalent to

p̃(τl) − p̃(τ̂ )
τl − τ̂

>
p̃(τr) − p̃(τ̂ )

τr − τ̂
,

where τ̂ = 1/Ψ (ρr). Because of Lemma 3.1 this is true for

ρr < g(ρl).

For ρr = g(ρl): s = sph and (ρr, vr)
s→ (ρl, vl) can be connected by a single Laxian shock with speed s.

Finally, for all ρr > g(ρl) the left and right hand state are connected by a single Laxian shock wave (ρr, vr)
s→

(ρl, vl).
Case 2 is checked similarly.
Case 3. ρl ∈

(
ρellipt
max , 1/b

)
:

For simplicity suppose ρr ∈ (
0, λ1,r

s (ρkr)
)
. The left-hand state (ρl, vl) is connected to (ρkr, vkr) for some vkr

by a classical 1-wave (either a shock or a rarefaction wave). Then, (ρkr , vkr)
pt→ (

λ1,r
s (ρkr) , v

)
are joined by a

Ψ-admissible phase transition. Finally,
(
λ1,r

s (ρkr) , v
) rare→ (ρr, vr) is connected to each other by a rarefaction

wave.
Again we have to check the speeds of the waves: Suppose the leftmost wave is a rarefaction wave then the

fastest speed of propagation is λ1 (ρkr, vkr) which is less than the speed of the undercompressive shock wave
due to (30).

If the leftmost wave is a classical shock wave then this property can be calculated with the help of (19).
The rightmost wave always is a rarefaction wave. The smallest speed of propagation is λ1

(
λ1,r

s (ρkr), v
)

which
equals the speed of the preceding undercompressive wave due to the definition of λ1,r

s . �
With Theorem 3.2 there is defined the generalized 1-wave curve, i.e., the set consisting of all the right

handstates (ρr, vr) ∈ A × R that can be connected to a left hand state (ρl, vl) ∈ A × R by a combination of
1-rarefaction waves, Laxian 1-shock waves, 1-attached waves, and undercompressive shock waves satisfying the
kinetic relation (47) (cf. Fig. 9). In Figure 10a a the generalized 1-wave curve is depicted for a specific choice
of (ρl, vl).

From the construction of the generalized 1-wave curve in Theorem 3.2 it is clear that the righthand velocity
state can be computed uniquely and continuously from the given state (ρl, vl) and the righthand density state
ρr ∈ (0, ρellipt

min ) ∪ (ρellipt
max , 1/b). Let us therefore define the mapping

W ρl,vl

1 :
{

(0, ρellipt
min ) ∪ (

ρellipt
max , 1/b

) −→ R

ρ �−→ vr(ρ),
(49)

where vr = vr(ρ) is this righthand velocity state.
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(a) Generalized 1-wave curve (cf. Thm. 3.2) and generalized
2-backward-wave curve (Thm. 3.4).
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(b) Zoom into the generalized one-wave curve from Figure 10a.

Figure 10. Example of generalized wave curves for the states ρl = ρr = 0.4, vl = −vr = 2.

Lemma 3.3. The function W ρl,vl

1 from (49) is monotone decreasing. We have

lim
ρ→0

W ρl,vl

1 (ρ) = ∞ and lim
ρ→1/b

W ρl,vl

1 (ρ) = −∞.

Further, it holds

W ρl,vl

1 (ρellipt
min ) < W ρl,vl

1 (ρellipt
max ). (50)

Proof. Let (ρl, vl) ∈ (0, ρellipt
min ) ∪ (

ρellipt
max , 1/b

)
, then if ρr is small enough the rightmost wave of the generalized

1-wave is a 1-rarefaction wave from some (ρ̂, v̂) ∈ (0, ρellipt
min ) × R to (ρr, vr) and

lim
ρr→0

vr(ρr) = lim
ρr→0

(
v̂ −

∫ ρr

ρ̂

√
p′(ρ)
ρ

dρ

)
> lim

ρr→0

(
v̂ −

√
p′(ρ̂)

∫ ρr

ρ̂

1
ρ
dρ

)
−→ ∞.

On the other hand if ρr → 1/b the left and right states will be connected by a Laxian 1-shock wave if ρr is big
enough and

lim
ρr→1/b

vr(ρr) = lim
ρr→1/b

(
vl −

(
ρr − ρl

ρlρr
(p(ρr) − p(ρl))

) 1
2
)

−→ −∞.

The monotonicity of the generalized 1-wave curve is a consequence of the monotonicity properties of the ele-
mentary waves (cf. Rems. 2.2, 2.8 and 2.11) as the generalized 1-wave is composed of elementary waves.

Now it remains to show W ρl,vl

1 (ρellipt
min ) < W ρl,vl

1 (ρellipt
max ): Let (ρl, vl) ∈ A × R be given and suppose ρl ∈

(0, ρellipt
min ). The case ρl ∈ (ρellipt

max , 1/b) is proved analogously.
It suffices to prove W ρl,vl

1 (ρM
vapor) = W ρl,vl

1 (ρM
liquid) and to use the monotonicity of W ρl,vl

1 in each phase (see
Fig. 10b). ρM

liquid is reached by a classical wave ρl −→ ρM
vapor and an undercompressive shock wave ρM

vapor −→
ρM
liquid connecting the Maxwell states. It is easy to check from the Rankine-Hugoniot conditions (14) that since

p(ρM
vapor) = p(ρM

liquid) the velocities on both sides of the shock wave are the same and therefore, W ρl,vl

1 (ρM
vapor) =

W ρl,vl

1 (ρM
liquid). �
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3.2. The generalized 2-backward-wave curve

Similar results as in Theorem 3.2 and Lemma 3.3 can be shown for the two-wave curve. Since we want to solve
finally the Riemann problem we are interested in the so-called two-backward-wave curve, i.e., the set consisting
of all the left hand states (ρl, vl) ∈ A × R that can be connected to a given right hand state (ρr, vr) ∈ A × R

by a combination of elementary waves.

Theorem 3.4 (Generalized 2-backward-wave curve). Let a righthand state (ρr, vr) ∈ A× R be given. The set
of all lefthand states (ρl, vl)A×R that can be connected by a combination of 2-rarefaction waves, Laxian 2-shock
waves, 2-attached waves, and Ψ-admissible phase transitions is given by {(ρ, W ρr,vr

2 (ρ)) | ρ ∈ A} where W ρr ,vr

2

is defined through
W ρr,vr

2 (ρ) = −W ρr,−vr

1 (ρ) (ρ ∈ A). (51)
The shock waves are entropy-dissipative.

Proof. As the generalized wave curves are a combination of shock – and rarefaction – waves, it is enough to
show the statement for those waves.

In the case of a rarefaction wave: Let (ρl, vl)A × R and (ρr, vr)A× R two states that can be connected by
a 2-rarefaction wave (cf. Lem. 2.9). Then, we can calculate

W ρr ,vr

2 (ρl) = vr −
∫ ρr

ρl

√
p′ (ρ)
ρ

dρ

and

−W ρr,−vr

1 (ρl) = −
(
−vr −

∫ ρl

ρr

√
p′ (ρ)
ρ

dρ

)
= vr −

∫ ρr

ρl

√
p′ (ρ)
ρ

dρ = W ρr ,vr

2 (ρl) .

The same calculation can be done for shock waves using Lemma 2.6 and (18).
To observe that shock waves in the 2-backward curve are entropy-dissipative consider (24). The sign of j

changes if we switch from a 1-shock wave to a 2-shock wave. Since we have also interchanged the role of ρl and
ρr in (51) the overall sign in (24) does not change. Note that ∆(ρr, ρl) = ∆(ρl, ρr) holds. �

From Lemma 3.3 we directly get

Lemma 3.5. The function W ρr ,vr

2 from (51) is a continuous, monotone increasing function. It holds

lim
ρ→0

W ρl,vl

1 (ρ) = −∞ and lim
ρ→1/b

W ρl,vl

1 (ρ) = ∞,

and further

W ρr ,vr

2 (ρellipt
min ) > W ρr,vr

2 (ρellipt
max ). (52)

3.3. Thermodynamically admissible solution of the Riemann problem

The Riemann problem (1), (3) can now be solved if one analyzes whether there are points (ρ̂, v̂) ∈ A × R

such that we have
W ρL,vL

1 (ρ̂) = W ρR,vR

2 (ρ̂) = v̂. (53)
From Theorems 3.2 and 3.4 we can then explicitly construct the weak solutions. It will turn out that the
intersection points (ρ̂, v̂) are not unique in general. The subsequent theorem summarizes our result and in
particular gives physically reasonable criteria for a unique solution.

Theorem 3.6 (Existence and uniqueness for Riemann problem). Consider the Riemann problem (1), (3) where
the pressure is given by (10). Let Ψ be given by Definition (2.12).

(i) The Riemann problem admits a weak solution in the class of self-similar functions consisting of Laxian
shock waves, Ψ-admissible phase transitions, attached and rarefaction waves.
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(ii) It is unique in this class if it satisfies the following properties:
(1) phase transitions connecting states with the same pressure connect Maxwell-states ρM

vapor and ρM
liquid;

(2) a one-phase solution is used whenever it exists.

The shock waves within these weak solutions are entropy-dissipative.

Proof. Due to (50), (52) and the monotonicity of W ρL,vL

1 and W ρR,vR

2 described in Lemmas 3.3 and 3.5 there
exist at least one and at most two intersection points (ρ̂1/2, v̂1/2) ∈ A×R of W ρL,vL

1 and W ρR,vR

2 , i.e., solutions
of (53). Thus we have proven (i).

If there is only one intersection point, say (ρ̂1, v̂1) there is a unique solution of the Riemann problem consisting
of a combination of 1-waves from (ρL, vL) to (ρ̂1, v̂1) (cf. Thm. 3.2) and a combination of 2-waves from (ρ̂1, v̂1)
to (ρR, vR) (cf. Thm. 3.4).

If there are two intersection points (ρ̂1, v̂1) and (ρ̂2, v̂2) – thus two solutions – they are located in different
phases. We have to eliminate exactly one of them.

Case 1. ρL and ρR are also located in different phases. Suppose for definiteness that ρL ∈ (0, ρellipt
min ) and

ρR ∈ (ρellipt
max , 1/b) holds.

Assume that for the first intersection point ρ̂1 < ρM
vapor holds. Then, due to the kinetic relation (47) for the

according phase transition it holds p(ρ̂1) 
= p(Ψ(ρ̂1)).
Moreover, due to the monotonicity of the wave curves the following equation is valid:

W ρL,vL

1 (ρM
liquid) = W ρL,vL

1 (ρM
vapor) < W ρL,vL

1 (ρ̂1) = W ρR,vR

2 (ρ̂1) < W ρR,vR

2 (ρM
vapor) = W ρR,vR

2 (ρM
liquid).

Due to the monotonicity of W ρL,vL

1 and W ρR,vR

2 it holds for the second intersection point

ρ̂2 < ρM
liquid

and due to the kinetic relation (47)

p(ρ̂2) = p(Ψ(ρ̂2)).

Thus the solution associated with the second intersection point is excluded by condition (1).
For ρ̂1 > ρM

vapor we have p(ρ̂1) = p(ρM
vapor). The argument as above shows then p(ρ̂2) 
= p(ρM

vapor) which is
chosen by condition (1).

Case 2. ρL and ρR are located within a single phase.
If there are two intersection points one of them is located within the same phase as ρL and ρR and we get a

unique solution within one phase by condition (2).
The shock waves in the constructed solution do satisfy (22) since it is constructed by a combination of the

thermodynamically admissible waves described in Theorems 3.2 and 3.4. �
One can check that there are Riemann problems with states in the same phase such that the solutions

constructed in Theorem 3.6 contain density values in different phases: nucleation occurs. The condition (2) in
Theorem 3.6 can be seen as a nucleation criterium for a new phase. We suppose that the fluid does not tend to
nucleate a new phase if possible. Also other less restrictive criteria can be used to enforce uniqueness. It is out
of the scope of this paper to prove rigorously the L1-continuous dependence of our Riemann-solver with respect
to initial data. In particular this has to be shown for the critical case of nucleation. Results in this direction
can be found in [9] for similar models.

Condition (1) can be motivated e.g. by work from statistical mechanics. Starting from an equilibrium
particle set-up in the sense of statistical mechanics a formal thermodynamical limit procedure shows that the
limit density distribution leads to Maxwell states [19]. Therefore we exclude all stationary phase transitions,
i.e. connections with the same pressure on both sides, which do not connect Maxwell states.
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4. A Riemann solver based ghost fluid method

In this chapter we present a numerical scheme for the mixed hyperbolic-elliptic Cauchy-problem (1), (2) with
non-monotone equation of state. In principle one could apply a “classical” finite-volume (FV) scheme to get a
numerical solution (cf. [15]). However, these schemes will typically fail for a hyperbolic-elliptic problem for two
reasons:

• First, due to artificial dissipation shock waves in the solution will be smeared out. In the case of a
phase transition a smeared out wave will eventually contain values of ρ that are situated within the
elliptic region. Most of the above schemes will abort then since e.g. the term

√
p′(ρ) contained in the

calculation of the eigenvalues (11) is not defined as a real number.
• Second, for schemes that will not break down (e.g. Lax-Friedrichs) and might even converge to an

entropy solution it cannot be guarented that the limit will satisfy a given kinetic relation. Since the
entropy solution depends sensitively on the kinetic relation not used in the schemes spurious solutions
show up.

These issues can be avoided if one tracks carefully the position and motion of all phase boundaries and represent
them as sharp fronts. The movement of sharp discontinuities can be controlled by a level set method (see
e.g. [29, 32, 34, 37]). Then at the interface we use an exact Riemann solver of the problem (see Sect. 3) which
includes the kinetic relation and keeps the phase boundary discontinuous. The idea of this scheme is similar to
the class of Ghost Fluid schemes [13, 14, 26]. They address multi-material flows without mass transfer between
the different materials and only approximate Riemann solvers are used. In the sequel we assume that the
Cauchy problem (1), (2) with

w0 := (ρ0, m0)T ∈ L1
loc(R,A× R) (54)

admits a unique weak solution w := (ρ, mT ) ∈ L1
loc(R × [0,∞),A× R) such that all shock waves are entropy-

dissipative and such that all phase transitions are Ψ-admissible with Ψ given in Definition 2.12.

To motivate the new algorithm we introduce an initial value problem for a level set equation which is used
in the algorithm. Let ϕ0 : R → R be a (Lipschitz) continuous function that vanishes if and only if ρ0 changes
phase. We use for x ∈ R the (signed) distance function

ϕ0(x) := sgn(ρ0(x) − ρellipt
min )min{|x − z| | ρ0 has a phase transition in z ∈ R}. (55)

This and some definitions below require regularity properties for w which are assumed to hold in this motivation
for simplicity. Let V : R× (0,∞) → R be a function that coincides with the velocity of a phase transition at the
location of phase transitions. Then the motion of phase boundaries is tracked by the solution ϕ : R × [0,∞) of

∂t ϕ + V |∂xϕ| = 0 in R × (0,∞), ϕ(·, 0) = ϕ0 in R. (56)

In our numerical algorithm a discrete version (56) is used at each time step to keep track of the location of
phase boundaries. For one space dimension this could also be done “by hand” if the transportation speeds of
the phase transitions are given, however we will work with the level-set equation because this concept can be
transfered to multiple space dimensions without conceptional problems [27].

Before we present the numerical algorithm (as two sub-algorithms) let us introduce some notations. For
h > 0 we consider an uniform spatial grid with xj := jh and cells Ij := [xj − h/2, xj + h/2), j ∈ Z. To start
our algorithm we have to assume that the initial data (54) is such that for j ∈ Z we have

w0
j :=

1
h

∫
Ij

w0(x) dx ∈ A × R. (57)

Algorithm 4.1 (Time evolution). Let (54), (57) be satisfied and define

ϕ0
j+1/2 := ϕ0(xj+1/2) (j ∈ Z). (58)
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The numerical approximation wh = (ρh, mh)T : R × [0, tN) −→ A × R of the weak solution w is given by

wh(x, t) := wn
j , (x, t) ∈ Ij × [tn, tn+1). (59)

The number N ∈ N, the cell averages {wn
j }j∈Z,n=1,...,N , the auxiliary values {ϕn

j+1/2}j∈Z,n=1,...,N , and t0 :=
0, t1, . . . , tN−1 are constructed below in steps (1)–(5) where we use the notation

In
liq :=

{
j ∈ Z

∣∣∣ (ϕn
j−1/2 + ϕn

j+1/2) ≥ 0
}

and In
vap :=

{
j ∈ Z

∣∣∣ (ϕn
j−1/2 + ϕn

j+1/2) < 0
}

(n = 0, . . . , N). (60)

(1) (Splitting to two single phases, Fig. 11(a).) Suppose at time tn the values {wn
j }j∈Z and {ϕn

j+1/2}j∈Z

are given, such that for j ∈ Z we have ρn
j ∈ A. Define

wvap
n
j := (ρvap

n
j , mvap

n
j )T := (ρn

j , mn
j )T for j ∈ In

vap,

wliq
n
j := (ρliq

n
j , mliq

n
j )T := (ρn

j , mn
j )T for j ∈ In

liq .

(2) (Completion of single phase values.) Define ghost values by

wvap
n
j := (ρgh

vap
n

j
, mgh

vap
n

j
)T for j ∈ In

liq ,

wliq
n
j := (ρgh

liq

n

j
, mgh

liq

n

j
)T for j ∈ In

vap.

The ghost values will be given in Algorithm 4.3 below.
(3) (Evolution for single phases and level set, Figs. 11(c) and 11(d).) For j ∈ Z set

wliq/vap
n+1
j

:= wliq/vap
n
j
− ∆tn

h

[
gliq/vap(wliq/vap

n
j
, wliq/vap

n
j+1

) − gliq/vap(wliq/vap
n
j−1

, wliq/vap
n
j
)
]
,

ϕn+1
j+1/2 := ϕn

j+1/2 − ∆tn
(

V n
j + V n

j+1

2
ϕ−

x + ϕ+
x

2
+ αj+1/2

ϕ−
x − ϕ+

x

2

)
.

Here gliq : ((ρM
liquid, 1/b) × R)2 → R

2, gvap : ((0, ρM
vapor) × R)2 → R

2 are chosen as consistent numerical
flux functions for (1) in the vapor/liquid phase. The local velocities V n

j will be given in Algorithm 4.3
below. For the approximation of (56) we use

ϕ+
x :=

1
h

(ϕn
j+3/2 − ϕn

j+1/2), ϕ−
x :=

1
h

(ϕn
j+1/2 − ϕn

j−1/2), αj+1/2 := max
u∈I

∣∣∣∣V n
j + V n

j+1

2
u

∣∣∣∣
with I := [min{ϕ−

x , ϕ+
x }, max{ϕ−

x , ϕ+
x }].

The time step size is defined as ∆tn := min{∆tnliq, ∆tnvap, ∆tnHJ}, where ∆tnliq and ∆tnvap are computed by
the CFL condition for the single phase flows and ∆tnHJ by the CFL like restriction for Hamilton-Jacobi
equations [15, 33].

(4) (Reconstruction of unique two phase values.) Let tn+1 := tn + ∆tn and

wn+1
j :=

{
wliq

n+1
j : j ∈ In+1

liq ,

wvap
n+1
j : j ∈ In+1

vap .

(5) (Admissibility/nucleation check.) If ρn+1
j ∈ A holds for all j ∈ Z repeat steps (1) to (4) with

n �→ n + 1 otherwise exit the algorithm with N := n.
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ρ

(a) At time tn the density is given. High density values
belong to the liquid phase, low ones to the vapor phase.

The light grey line denotes the exact solution at later time.

x

ρ

(b) Definition of the ghost values results results in a ghost
liquid (red dashed line) and a ghost vapor (blue dotted line)

defined in the whole computational domain.

x

ρ

(c) Two-times solution of (1). One for the liquid (red dashed
line) and one for the vapor phase (blue dotted line).

x

ρ

(d) Update of the level set function using velocities V n
j .

Figure 11. Schematic diagrams for the first four steps in Algorithm 4.1.

Remark 4.2.

• Practically the construction of ghost values in step (2) of Algorithm 4.1 is only necessary in a nar-
row band about 2–3 elements around points where the discrete level set function changes sign. The
implementation can be optimized accordingly.

• In step (3) of Algorithm 4.1 system (1) is solved for two sets of data. However each set belongs to a
single phase where (1) is hyperbolic. For the numerical solution one can use the prefered scheme for
(isothermal) Euler equations.
If during the calculation there occurs states ρn+1

j within the elliptic region for some j ∈ Z, we have
to exit the algorithm (step (5)). The reason can be a numerical instability. If however schemes are
used which preserve the state space (e.g. kinetic schemes) this case indicates that the nucleation of a
new phase takes place. Nucleation is not treated in our algorithm but can be easily incorporated by
calculating the exact Riemann solutions (according to Thm. 3.6) on the affected elements and construct
a new level set function ϕ, accordingly. Then, Algorithm 4.1 can be re-entered.

• For the numerical approximation of the solution of the level set equation in step (3) of Algorithm
4.1 we use the scheme as in [33] for Hamilton-Jacobi equations. Of course other choices are possible.
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During the calculation the level set function does not remain a signed distance function as it was
initialized. The level set function can steepen or flatten. To avoid numerical errors due to this process
we conduct a reinitialization procedure [13, 31, 35].

Now, we describe the definition of the ghost values in detail as we need them in step (2) of Algorithm 4.1. This
is the crucial part of the numerical scheme where we need the solution for the Riemann problem as developed
in the first part of the paper.

Algorithm 4.3 (Definition of ghost values). Suppose that for n ∈ {0, . . . , N − 1} the sequences {ϕn
j+1/2}j∈Z

and {wliq/vap
n
j
}j∈In

liq/vap
are given as defined in step (1) of Algorithm 4.1. The ghost values {wgh

liq

n

j
}j∈In

vap
,

{wgh
vap

n

j
}j∈In

liq
for step (2) and the velocities {V n

j }j∈Z for step (3) in Algorithm 4.1 are computed as follows.

(1) (Constant extrapolation, Fig. 12(a).) Define

wvap
n
j := wvap

n
k̄

for j ∈ In
liq,

where k̄ is chosen such that |j − k̄| becomes minimal under all values |j − k|, k ∈ Ivap and

wliq
n
j := wliq

n
k̃

for j ∈ In
vap

with k̃ chosen such that |j − k̃| becomes minimal under all values |j − k|, k ∈ Iliq . We obtain two
complete sequences {wliq/vap

n
j
}j∈Z.

(2) (Solving Riemann problems, Fig. 12(b).) For j ∈ Z determine (according to Thm. 3.6(ii)) the
unique weak solution w(j,n) : R × [0,∞) → A × R of the Riemann problems for (1) and initial data

w(j,n)(x, 0) :=

⎧⎪⎪⎨
⎪⎪⎩

{
wliq

n
j : x < 0

wvap
n
j : x > 0 (ϕn

j+1/2 − ϕn
j−1/2 < 0),{

wvap
n
j : x < 0

wliq
n
j : x > 0 (ϕn

j+1/2 − ϕn
j−1/2 ≥ 0).

(3) (Definition of ghost values and local phase velocities, Fig. 12(c).) For all j ∈ Z the function
w(j,n) contains exactly one phase transition which connects two states. For j ∈ In

vap denote the liquid
state by wgh

liq

n

j
and, for j ∈ In

liq , the vapor state by wgh
vap

n

j
. For j ∈ Z let V n

j be given by the phase
transition speed.

Remark 4.4.
(1) To save computing time it is only necessary to solve the Riemann problem in step (2) of Algorithm 4.3

only in a small band around locations of phase transitions. Actually from the Riemann solution we
need only the values left and right to a phase transition. One could think of approximations which do
not require to resolve all the Riemann pattern in single phases.

(2) The complete algorithm does not preserve conservation of mass and momentum. All numerical exper-
iments we performed show that the loss of exact conservation does not prevent the numerical method
to converge for vanishing mesh parameter. We do not present these experiments but they can be found
in [27], in particular in Sections 4.4.4 and 4.5.

In view of the fact that up to now there are no convergence proofs even for one-phase flow problems it is not
surprising that we are not able to present a convergence result for the general initial data in (54). However for
special initial data which lead to a traveling wave solution connecting states in different phases we are able to
give the following statement.
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xj xj+1 xj+2 xj+3xj−1xj−2

constant extrapolation

constant extrapolation

(a) Extrapolation of the liquid and vapor states.
xj xj+1 xj+2 xj+3xj−1xj−2

phase transition

left and right state

(b) Solution of a Riemann problem for each cell (in this
example the same Riemann problem on all cells).

xj xj+1 xj+2 xj+3xj−1xj−2

ghost vapor

ghost liquid

(c) Definition of ghost values by solution of a Riemann prob-
lem for each cell.

Figure 12. Schematic diagram of the definition of ghost values by Algorithm 4.3.

Proposition 4.5. Let h, ∆t > 0. Assume that wL/R = (ρL/R, mL/R)T ∈ A ∪ R are given such that wL
pt→ wR

is Ψ-admissible. Consider the problem (1), (2) for

w0 := (ρ0, m0)T =
{

wL : x − h/2 < 0,
wR : x − h/2 > 0.

According to Theorem 3.6 the unique weak solution is given by

w(x, t) =
{

wL : x − V t − h/2 < 0,
wR : x − V t − h/2 > 0,

V =
mR − mL

ρR − ρL
· (61)

Let wh denote the numerical solution obtained by Algorithm 4.1 where we assume that we can solve (56) exactly.
Then we have for all S, t > 0

‖w(., t) − wh(., t)‖L1([−S,S]) = O(h),
∫

R

w(x, t) − wh(x, t) dx = O(h).
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The function wh takes only wL and wR as values.

The proposition shows in particular that the conservation error scales with the mesh width. Note that the
initial phase jump is aligned with the mesh in order to guarantee (57).

Proof. W.l.o.g. we can assume that ρL is a vapour state and ρR is a liquid state. From (57), (58), and (60) we
conclude by step (1) of Algorithm 4.1

I0
liq = {1, . . . ,∞}, I0

vap = {−∞, . . . , 0}, w0
j =

{
wL : j ≤ 0,
wR : j > 0.

Since the states are Ψ-admissible we get from step (2) (using Algorithm 4.3) wliq/vap
0
j

= wR/L and determine
V 0

j = V for all j ∈ Z. With the consistency of the numerical flux gliq/vap in step (3) and solving the level
set equation exactly we obtain wliq/vap

1
j

= wR/L and ϕ1
j+1/2 = ϕ(xj+1/2) = xj − V ∆t. Since we have then

I1
liq = {j ∈ Z |xj−1/2 − V ∆t > 0} and I1

vap = {j ∈ Z |xj−1/2 − V ∆t < 0} the final update w1
j according to

step (4) is

w1
j =

{
wL : xj−1/2 − V ∆t ≤ 0,
wR : xj−1/2 − V ∆t > 0,

and we can proceed to the next time step. It follows for n > 1 with induction

wn
j =

{
wL : xj−1/2 − V n∆t ≤ 0,
wR : xj−1/2 − V n∆t > 0,

which implies the statement of the proposition taking into account the definition (59) of wh and (61). �

5. Numerical experiments

In this numerical example we test the new scheme in the presence of a phase transition. Therefore, we
solve numerically a Riemann problem with left and right states in different phases. We perform the numerical
calculations on the computational space-time domain [−2, 2] × [0, 0.3] with different grid widths. To solve the
two single phase problems for (1) in Algorithm 4.1 we use as numerical flux the FORCE4 flux [38] with CFL
number 0.5. We calculate the L1-error and the corresponding experimental convergence rates (EOC).

As initial values according to (3) we choose

ρL = ρM
liquid, ρR = ρM

vapor, vL = −3.5, vR = 0,

with the Maxwell states from (8). The pressure function is as in Remark 1.2. This function satisfies Assump-
tion 1.1 and the exact Ψ-admissible solution of the Riemann problem with Ψ from Definition 2.12 is calculated
with Theorem 3.6 in the first part of this paper.

Results

Figure 13 displays the exact solution of the Riemann problem as well as numerical approximations for
calculations with different grid sizes at time T = 0.3. Figures 13(a) and 13(c) show the density ρ and velocity v
on a fixed mesh with 800 volumes (h = 0.005). We first notice, that the complicated structure of the solution,
consisting of a small shock wave followed by a (discontinuous) phase transition with attached rarefaction wave
and finally an attached wave, is reproduced very well. Also the constant states of the density ρ and velocity v
are met quite good. The shock wave on the very left is better resolved than the attached wave on the right,
whereas the phase transition is hit perfectly. This demonstrates that the left and right hand states of the phase
transition, which define the velocity V in the level set equation (56), are reproduced very well.



THE SHARP-INTERFACE APPROACH FOR FLUIDS WITH PHASE CHANGE 1121

-1.5 -1 -0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
exact solution

numerical solution
(h = 0.005)

zoom area

(a) Density ρ

h = 0.005
h = 0.0025
h = 0.00125
h = 0.000625

numerical solutions

exact solution

-0.15 -0.1 -0.05 0.05 0.1 0.15 0.2 0.25 0.30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Detailed view of a part of the computational domain.
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Figure 13. Graph of exact and approximate solutions for Riemann problem with shock wave,
phase transition with attached rarefaction wave and an attached wave in the vapor phase.

Table 1. L1-error and EOC rate for subsequent refinement levels of the grid.

Grid size L1-error of ρ EOC L1-error of v EOC

0.04 0.08953370 0.22612267

0.02 0.04975303
0.85

0.11056125
1.03

0.01 0.03562381
0.48

0.08429837
0.39

0.005 0.02126755
0.75

0.04722471
0.84

0.0025 0.01247926
0.77

0.02572075
0.88

0.00125 0.00721779
0.79

0.01378924
0.90

0.000625 0.00406572
0.83

0.00702086
0.97

0.0003125 0.00222163
0.87

0.00332194
1.08

0.00015625 0.00130720
0.77

0.00195002
0.77

0.000078125 0.00076604
0.77

0.00115614
0.75

0.0000390625 0.00045315
0.76

0.00071321
0.70

0.00001953125 0.00025183
0.85

0.00038543
0.89

Figures 13(b) and 13(d) show a detailed view of part of the exact and approximated solutions on different
grids with subsequently finer grid size. We notice that the numerical approximations improve as the grid is
refined. This indicates convergence of the scheme.
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The convergence of the scheme can be seen in Table 1 where we list the L1-error of the numerical approx-
imations on different meshes at time T = 0.3 for the density ρ as well as for the velocity v. We also show
the resulting experimental order of convergence. The values of the EOC are around 0.7–0.8. This result is in
accordance to the classical Finite Volume scheme for hyperbolic systems.

Summarized we can say that the new scheme for hyperbolic elliptic systems (that can describe phase transi-
tions) converges with about the same rate as a classical Finite Volume scheme.
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