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Abstract. A quantitative version of the sharp Sobolev inequality in W 1,p(Rn), 1 < p < n, is

established with a remainder term involving the distance from extremals.

1. Introduction and main result

A sharp form of the standard Sobolev inequality in Rn, n ≥ 2, tells us that if 1 < p < n

and p∗ = np/(n− p), then

S(p, n)‖f‖Lp∗ (Rn) ≤ ‖∇f‖Lp(Rn) (1.1)

for every function f from the homogeneous Sobolev space W 1,p(Rn) of functions f ∈ Lp∗(Rn)
such that ∇f ∈ Lp(Rn). Here

S(p, n) =
√

π n1/p

(
n− p

p− 1

)(p−1)/p (
Γ(n/p)Γ(1 + n− n/p)

Γ(1 + n/2)Γ(n)

)1/n

is the best possible constant in (1.1), and ‖∇f‖Lp(Rn) stands for the Lp(Rn) norm of the gradient
([Au, Ta]). A family of extremals in (1.1) is given by the functions ga,b,x0 : Rn → [0, +∞) defined
as

ga,b,x0(x) =
a

(
1 + b|x− x0|p′

)(n−p)/p
for x ∈ Rn (1.2)

for some a 6= 0, b > 0, x0 ∈ Rn. Here, p′ = p/(p − 1), the Hölder conjugate of p. In fact, as
pointed out by the recent contribution [CNV], functions having the form (1.2) are the only ones
attaining equality in (1.1) for every p ∈ (1, n). Incidentally, note that, when p = 2, the classical
result of [GNN], applied to the Euler equation of the functional ‖∇f‖L2(Rn)

/‖f‖L2? (Rn), can
alternatively be used to derive this characterization of the extremals in (1.1).

The objective of the present paper is to strengthen inequality (1.1) by an additional term
on the left-hand side which accounts for the deviation of f from extremals. More precisely, we
establish a quantitative version of inequality (1.1), with a remainder term depending on the
(normalized) distance of f from the family of extremals (1.2) given by

λ(f) = inf
a,b,x0

{ ‖f − ga,b,x0‖p∗

Lp∗ (Rn)

‖f‖p∗
Lp∗ (Rn)

: ‖ga,b,x0‖Lp∗ (Rn) = ‖f‖Lp∗ (Rn)

}
(1.3)

if f 6= 0, and λ(0) = 0.

Theorem 1. Let n ≥ 2 and let 1 < p < n. Then, positive constants α and κ, depending only
on p and n, exist such that

S(p, n)‖f‖Lp∗ (Rn) (1 + κλ(f)α) ≤ ‖∇f‖Lp(Rn) (1.4)

for every f ∈ W 1,p(Rn).
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In analogy with the terminology of [Fu, Ha, HHW, FMP1, FMP2], we will refer to λ(f) as
the asymmetry of f . Notice that one could alternatively consider the quantity defined as

d(f) = inf
a, b, x0

‖f − ga,b,x0‖Lp∗ (Rn)

‖f‖Lp∗ (Rn)

if f 6= 0, and d(0) = 0. It is obvious that d(f) ≤ λ(f)1/p∗ ; on the other hand, one can check
that λ(f)1/p∗ ≤ 2d(f). Therefore, inequality (1.4) is equivalent to

S(p, n)‖f‖Lp∗ (Rn)

(
1 + κd(f)θ

)
≤ ‖∇f‖Lp(Rn) (1.5)

with θ = p∗α, and up to changing the value of κ.
Inequality (1.5) gives a positive answer to a question raised by Brezis and Lieb in [BL],

which has been settled in [BE] in the special case when p = 2 in the even stronger form with
‖f − ga,b,x0‖L2? (Rn) replaced by ‖∇f − ∇ga,b,x0‖L2(Rn) in (1.3). The method of [BE] heavily
rests upon the Hilbert space structure of W 1,2(Rn) and on eigenvalue properties of a weighted
Laplacian in Rn. Such an approach, which has been employed to deal with other related problems
involving Sobolev spaces endowed with a Hilbert space structure ([Lo, LW]), does not seem
suitable for extensions to the general case where p 6= 2. Following the lines traced in [Au]
and [Ta], we have instead to resort to certain methods of geometric flavour, exploiting such
tools as isoperimetric inequalities and symmetrizations. Developments of these results led to
quantitative forms of isoperimetric ([Fu, Ha, FMP1]), isocapacitary ([HHW, FMP3]) and Sobolev
inequalities ([Ci1, FMP2, Ci2]) in the spirit of (1.4).

To be more specific, the proof of Theorem 1 basically consists of three steps, each step
amounting to an extension of inequality (1.4) to a broader class of functions. After starting
with spherically symmetric functions, we proceed with n-symmetric functions, namely functions
which are symmetric about n orthogonal hyperplanes, and we eventually conclude with arbitrary
Sobolev functions. This strategy can be clarified by the following considerations.

The operation of spherically symmetric rearrangement, which associates with any nonneg-
ative function f ∈ W 1,p(Rn) the spherically symmetric equidistributed function f? ∈ W 1,p(Rn)
(see (3.2)), satisfies

‖f?‖Lp∗ (Rn) = ‖f‖Lp∗ (Rn)

and

‖∇f?‖Lp(Rn) ≤ ‖∇f‖Lp(Rn) (1.6)

([BZ, Ka, Ta]). As a consequence,

‖∇f?‖Lp(Rn) − S(p, n)‖f?‖Lp(Rn) ≤ ‖∇f‖Lp(Rn) − S(p, n)‖f‖Lp∗ (Rn) (1.7)

and

‖∇f‖Lp(Rn) − ‖∇f?‖Lp(Rn) ≤ ‖∇f‖Lp(Rn) − S(p, n)‖f‖Lp∗ (Rn) . (1.8)

for every f ∈ W 1,p(Rn). In view of (1.7) and (1.8), the underlying idea in the proof of in-
equality (1.4) is to split the problem: first, establishing the inequality in the class of spherically
symmetric functions; second, estimating the Lp∗ distance of f from (a suitable translated of) f?

in terms of ‖∇f‖Lp(Rn) − ‖∇f?‖Lp(Rn).
Even in the special class of spherically symmetric functions, the derivation of (1.4) is not

straightforward. Actually, standard proofs of the one-dimensional Bliss inequality, to which (1.1)
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reduces when restricted to spherically symmetric functions, do not seem suitable for modifica-
tions yielding stability results. A more flexible approach to the relevant one-dimensional inequal-
ity, which can be successfully augmented to provide a quantitative version, follows instead on
specializing a mass transportation technique employed in [CNV] (see also [LYZ]). The resulting
estimate, whose proof also requires a sharp version of a trace Sobolev inequality form [MV], is
contained in Theorem 2, and settles the first of the two steps outlined above.

Major problems arise in the attempt at estimating the asymmetry of f in terms of the
left-hand side of (1.8). Indeed, this is just impossible, without additional assumptions on f , as
demonstrated by simple examples where ‖∇f‖Lp(Rn) almost agrees with ‖∇f?‖Lp(Rn), without f

being close to any translated of f?. The presence of plateaus in the graph of f , or more generally,
of large sets where |∇f?| is small, is responsible of this phenomenon (see e.g. [BZ, CF2]). A
key observation to overcome this obstacle is that a bound for the distance of f from f? via
‖∇f‖Lp(Rn)−‖∇f?‖Lp(Rn) can be restored if f is already known to enjoy certain partial symmetry
properties. It is at this stage that the class of n-symmetric functions comes into play. Indeed, on
the one hand, the distance of f from f? can actually be estimated by ‖∇f‖Lp(Rn)−‖∇f?‖Lp(Rn)

if f is a priori assumed to be n-symmetric (Theorem 3), thus enabling us to establish (1.4)
in this class of functions (Corollary 4). On the other hand, any function f ∈ W 1,p(Rn) can
be replaced, through a careful construction exploiting reflection arguments, by a suitable n-
symmetric function in such a way that ‖∇f‖Lp(Rn)−S(p, n)‖f‖Lp∗ (Rn) and λ(f) do not increase
and decrease, respectively, too much (Theorem 6). This fact, combined with the former step,
easily leads to the conclusion of Theorem 1. Let us emphasize that the reduction to n-symmetric
functions, although related to a similar construction employed in [FMP1, FMP2], entails the
overcoming of new serious obstacles in the present setting, mainly due to the nonlinear growth
of the functional ‖∇f‖p

Lp(Rn).
We conclude this section by noting that, in view of the results of [BE] and [FMP2], the

question arises of the optimal exponent α in equality (1.4). Furthermore, the result of [BE] also
leaves open the problem of whether the distance of f from the family of extremals in Lp∗(Rn)
can be replaced by the distance in W 1,p(Rn) in Theorem 1.

2. A quantitative Bliss inequality

In the present section, Theorem 1 will be established in the special class of spherically sym-
metric functions. Notice that the Sobolev inequality (1.1), restricted to this class of functions,
is equivalent to the one-dimensional Bliss inequality

S(p, n)
(

nωn

∫ ∞

0
u(r)p∗rn−1 dr

)1/p∗

≤
(

nωn

∫ ∞

0
(−u′(r))prn−1 dr

)1/p

(2.1)

for every decreasing, locally absolutely continuous function u : [0,∞) → [0,∞), where ωn is the
measure of the unit ball in Rn. The extremals in (2.1) have the form

va,b(r) =
a

(1 + brp′)(n−p)/p
for r ≥ 0, (2.2)

for some a > 0, b > 0 ([Bl, CNV, LYZ, Ta]). Thus, on setting, with a slight abuse of notation,

λ(u) = inf

{∫∞
0 |u(r)− va,b|p∗rn−1 dr∫∞

0 u(r)p∗rn−1 dr
:

∫ ∞

0
va,b(r)p∗rn−1 dr =

∫ ∞

0
u(r)p∗rn−1 dr, a, b > 0

}
,

Theorem 1 for spherically symmetric functions is equivalent to the following quantitative Bliss
inequality.
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Theorem 2. Let n ≥ 2 and let 1 < p < n. Then there exist constants β and κ such that

S(p, n)
(

nωn

∫ ∞

0
u(r)p∗rn−1 dr

)1/p∗ (
1 + κλ(u)β

) ≤
(

nωn

∫ ∞

0
(−u′(r))prn−1 dr

)1/p

(2.3)

for every decreasing, locally absolutely continuous function u : [0,∞) → [0,∞).

In the proof of Theorem 2, we shall make use of the notation

δ(u) =

(
nωn

∫∞
0 (−u′(r))prn−1 dr

)1/p

S(p, n)
(
nωn

∫∞
0 u(r)p∗rn−1 dr

)1/p∗ − 1 , (2.4)

so that (2.3) can be rewritten as
λ(u) ≤ Cδ(u)1/β , (2.5)

where C = κ−1/β.

Proof of Theorem 2. Approximation, rescaling and normalization arguments allow us to assume
that u is continuously differentiable, with support equal to [0, 1], and that

nωn

∫ ∞

0
u(r)p∗rn−1 dr = 1 .

Moreover, for the time being, we assume that

δ(u) ≤ ε(p, n) (2.6)

for some positive constant ε(p, n) < 1, to be chosen later.
Let us set

v(r) = va,1(r) for r > 0 ,

where a is such that
nωn

∫ ∞

0
v(r)p∗rn−1 dr = 1 . (2.7)

Owing to (2.6) and (2.7), the equation
∫ r

0
u(s)p∗sn−1ds =

∫ T (r)

0
v(s)p∗sn−1ds (2.8)

implicitly defines a strictly increasing function T : [0, 1) → [0,∞) such that T ∈ C1(0, 1),
T (0) = 0, lim

r→1−
T (r) = ∞, and

u(r)p∗ = v(T (r))p∗M(r)n−1T ′(r) for r ∈ (0, 1) , (2.9)

where M : (0, 1) → (0,+∞) is given by

M(r) =
T (r)

r
for r ∈ (0, 1) .

In particular, equation (2.9) entails that
∫ 1

0
h(T (r))u(r)p∗rn−1 dr =

∫ ∞

0
h(r)v(r)p∗rn−1 dr , (2.10)

for every Borel function h : [0,∞) → [0,∞]. In the terminology of the theory of mass trans-
portation, to which the present proof is inspired, the function T can be regarded as a transport
map carrying the density u(r)p∗rn−1 into v(r)p∗rn−1.
Notice that when T (r) = kr for some k > 0, one has u(r) = k(n−p)/pv(kr), namely u is an
extremal function in the Bliss inequality (2.1). Thus, our plan is to show that, if δ(u) is small,
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then an interval [r1, r2] ⊆ [0, 1] can be chosen in such a way that T (r) is close to some linear
function kr for r ∈ [r1, r2], and simultaneously the integral of u(r)p∗rn−1 outside [r1, r2] is small.
These facts will enable us to conclude that u is close to k(n−p)/pv(kr) in Lp∗(rn−1 dr).
For ease of presentation, we accomplish the proof in steps.

Step I. Mass transportation proof of Bliss inequality.
We begin by giving a proof of the Bliss inequality relying on the mass transportation approach
of [CNV] (see also [LYZ]). Set p] = p(n−1)/(n−p), the optimal exponent in the trace inequality
in Rn. Owing to (2.10) and (2.9) we have

∫ ∞

0
vp]

rn−1 dr =
∫ ∞

0
v(r)−p∗/nv(r)p∗rn−1 dr =

∫ 1

0
v(T (r))−p∗/nu(r)p∗rn−1 dr

=
∫ 1

0

(
M(r)n−1T ′(r)

u(r)p∗

)1/n

u(r)p∗rn−1 dr

=
∫ 1

0
M(r)1/n′T ′(r)1/nu(r)p]

rn−1 dr .

(2.11)

By Young’s inequality
∫ 1

0
M(r)1/n′T ′(r)1/nu(r)p]

rn−1 dr ≤ 1
n

∫ 1

0
(T ′(r) + (n− 1)M(r))u(r)p]

rn−1 dr

=
1
n

∫ 1

0
(rn−1T (r))′u(r)p]

dr

=
p]

n

∫ 1

0
T (r)(−u′(r))u(r)p]−1rn−1 dr .

(2.12)

The last equality can be justified as follows. By Hölder inequality and by (2.10),
∫ 1

0
T (r)(−u′(r))u(r)p]−1rn−1 dr

≤
(∫ 1

0
(−u′(r))prn−1 dr

)1/p (∫ 1

0
T (r)p′u(r)p∗rn−1 dr

)1/p′

=
(∫ 1

0
(−u′(r))prn−1 dr

)1/p (∫ ∞

0
v(r)p∗rp′+n−1 dr

)1/p′

.

(2.13)

In particular, ∫ 1

0
T (r)(−u′(r))u(r)p]−1rn−1 dr < +∞ . (2.14)

Since u is bounded, an integration by parts yields
∫ R

0
(rn−1T (r))′u(r)p]

dr = Rn−1T (R)u(R)p]
+ p]

∫ R

0
T (r)(−u′(r))u(r)p]−1rn−1 dr (2.15)

for 0 < R < 1. Observe now that, since u(1) = 0,
∫ 1

R
T (r)

(− u′(r)
)
u(r)p]−1rn−1 dr ≥ T (R)Rn−1

∫ 1

R
−u′(r)u(r)p]−1 dr =

T (R)Rn−1u(R)p]

p]
.

Hence by (2.14) it follows that T (R)u(R)p] → 0 for R → 1, so that the last inequality in (2.12)
follows on passing to the limit in (2.15).
Now, define ζ : [0,∞) → [0,∞) as

ζ(t) = t + (n− 1)− nt1/n for t ≥ 0 ,
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and set

C0 = p]

(∫ ∞

0
v(r)p∗rp′+n−1 dr

)1/p′

,

a constant depending only on p and n. Inequalities (2.11)–(2.13) entail that
∫ 1

0
ζ

(
T ′(r)
M(r)

)
M(r)u(r)p]

rn−1 dr ≤ C0

(∫ 1

0
(−u′(r))prn−1 dr

)1/p

− n

∫ ∞

0
vp]

rn−1 dr . (2.16)

One can easily verify that

C0

(∫ ∞

0
(−v′(r))prn−1 dr

)1/p

= n

∫ ∞

0
vp]

rn−1 dr .

Consequently, recalling (2.7), a direct calculation shows that

n

∫ ∞

0
vp]

rn−1 dr =
C0S(p, n)
(nωn)1/p

.

In conclusion, (2.16) tells us that
∫ 1

0
ζ

(
T ′(r)
M(r)

)
M(r)u(r)p]

rn−1 dr ≤ C0S(p, n)
(nωn)1/p

δ(u) , (2.17)

for every u as in the statement. Notice that, if δ(u) = 0 then (2.17) gives T ′(r)/M(r) = 1 for
all r ∈ (0, 1), hence T (r) = kr and as underlined before this implies that u is as in (2.2). This
observation was a crucial point in [CNV]. In our case, instead, we have to extract a quantitative
information from (2.17) by proving that if δ(u) is small then T (r) is close to a suitable linear
function of r.

Step II. A lower bound for u(r)p]
rn−1.

We prove now a bound for u(r)p]
rn−1 from below in a suitable subinterval of (0, 1), and we

combine it with (2.9) to derive an integral estimate on such intervals involving T and T ′. A
key ingredient here is a trace inequality from [MV], Theorem 1.3, which, in the one-dimensional
case, tells us that

(
nωn

∫ r

0
u(s)p∗sn−1ds

)p/p∗

≤ nωn

S(p, n)p

∫ r

0
(−u′(s))psn−1ds + C1

(
u(r)p]

rn−1
)p/p]

(2.18)

and
(

nωn

∫ 1

r
u(s)p∗sn−1ds

)p/p∗

≤ nωn

S(p, n)p

∫ 1

r
(−u′(s))psn−1ds + C1

(
u(r)p]

rn−1
)p/p]

(2.19)

for every 0 < r < 1, for some constant C1 > 0. Set

γ(r) = nωn

∫ r

0
u(s)p∗sn−1ds for r ∈ [0, 1] .

Adding up inequalities (2.18) and (2.19) implies that

γ(r)p/p∗ + (1− γ(r))p/p∗ ≤ (1 + δ(u))p + 2C1

(
u(r)p]

rn−1
)p/p]

≤ 1 + C2δ(u) + 2C1

(
u(r)p]

rn−1
)p/p]

,

(2.20)

for some positive constant C2. Notice that the second inequality holds owing to (2.6). On setting

ψ(t) = tp/p∗ + (1− t)p/p∗ − 1 for t ∈ [0, 1] ,
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inequality (2.20) reads
(
ψ(γ(r))− C2δ(u)

)p]/p
≤ C3u(r)p]

rn−1 for r ∈ [0, 1] , (2.21)

with C3 = (2C1)p]/p. It is easily seen that a positive constant C4 exists such that, if 0 < ε < 1/C4,
then

ψ(t) ≥ 3ε for t ∈ [(4ε)p∗/p, 1− (4ε)p∗/p] . (2.22)

Hence, given any ε ∈ (0, 1/C4), on denoting by r1 and r2 the positive numbers satisfying

γ(r1) = (4ε)p∗/p , γ(r2) = 1− (4ε)p∗/p , (2.23)

and assuming that

δ(u) ≤ ε

C2
, (2.24)

we get that

(2ε)p]/p ≤ C3u(r)p]
rn−1 for r ∈ [r1, r2] . (2.25)

On the other hand, owing to (2.22) and to (2.24), inequality (2.21) entails that
(

ψ(γ(r))
2

)p]/p

≤ C3u(r)p]
rn−1 for r ∈ [r1, r2] . (2.26)

Since γ′(r) = nωnu(r)p∗rn−1 for r > 0, we infer from (2.26) and (2.9) that

C5
γ′(r)

ψ(γ(r))p]/p
≥ u(r)p∗−p]

= u(r)p∗/n = v(T (r))p∗/nM(r)1/n′T ′(r)1/n for every r ∈ [r1, r2] ,

for some positive constant C5. Hence,
∫ r2

r1

v(T (r))p∗/nM(r)1/n′T ′(r)1/n dr ≤ C6 , (2.27)

for some constant C6.

Step III. An integral bound for |T ′ −M |.
The task of the present step is to provide an estimate for

∫ r2

r1
|T ′(r)−M(r)| dr. Our starting

point is the inequality ∫ r2

r1

M(r)ζ
(

T ′(r)
M(r)

)
dr ≤ C7

δ(u)
εp]/p

, (2.28)

which follows from (2.17) and (2.25) and holds for some positive constant C7. Since ζ ′(1) =
ζ(1) = 0 and ζ ′′(t) = (1/n′)t−2+1/n, a decreasing function, by Taylor’s formula we have

ζ(t) ≥ 1
2n′

min
{

1, t−2+1/n
}

(t− 1)2 for t ≥ 0 .

Thus, inequality (2.28) tells us that

2C7n
′ δ(u)
εp]/p

≥
∫ r2

r1

(T ′(r)−M(r))2

M(r)
min

{
1,

(
M(r)
T ′(r)

)2−1/n
}

dr . (2.29)

Define

I =
{
r ∈ [r1, r2] : T ′(r) ≤ M(r)

}
, J = [r1, r2] \ I .
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By (2.29), Hölder inequality and (2.27),

2C7n
′ δ(u)
εp]/p

≥
∫

J

(T ′(r)−M(r))2

T ′(r)2v(T (r))p∗/n
v(T (r))p∗/nT ′(r)1/nM(r)1/n′ dr

≥ 1
C6

(∫

J

|T ′(r)−M(r)|
T ′(r)v(T (r))p∗/2n

v(T (r))p∗/nT ′(r)1/nM(r)1/n′ dr

)2

=
1
C6

(∫

J
|T ′(r)−M(r)|v(T (r))p∗/2n

(
M(r)
T ′(r)

)1/n′

dr

)2

.

(2.30)

From (2.8) we deduce that

ap∗ T (r)n

n
≥

∫ T (r)

0
v(s)p∗sn−1ds =

∫ r

0
u(s)p∗sn−1ds ≥ u(r)p∗ rn

n
for r ≥ 0 ,

whence, by (2.9),

T ′(r)v(T (r))p∗ ≤ ap∗M(r) for r ≥ 0 . (2.31)

Coupling (2.30) and (2.31) implies that

C8

√
δ(u)
εp]/p

≥
∫

J
|T ′(r)−M(r)|v(T (r))p∗(1−1/2n) dr

≥ v(T (r2))p∗(1−1/2n)

∫

J
|T ′(r)−M(r)| dr .

(2.32)

Now, observe that

v(T (r2))p∗ =
ap∗

(1 + T (r2)p′)n
≥ ap∗

2n
min

{
1,

1
T (r2)p′n

}
. (2.33)

Equation (2.23) can be used to deduce that

(4ε)n/(n−p) = nωn

∫ 1

r2

u(s)p∗sn−1ds = nωn

∫ ∞

T (r2)
v(s)p∗sn−1ds = nωnap∗

∫ ∞

T (r2)

sn−1

(1 + sp′)n
ds

≤ nωnap∗
∫ ∞

T (r2)
sn−1−np′ds = (p− 1)ωnap∗T (r2)−n/(p−1) ,

whence

T (r2) ≤ C9

ε(p−1)/(n−p)
, (2.34)

for some constant C9. From (2.33), combined with (2.34), we infer that

v(T (r2))p∗ ≥ ap∗εp∗

2n Cp′n
9

,

provided that ε < ε(p, n) for a sufficiently small ε(p, n). From this inequality and (2.32) one
gets

∫

J
|T ′(r)−M(r)| dr ≤ C10

√
δ(u)

εp]/p+(2−1/n)p∗
. (2.35)
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As far as
∫
I |T ′(r)−M(r)| dr is concerned, by (2.29) and (2.27) again one has

2C7n
′ δ(u)
εp]/p

≥
∫

I

(T ′(r)−M(r))2

T ′(r)2v(T (r))p∗/n

(
T ′(r)
M(r)

)2−1/n

v(T (r))p∗/nT ′(r)1/nM(r)1/n′ dr

≥ 1
C6

(∫

I
|T ′(r)−M(r)|

(
v(T (r))p∗T ′(r)

M(r)

)1/2n

dr

)2

=
1
C6

(∫

I
|T ′(r)−M(r)|

(
u(r)p∗rn

Tn(r)

)1/2n

dr

)2

.

(2.36)

Note that in the last inequality we have made use of (2.9). Inasmuch as T (r) ≤ T (r2) for r ∈ I,
inequalities (2.36), (2.34) and (2.25) ensure that

εp∗/2n

∫

I
|T ′(r)−M(r)| dr ≤ C11

√
δ(u)
εp]/p

(2.37)

for some positive constant C11. Coupling (2.35) and (2.37) yields
∫ r2

r1

|T ′(r)−M(r)| dr ≤ C12

√
δ(u)
εω0

(2.38)

for some positive C12 where

ω0 =
p]

p
+

(
2− 1

n

)
p∗ .

Step IV. Conclusion.
Here, we single out the extremal (2.2) to be used in estimating λ(u). Set

k = M(r2)

and define v0 = [0,∞) → [0,∞) as

v0(r) = k(n−p)/pv(kr) for r ≥ 0 .

Clearly, v0 is an extremal function in the Bliss inequality, still fulfilling nωn

∫∞
0 v0(r)p∗rn−1 dr =

1. Consequently, by (2.23),

λ(u)≤ nωn

∫ ∞

0
|u(r)− v0(r)|p∗rn−1 dr

≤ C13

(
εn/(n−p) +

∫ ∞

r2

v0(r)p∗rn−1 dr +
∫ r1

0
v0(r)p∗rn−1 dr

+
∫ r2

r1

|u(r)− v0(r)|p∗rn−1 dr

)
.

(2.39)

The point is to estimate the last three integrals. As far as the first one is concerned, owing
to (2.23) one has

∫ ∞

r2

v0(r)p∗rn−1 dr = kn

∫ ∞

r2

v(kr)p∗rn−1 dr =
∫ ∞

kr2

v(r)p∗rn−1 dr

=
∫ ∞

T (r2)
v(r)p∗rn−1 dr =

1
nωn

−
∫ r2

0
u(r)p∗rn−1 dr =

(4ε)n/(n−p)

nωn
.

(2.40)

Next, we have ∫ r1

0
v0(r)p∗rn−1 dr =

∫ r1M(r2)

0
v(r)p∗rn−1 dr . (2.41)
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If M(r1) ≤ M(r2), then

M(r2)r1 = T (r1) + r1(M(r2)−M(r1)) = T (r1) + r1

∫ r2

r1

T ′(r)−M(r)
r

dr

≤ T (r1) +
∫ r2

r1

|T ′(r)−M(r)| dr ≤ T (r1) + C12

√
δ(u)
εω0

,

(2.42)

where we have exploited (2.38) in the last inequality. Consequently, (2.41), (2.42) and (2.23)
tell us that

∫ r1

0
v0(r)p∗rn−1 dr ≤ (4ε)p∗/p + ap∗

∫ T (r1)+C12

√
δ(u)/εω0

T (r1)

rn−1

(1 + rp′)n
dr

≤ C14

(
εp∗/p +

√
δ(u)
εω0

) (2.43)

for some positive constant C14. Inequality (2.43) continues to hold even if M(r2) ≤ M(r1), since
M(r2)r1 = T (r1)M(r2)/M(r1), and hence, by (2.41) and (2.23),

nωn

∫ r1

0
v0(r)p∗rn−1 dr ≤ nωn

∫ T (r1)

0
v(r)p∗rn−1 dr = nωn

∫ r1

0
u(r)p∗rn−1 dr = (4ε)p∗/p .

The estimate for the last integral in (2.39) is the most delicate. Thanks to (2.9),
∫ r2

r1

|u(r)− v0(r)|p∗rn−1 dr =
∫ r2

r1

|u(r)− k(n−p)/pv(kr)|p∗rn−1 dr

=
∫ r2

r1

∣∣∣∣
(
v(T (r))p∗M(r)n−1T ′(r)

)1/p∗
−

(
knv(kr)p∗

)1/p∗
∣∣∣∣
p∗

rn−1 dr

≤
∫ r2

r1

∣∣∣v(T (r))p∗M(r)n−1T ′(r)− knv(kr)p∗
∣∣∣ rn−1 dr

≤
∫ r2

r1

v(T (r))p∗T (r)n−1|T ′(r)−M(r)| dr +
∫ r2

r1

v(T (r))p∗ |M(r)n − kn|rn−1 dr

+ kn

∫ r2

r1

|v(T (r))p∗ − v(kr)p∗ |rn−1 dr .

(2.44)

Since v(T (r))p∗T (r)n−1 is bounded from above in terms of p and n only, one has by (2.38)
∫ r2

r1

v(T (r))p∗T (r)n−1|T ′(r)−M(r)| dr ≤ C15

√
δ(u)
εω0

. (2.45)

for some constant C15. The boundedness of v(T (r))p∗T (r)n−1 again implies that
∫ r2

r1

v(T (r))p∗ |M(r)n − kn|rn−1 dr ≤ C16

∫ r2

r1

|M(r)n − kn|
M(r)n−1

dr

≤ nC16

∫ r2

r1

|M(r)−M(r2)|
max

{
M(r)n−1,M(r2)n−1

}

M(r)n−1
dr

(2.46)

for some constant C16. By (2.34),

M(r2)
M(r)

=
T (r2)
T (r)

r

r2
≤ T (r2)

T (r)
≤ T (r2)

T (r1)
≤ C9

ε(p−1)/(n−p)T (r1)
for r ∈ [r1, r2] ,
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and, by (2.23),

(4ε)p∗/p

nωn
=

∫ T (r1)

0
v(r)p∗rn−1 dr = ap∗

∫ T (r1)

0

rn−1

(1 + rp′)n
dr ≤ ap∗

n
T (r1)n ,

whence
M(r2)
M(r)

≤ C17

εp/(n−p)
for r ∈ [r1, r2] , (2.47)

for some constant C17. Combining (2.46) and (2.47) yields∫ r2

r1

v(T (r))p∗ |M(r)n − kn|rn−1 dr ≤ C18

εp]

∫ r2

r1

|M(r)−M(r2)| dr , (2.48)

for some constant C18. On the other hand,∫ r2

r1

|M(r)−M(r2)| dr ≤
∫ r2

r1

dr

∫ r2

r

|T ′(t)−M(t)|
t

dt

=
∫ r2

r1

|T ′(t)−M(t)|
t

dt

∫ t

r1

dr ≤
∫ r2

r1

|T ′(t)−M(t)| dt .

(2.49)

Thus, thanks to (2.48), (2.49) and (2.38),
∫ r2

r1

v(T (r))p∗ |M(r)n − kn|rn−1 dr ≤ C19

√
δ(u)

εω0+2p] (2.50)

for some constant C19. Finally, since the function vp∗ is Lipschitz continuous in [0,∞) (with
Lipschitz constant not exceeding np′ap∗),

|v(T (r))p∗ − v(M(r2)r)p∗ | ≤ np′ap∗r|M(r)−M(r2)| for r ≥ 0 .

Hence, via (2.34), (2.49) and (2.38), we get∫ r2

r1

|v(T (r))p∗ − v(kr)p∗ |knrn−1 dr ≤ np′ap∗T (r2)n

∫ r2

r1

|M(r)−M(r2)| dr

≤ np′ap∗Cn
9

εn(p−1)/(n−p)

∫ r2

r1

|M(r)−M(r2)| dr ≤ np′ap∗Cn
9

εn(p−1)/(n−p)

∫ r2

r1

|T ′(r)−M(r)| dr

≤ C20

√
δ(u)

εω0+2p]

(2.51)

for some constant C20. Combining (2.44), (2.45), (2.50) and (2.51) tells us that
∫ r2

r1

|u(r)− v0(r)|p∗rn−1 dr ≤ C21

√
δ(u)
εω1

, (2.52)

where
ω1 = ω0 + 2p] .

From (2.39), (2.40), (2.43) and (2.52) we conclude that

λ(u) ≤ C22

{
εn/(n−p) +

√
δ(u)
εω1

}

for some constant C22. The choice

εω1+(2n)/(n−p) = δ(u) ,

which is compatible with (2.24) provided that (2.6) holds for a sufficiently small ε(p, n), yields

λ(u) ≤ C23δ(u)ω , (2.53)
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where

ω =
n

(n− p)ω1 + 2n

and C23 is a suitable constant. Obviously, inequality (2.53) continues to hold for some constant
even if (2.6) is violated, namely if δ(u) ≥ ε(p, n). Actually, since λ(u) ≤ 2p∗ ,

δ(u) ≥ ε(p, n) ≥ ε(p, n)2−p?/ωλ(u)1/ω .

This proves (2.5) with

β =
1
ω

= 3 + 4p− 3p + 1
n

. (2.54)

¤

3. The case of n-symmetric functions

As recalled in the Introduction, the Pólya–Szegö inequality (1.6) does not enjoy the stability
property which would immediately imply Theorem 1 via the one dimensional Theorem 2 and
from inequality (1.8). Indeed, although equality trivially holds in (1.6) whenever f is spherically
symmetric, the sole gap between ‖∇f‖Lp(Rn) and ‖∇f?‖Lp(Rn) is not sufficient to estimate the
asymmetry of f measured as a distance (in some integral norm) of f from a (translated of) f?.
Such a distance, in any Lq norm with 1 ≤ q < p∗, can be actually estimated, if information
on the measure of the sets {|∇f?| < ε} is also retained, as recently shown in [CEFT]. In fact,
this result could be used to prove a weaker form of Theorem 1, for functions supported in sets
of finite measure and with p∗ in definition (1.3) replaced by any smaller exponent. The full
version of Theorem 1 requires, instead, the quantitative Pólya–Szegö principle for n-symmetric
functions contained in Theorem 3 below. We say that a function f : Rn → R is k−symmetric,
with 1 ≤ k ≤ n, if there exist k mutually orthogonal hyperplanes such that f is symmetric with
respect to each of them. Moreover, if f : Rn → [0,∞) is any measurable function satisfying

|{x : f(x) > t}| < ∞ for t > 0 , (3.1)

its spherically symmetric rearrangement f? : Rn → [0,∞) is given by

f?(x) = sup{t ≥ 0 : |{f > t}| > ωn|x|n} for x ∈ Rn . (3.2)

Theorem 3. Let n ≥ 2 and let 1 < p < n. Set q = max{p, 2}. Then a positive constant C

exists such that
∫

Rn

|f − f?|p∗ ≤ C

(∫

Rn

|f |p∗
)p/n (∫

Rn

|∇f?|p
)1/q′ (∫

Rn

|∇f |p −
∫

Rn

|∇f?|p
)1/q

(3.3)

for every nonnegative f ∈ W 1,p(Rn) which is symmetric with respect to the coordinate hyper-
planes.

It is clear that, up to a rigid motion, Theorem 3 holds for any n−symmetric function.
Thanks to inequalities (1.7) and (1.8), a combination of Theorems 2 and 3 easily yields

inequality (1.4) for n-symmetric functions.

Corollary 4. Let n ≥ 2 and let 1 < p < n. Then a constant κ > 0 exists such that (1.4) holds
for every nonnegative n-symmetric function f ∈ W 1,p(Rn), with α = β, β as in (2.54).
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In analogy with (2.4) (and again with a slight abuse of notation), we define

δ(f) =
‖∇f‖Lp(Rn)

S(p, n)‖f‖Lp∗ (Rn)

− 1

for f ∈ W 1,p(Rn). Inequality (1.4) can then be written as

λ(f) ≤ Cδ(f)1/α ,

where C = (1/κ)1/α.

Proof of Corollary 4. We may assume, without loss of generality, that ‖f‖Lp∗ (Rn) = 1 and f is
symmetric with respect to the coordinate hyperplanes; in fact, both δ(f) and λ(f) are invariant
by rescaling, multiplication by a constant and rigid motions. Suppose, for the time being, that
δ(f) ≤ 1/S(p, n). Then

S(p, n) ≤ ‖∇f?‖Lp(Rn) ≤ ‖∇f‖Lp(Rn) ≤ 1 + S(p, n) . (3.4)

We have

λ(f)1/p∗ ≤ λ(f?)1/p∗ + ‖f − f?‖Lp∗ (Rn)

≤ C

((
‖∇f?‖Lp∗ (Rn) − S(p, n)

)1/βp∗

+ ‖∇f?‖p/q′p∗
Lp(Rn)

(
‖∇f‖p

Lp(Rn) − ‖∇f?‖p
Lp(Rn)

)1/qp∗
)

,

(3.5)

for some constant C, where the first inequality is just a consequence of the triangle inequality,
and the second one follows from Theorems 2 and 3. Inequalities (3.4) ensure that

‖∇f‖p
Lp(Rn) − ‖∇f?‖p

Lp(Rn) ≤ C
(‖∇f‖Lp(Rn) − ‖∇f?‖Lp(Rn)

)
(3.6)

for some constant C. Combining (3.5), (3.6), (1.7) and (1.8) yields

λ(f)1/p∗ ≤ C
(
δ(f)1/βp∗ + δ(f)1/qp∗

)

for some constant C. Hence, inequality (1.4) follows with α = β, since by (2.54) it is β > q. If
δ(f) > 1/S(p, n), the assertion is a straightforward consequence of the inequality λ(f) ≤ 2p∗ . ¤

The following estimate for the distance between functions in Lq(Rn) involving the measure
of the symmetric difference of their level sets will be exploited in the proof of Theorem 3.

Lemma 5. Let q ≥ 1. Given any nonnegative functions f, g ∈ Lq(Rn), set

Et = {f > t}∆{g > t} ,

where ∆ stands for the symmetric difference of sets. Then∫

Rn

|f − g|q ≤ q

∫ ∞

0
|Et|tq−1 dt . (3.7)

Proof. The layer-cake formula and Fubini’s theorem yield
∫

Rn

|f − g|q =
∫

Rn

|f(x)− g(x)|q−1

∣∣∣∣
∫ ∞

0
χ{f>t}(x) dt−

∫ ∞

0
χ{g>t}(x) dt

∣∣∣∣ dx

≤
∫

Rn

|f(x)− g(x)|q−1

∫ ∞

0
|χ{f>t}(x)− χ{g>t}(x)| dt dx

=
∫ ∞

0

∫

Et

|f(x)− g(x)|q−1 dx dt .
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Here χ
G

denotes the characteristic function of the set G. Thus, since
∫

Et

|f − g|q−1 =
∫

{g≤t<f}
|f − g|q−1 +

∫

{f≤t<g}
|f − g|q−1 ≤

∫

{g≤t<f}
f q−1 +

∫

{f≤t<g}
gq−1

for any t ≥ 0, one has∫

Rn

|f − g|q ≤
∫ ∞

0

∫

{g≤t<f}
f(x)q−1 dx dt +

∫ ∞

0

∫

{f≤t<g}
g(x)q−1 dx dt . (3.8)

Now, ∫ ∞

0

∫

{g≤t<f}
f(x)q−1 dx dt =

∫ ∞

0

∫

Rn

χ{g≤t<f}(x)
∫ ∞

0
χ

[0,f(x)q−1]
(s) ds dx dt

=
∫ ∞

0

∫

Rn

∫ ∞

0
χ
{f>max{t,s1/(q−1)}; t≥g}

(x) ds dx dt .

(3.9)

Another application of Fubini’s theorem ensures that∫ ∞

0

∫

Rn

∫ ∞

0
χ
{f>max{t,s1/(q−1)}; t≥g}

(x) ds dx dt

=
∫ ∞

0

∫

Rn

∫ tq−1

0
χ{g≤t<f}(x) ds dx dt +

∫

Rn

∫ ∞

0

∫ ∞

tq−1

χ
{f>s1/(q−1); t≥g}

(x) ds dt dx

=
∫ ∞

0
tq−1|{g ≤ t < f}| dt +

∫

Rn

∫ ∞

0

∫ s1/(q−1)

0
χ
{f>s1/(q−1); t≥g}

(x) dt ds dx

≤
∫ ∞

0
tq−1|{g ≤ t < f}| dt +

∫

Rn

∫ ∞

0

∫ s1/(q−1)

0
χ
{g≤s1/(q−1)<f}

(x) dt ds dx

=
∫ ∞

0
tq−1

∣∣{g ≤ t < f}∣∣ dt +
∫ ∞

0
s1/(q−1)

∣∣{g ≤ s1/(q−1) < f}∣∣ ds .

(3.10)

The change of variable s = τ q−1 in the last integral yields∫ ∞

0
s1/(q−1)

∣∣{g ≤ s1/(q−1) < f}∣∣ ds = (q − 1)
∫ ∞

0
τ q−1

∣∣{g ≤ τ < f}∣∣ dτ .

Thus, combining (3.9) and (3.10) entails that∫ ∞

0

∫

{g≤t<f}
f(x)q−1 dx dt ≤ q

∫ ∞

0
tq−1

∣∣{g ≤ t < f}
∣∣ dt . (3.11)

Since |Et| =
∣∣{g ≤ t < f}∣∣ +

∣∣{f ≤ t < g}∣∣ for t ≥ 0, inequality (3.7) follows from (3.8),
from (3.11) and from an analogous estimate for the second integral on the right-hand side
of (3.8). ¤

Proof of Theorem 3. Assume, without loss of generality, that ‖f‖Lp∗ (Rn) = 1. By the coarea
formula,

µ(t) =
∣∣{f > t} ∩ {∇f = 0}

∣∣ +
∫ ∞

t

∫

{f=s}

dH n−1

|∇f | ds for t > 0 ,

where H n−1 denotes the (n−1)-dimensional Hausdorff measure (see e.g. [BZ], or [CF1]). Hence,

−µ′(t) ≥
∫

{f=t}

dH n−1

|∇f | for a.e. t > 0 . (3.12)

One has

H n−1
({f = t}) = P ({f > t}) for a.e. t > 0 ,



THE SHARP SOBOLEV INEQUALITY IN QUANTITATIVE FORM 15

where P stands for perimeter in the sense of geometric measure theory (see e.g. [BZ, equa-
tion (19)]). Then, an application of the coarea formula again, Hölder’s inequality and (3.12)
entail that

∫

Rn

|∇f |p =
∫ ∞

0

∫

{f=t}
|∇f |p−1dH n−1 dt ≥

∫ ∞

0

H n−1({f = t})p

(∫
{f=t}

dH n−1

|∇f |
)p−1 dt

≥
∫ ∞

0

H n−1({f = t})p

(−µ′(t))p−1 dt =
∫ ∞

0

P ({f > t})p

(−µ′(t))p−1 dt .

(3.13)

The quantitative isoperimetric inequality of [FMP1] tells us that a constant κ0, depending only
on n, exists such that

nωn|E|1/n′
[
1 + κ0

(
inf

{ |E∆B|
|E| : B ball, |B| = |E|

})2
]
≤ P (E) (3.14)

for every measurable subset of Rn having finite measure and perimeter. If, in addition, E is
symmetric about n orthogonal hyperplanes containing 0, then

inf
{ |E∆B|

|E| : B ball, |B| = |E|
}
≥ 1

2n

|E∆E?|
|E| , (3.15)

where E? denotes the ball, centered at 0, and such that |E?| = |E| (see [FMP1, Lemma 2.2]).
Since f is n-symmetric, so are its level sets {f > t} for t > 0; moreover, the ball {f > t}? agrees
with {f? > t} for every t > 0. Consequently, from (3.13) and from (3.14) and (3.15) applied
with E = {f > t}, we deduce that

∫

Rn

|∇f |p ≥
(
nω1/n

n

)p
∫ ∞

0

µ(t)p/n′

(−µ′(t))p−1

(
1 +

κ0

4n

( |Ft|
µ(t)

)2
)p

dt , (3.16)

where we have set Ft = {f > t}∆{f? > t} for t > 0. Now, note that when (3.13) is applied with
f replaced by f?, equality holds in the first equality because |∇f?| is constant on {f? = t} for
a.e. t > 0, and equality holds in the second inequality since also (3.12) turns into an equality in
this case (see e.g. [CF1, Lemma 3.2]). Thus, inasmuch as P ({f? > t}) = nω

1/n
n µ(t)1/n′ for a.e.

t > 0, one has ∫

Rn

|∇f?|p =
(
nω1/n

n

)p
∫ ∞

0

µ(t)p/n′

(−µ′(t))p−1
dt . (3.17)

Since (1 + s)p ≥ 1 + ps for s ≥ 0, we infer from (3.16) and (3.17) that
∫

Rn

|∇f |p −
∫

Rn

|∇f?|p ≥ κ

∫ ∞

0

( |Ft|
µ(t)

)2 µ(t)p/n′

(−µ′(t))p−1
dt (3.18)

for some positive constant κ. By Lemma 5,
∫

Rn

|f − f?|p∗ ≤ p∗
∫ ∞

0
|Ft|tp∗−1 dt . (3.19)

The point is thus to estimate the right-hand side of (3.19) in terms of the right hand side
of (3.18). We have

1 =
∫

Rn

fp∗ ≥
∫

{f>t}
fp∗ ≥ tp

∗
µ(t) for t > 0 ,
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whence µ(t)p/ntp
∗−p ≤ 1 for every t > 0. Thus, by (3.19) and by Hölder inequality,

∫

Rn

|f − f?|p∗ ≤ p∗
∫ ∞

0

|Ft|
µ(t)

µ(t)1−p/ntp−1 dt

≤ p∗
(∫ ∞

0

( |Ft|
µ(t)

)p µ(t)p/n′

(−µ′(t))p−1
dt

)1/p (∫ ∞

0

−µ′(t)
µ(t)p/n

tp dt

)1/p′

.

(3.20)

We claim that a constant C exists such that
∫ ∞

0

−µ′(t)
µ(t)p/n

tp dt ≤ C

∫

Rn

|∇f?|p . (3.21)

To verify (3.21), fix any ϑ ∈ (1/p′, 1/n′). Then,

tp =
(∫ t

0
ds

)p

≤
(∫ t

0

(−µ′(s))
µ(s)ϑp′ ds

)p−1 (∫ t

0

µ(s)ϑp

(−µ′(s))p−1
ds

)

≤ 1(
(ϑp′ − 1)µ(t)ϑp′−1

)p−1

∫ t

0

µ(s)ϑp

(−µ′(s))p−1
ds ,

by Hölder inequality. Therefore,
∫ ∞

0

(−µ′(t))tp

µ(t)p/n
dt ≤ 1

(ϑp′ − 1)p−1

∫ ∞

0

(−µ′(t))
µ(t)ϑp+1−p/n′

(∫ t

0

µ(s)ϑp

(−µ′(s))p−1
ds

)
dt

=
1

(ϑp′ − 1)p−1

∫ ∞

0

µ(s)ϑp

(−µ′(s))p−1

(∫ ∞

s

(−µ′(t))
µ(t)ϑp+1−p/n′ dt

)
ds

≤ 1
(ϑp′ − 1)p−1(p/n′ − ϑp)

∫ ∞

0

µ(s)p/n′

(−µ′(s))p−1
ds .

(3.22)

Inequality (3.21) follows from (3.22) and (3.17). Combining (3.20) and (3.21) yields

∫

Rn

|f − f?|p∗ ≤ C‖∇f?‖p−1
Lp(Rn)

(∫ ∞

0

( |Ft|
µ(t)

)p µ(t)p/n′

(−µ′(t))p−1
dt

)1/p

. (3.23)

When 1 < p < 2, by Hölder inequality

∫ ∞

0

( |Ft|
µ(t)

)p µ(t)p/n′

(−µ′(t))p−1
dt ≤

(∫ ∞

0

( |Ft|
µ(t)

)2 µ(t)p/n′

(−µ′(t))p−1
dt

)p/2 (∫ ∞

0

µ(t)p/n′

(−µ′(t))p−1
dt

)1−p/2

,

(3.24)
and (3.3) follows via (3.23), (3.24), (3.17) and (3.18). If, instead, p ≥ 2, then

( |Ft|
µ(t)

)p

≤ 2p−2

( |Ft|
µ(t)

)2

for t > 0 , (3.25)

and (3.3) follows from (3.23), (3.25) and (3.18). ¤

4. Proof of Theorem 1

The task of the present section is to accomplish the symmetrization process to which we
alluded in Section 1, showing that the proof of inequality (1.4) can always be reduced to the
special case of n-symmetric functions dealt with in Corollary 4. This is the content of the
following result.
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Theorem 6. Let n ≥ 2 and let 1 < p < n. Then, a positive constant C exists such that for
every nonnegative function f ∈ W 1,p(Rn) there exists a nonnegative n-symmetric function f̂

such that

λ(f) ≤ Cλ(f̂) δ(f̂) ≤ Cδ(f)1/βp∗ , (4.1)

where β is given by (2.54).

Once Theorem 6 is established, Theorem 1 quite easily follows from Corollary 4.

Proof of Theorem 1. Consider first the case where f is nonnegative. Then, by Theorem 6, a
n-symmetric function f̂ exists satisfying (4.1). Inequality (1.4) holds with f replaced by f̂ , by
Corollary 4. Owing to (4.1), inequality (1.4) continues to hold with α = β2p∗ even for f .
Let us now remove the sign assumption on f . Consider any function f ∈ W 1,p(Rn), which,
without loss of generality, can be assumed to satisfy ‖f‖Lp∗ (Rn) = 1 and δ(f) ≤ 1. We claim
that a constant C exists such that

min

{∫

{f<0}
|f |p∗ ,

∫

{f>0}
|f |p∗

}
≤ Cδ(f) . (4.2)

Actually, the Sobolev inequality (1.1) applied to max{f, 0} and min{f, 0} yields

S(p, n)p

(∫

{f≷0}
|f |p∗

)p/p∗

≤
∫

{f≷0}
|∇f |p ,

whence
(∫

{f>0}
|f |p∗

)p/p∗

+

(∫

{f<0}
|f |p∗

)p/p∗

≤ 1
S(p, n)p

∫

Rn

|∇f |p = (1 + δ(f))p. (4.3)

Since the function s 7→ (sp/p∗ + (1 − s)p/p∗)1/p − 1 is concave in [0, 1], a constant κ exists such
that (

sp/p∗ + (1− s)p/p∗
)1/p

− 1 ≥ κmin{s, 1− s} .

Thus, inasmuch as
∫
{f<0} |f |p

∗
= 1− ∫

{f>0} |f |p
∗
, one can infer from (4.3) that

δ(f) ≥
[(∫

{f>0}
|f |p∗

)p/p∗

+
( ∫

{f<0}
|f |p∗

)p/p∗]1/p

− 1 ≥ κmin
{∫

{f<0}
|f |p∗ ,

∫

{f>0}
|f |p∗

}
,

namely, (4.2). Now, to fix the ideas, assume that the minimum in (4.2) agrees with
∫
{f<0} |f |p

∗
,

the other case being completely analogous. By applying (1.4) to |f | and observing that δ(f) =
δ(|f |), from (4.2) we have

λ(f) ≤ 2p∗−1

(
λ(|f |) +

∫

Rn

∣∣f − |f |∣∣p∗
)
≤ C

(
δ(f)1/α + δ(f)

)
≤ Cδ(f)1/α ,

for a suitable constant C. Hence, the result easily follows. ¤

The remaining part of the paper is devoted to the proof of Theorem 6. The argument relies
upon some delicate constructions, and is split in separate lemmas. We begin by showing that,
when dealing with functions f which are symmetric about orthogonal hyperplanes intersecting
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in some lower dimensional affine space S, the quantity λ(f) can be essentially replaced by the
expression

λ(f |S) = inf




‖f − ga,b,x0‖p∗

Lp∗ (Rn)

‖f‖p∗
Lp∗ (Rn)

: ‖ga,b,x0‖Lp∗ (Rn) = ‖f‖Lp∗ (Rn), a ∈ R, b > 0, x0 ∈ S



 .

Lemma 7. Let n ≥ 2, 1 < p < n and f be a nonnegative function from W 1,p(Rn). Assume that
f is k−symmetric, and let S be the intersection of the k hyperplanes of symmetry. Then

λ(f |S) ≤ 3p∗λ(f) .

The proof of Lemma 7 in turn relies upon the technical results contained in Lemmas 8–10
below.

Lemma 8. Let ϕ : R → [0,+∞) be increasing on (−∞, 0) and decreasing on (0,∞). Define
Φ : [0,∞) → [0,∞] as

Φ(h) =
∫

R
A(|ϕ(t)− ϕ(t− h)|) dt ,

where A : [0,∞) → [0,∞) is a l.s.c. increasing function. Then Φ is decreasing.

Proof. First of all, we may assume that A is continuous, since any l.s.c. increasing function can
be approximated pointwise by an increasing sequence of continuous increasing functions. Then,
using that for any M > 0 and any s, t ∈ R, |min{t,M} −min{s,M}| ≤ |t− s|, we may reduce
to the case when ϕ is bounded. A simple approximation argument then shows that we may also
assume that there exist l1 < 0 < l2 such that ϕ is constant both in (−∞, l1] and in [l2, +∞),
and that ϕ is continuous. The function Φ is trivially affine and increasing in [l2 − l1, +∞), thus
we may focus on the interval [0, l2 − l1]. For every h1 ∈ (0, l2 − l1), there exists t1 ∈ (0, h1)
satisfying ϕ(t1) = ϕ(t1− h1); moreover, ϕ(t) ≥ ϕ(t− h1) if t < t1 and ϕ(t) ≤ ϕ(t− h1) if t > t1.
Let h2 ∈ (h1, l2 − l1]. On the one hand,

∫ t1

−∞
A(|ϕ(t)− ϕ(t− h1)|) dt =

∫ t1

−∞
A(ϕ(t)− ϕ(t− h1)) dt ≤

∫ t1

−∞
A(|ϕ(t)− ϕ(t− h2)|) dt ,

since ϕ(t− h2) ≤ ϕ(t− h1) ≤ ϕ(t) whenever t ≤ t1. On the other hand,
∫ ∞

t1

A(|ϕ(t)− ϕ(t− h1)|) dt =
∫ ∞

t1

A(ϕ(t− h1)− ϕ(t)) dt

=
∫ ∞

t1+h2−h1

A
(
ϕ(s− h2)− ϕ(s + h1 − h2)

)
ds

≤
∫ ∞

t1+h2−h1

A
(|ϕ(s− h2)− ϕ(s)|) ds .

Thus,
∫

R
A(|ϕ(t)− ϕ(t− h1)|) dt ≤

∫

(−∞,t1)∪(t1+h2−h1,∞)
A(|ϕ(t)− ϕ(t− h2)|) dt

≤
∫

R
A(|ϕ(t)− ϕ(t− h2)|) dt

and the conclusion follows. ¤
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Lemma 9. Let f : Rn → [0,∞) be any spherically symmetric function. Given any y ∈ Rn,
define fy : Rn → [0,∞) as

fy(x) = f(x− y) for x ∈ Rn .

If A is as in Lemma 8, then∫

Rn

A(|fy(x)− fw(x)|) dx ≤
∫

Rn

A(|fy(x)− fz(x)|) dx (4.4)

for every y, z ∈ Rn and for every w lying on the segment joining y and z.

Proof. Without loss of generality, we may assume y = 0 in (4.4); then, set ν = z/|z|, whence
z = |z|ν and w = |w|ν. Denote by H the hyperplane orthogonal to ν and containing 0. Then∫

Rn

A(|f(x)− fw(x)|) dx =
∫

H

∫

R
A(|f(x + tν)− f(x− w + tν)|) dt dH n−1(x)

=
∫

H

∫

R
A(|f(x + tν)− f(x + (t− |w|)ν)|) dt dH n−1(x) .

(4.5)

Fix any x ∈ H, and define ϕ : R→ [0,∞) by

ϕ(t) = f(x + tν) for t ∈ R .

Clearly, the function ϕ satisfies the assumptions of Lemma 8. Hence,∫

R
A(|ϕ(t)− ϕ(t− h1)|) dt ≤

∫

R
A(|ϕ(t)− ϕ(t− h2)|) dt if 0 < h1 ≤ h2 . (4.6)

On applying (4.6) with h1 = |w| and h2 = |z| we get∫

R
A

(∣∣f(x + tν)− f(x + (t− |w|)ν)
∣∣
)

dt ≤
∫

R
A

(∣∣f(x + tν)− f(x + (t− |z|)ν)
∣∣
)

dt .

Combining this inequality with (4.5) yields the conclusion. ¤

We want now to prove that, when f is positive, then the infima defining λ(f) and λ(f |S)
are attained; this proof closely reminds the proof of Lemma B.1 in [FMP2], and we will obtain
it in two steps.

Lemma 10. Let 1 < p < n and let f be any nonnegative function from Lp∗(Rn). Then λ(f) is
a minimum. The same holds true for λ(f |S) with any affine subspace S of Rn.

Proof. We only give the proof for λ(f), the other case being analogous; we also assume without
loss of generality that ‖f‖Lp∗ (Rn) = 1.

The proof is divided in two steps; notice that the sign assumption on f plays a role only in
Step II.

Step I. If λ(f) < 2, then λ(f) is a minimum.
Let us consider a minimizing sequence for λ(f), given by the functions

gh(x) =
ah(

1 + bh|x− xh|p′
)(n−p)/p

.

Up to a subsequence, we may assume that bh converges to b ∈ [0,∞]: our first goal is to check
that b 6= 0, b 6= ∞. Indeed, chosen any ε > 0 there is a positive constant ρ = ρ(ε) converging to
0 for ε → 0 such that for any z ∈ Rn one has∫

B(z,ε)
|f |p∗ ≤ ρ ,

∫

B(0,1/ε)
|f |p∗ ≥ 1− ρ .
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Assume, by contradiction, that b = +∞. Then,∫

{|x−xh|>ε}
|gh(x)|p∗ dx ≤ ε

provided that h is large enough depending on ε. Thus, for any such h,

‖f − gh‖p∗

Lp∗ (Rn)
= ‖f − gh‖p∗

Lp∗ ({|x−xh|>ε}) + ‖gh − f‖p∗

Lp∗ ({|x−xh|≤ε})

≥
(
(1− ρ)1/p∗ − ε1/p∗

)p∗
+

(
(1− ε)1/p∗ − ρ1/p∗

)p∗
.

(4.7)

Passing to the limit as h →∞ in (4.7) we would get

λ(f) ≥
(
(1− ρ)1/p∗ − ε1/p∗

)p∗
+

(
(1− ε)1/p∗ − ρ1/p∗

)p∗
.

Hence, taking a limit for ε → 0, we get that λ(f) ≥ 2, which contradicts the assumption. Next
suppose, again by contradiction, that b = 0. Then,∫

{|x|<1/ε}
|gh(x)|p∗ dx ≤

∫

{|x−xh|<1/ε}
|gh(x)|p∗ dx ≤ ε

if h is large enough, depending on ε. Analogously to (4.7), we have

‖f − gh‖p∗

Lp∗ (Rn)
= ‖f − gh‖p∗

Lp∗ ({|x|<1/ε}) + ‖gh − f‖p∗

Lp∗ ({|x|≥1/ε})

≥
(
(1− ρ)1/p∗ − ε1/p∗

)p∗
+

(
(1− ε)1/p∗ − ρ1/p∗

)p∗
,

and we reach the same contradiction as above.
Now, since bh → b ∈ (0, +∞), and ‖gh‖Lp∗ (Rn) = 1 for every h, we have that ah → a for

some a ∈ R \ {0}. Let us now show that, again up to a subsequence, there exists x̄ ∈ Rn such
that xh → x̄. In order to prove this fact, it suffices to exclude that |xh| → ∞. We argue by
contradiction again and observe that, if this is the case, then for every L > 0∫

{|x−xh|≤L}
|f(x)|p∗ dx ≤ 1

L

if h is large enough depending on L; fixed any ε > 0, since b ∈ (0,∞) we can choose L so large
that ∫

{|x−xh|≤L}
|gh(x)|p∗ dx ≥ 1− ε

for every h. Therefore, similarly to (4.7), we deduce that

‖f − gh‖p∗

Lp∗ (Rn)
≥

(
(1− ε)1/p∗ − 1

L1/p∗

)p∗
+

((
1− 1

L

)1/p∗
− ε1/p∗

)p∗
,

whence we get the contradiction λ(f) ≥ 2 on letting ε go to 0 and thus L to ∞. Since gh

converges to ga,b,x̄ in Lp∗(Rn), the latter function is a minimizer in the definition of λ(f).

Step II. λ(f) < 2.
Set g = ga,1,0, where a is the positive number such that ‖g‖Lp∗ (Rn) = 1. Set F = {f < g} and
G = {g < f}. Then

|f − g| = g − f ≤ g in F , |f − g| = f − g < f in G.

Note that strict inequality above holds since g is strictly positive. Thus

λ(f) ≤
∫

Rn

|f − g|p∗ =
∫

F
|f − g|p∗ +

∫

G
|f − g|p∗ <

∫

F
gp∗ +

∫

G
fp∗ <

∫

Rn

gp∗ +
∫

Rn

fp∗ = 2 ,

and the assertion follows. ¤
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We are now finally ready to prove Lemma 7.

Proof of Lemma 7. We may assume, without loss of generality, that ‖f‖Lp∗ (Rn) = 1. Let a, b, x0,

according to Lemma 10, be such that λ(f) = ‖f−ga,b,x0‖p∗

Lp∗ (Rn)
. Denote by z0 be the orthogonal

projection of x0 on S, and let y0 be the symmetral of x0 about S. We have

λ(f |S)1/p∗ ≤ ‖f − ga,b,z0‖Lp∗ (Rn) ≤ ‖f − ga,b,x0‖Lp∗ (Rn) + ‖ga,b,x0 − ga,b,z0‖Lp∗ (Rn)

= λ(f)1/p∗ + ‖ga,b,x0 − ga,b,z0‖Lp∗ (Rn) .

By Lemma 9, ‖ga,b,x0 − ga,b,z0‖Lp∗ (Rn) ≤ ‖ga,b,x0 − ga,b,y0‖Lp∗ (Rn). On the other hand, the sym-
metries of f entail that λ(f) = ‖f − ga,b,y0‖Lp∗ (Rn). Hence,

‖ga,b,x0 − ga,b,y0‖Lp∗ (Rn) ≤ ‖f − ga,b,y0‖Lp∗ (Rn) + ‖ga,b,x0 − f‖Lp∗ (Rn) = 2λ(f)1/p∗ .

Therefore λ(f |S)1/p∗ ≤ 3λ(f)1/p∗ . ¤

The contribution of Lemma 11 below is in the same direction as Lemma 7, and provides
an estimate for λ(f |H) in terms of λ(f), when H is a hyperplane splitting f in two functions
having the same Lp∗ norm. In what follows, we denote by H+ and H− the two halfspaces into
which Rn is split by H. Moreover we denote by TH : Rn → Rn the map which associates to any
x ∈ Rn the point TH(x) obtained by reflecting x about H.

Lemma 11. Let f be any nonnegative function from W 1,p(Rn), and let H be any hyperplane
such that ∫

H+

fp∗ =
∫

H−
fp∗ =

1
2

∫

Rn

fp∗ .

Then a constant C exists such that

λ(f |H) ≤ Cλ(f)1/p∗ (4.8)

and ∫

Rn

|f ◦ TH − f |p∗ ≤ C‖f‖p∗

Lp∗ (Rn)
λ(f)1/p∗ . (4.9)

Proof. We may assume, without loss of generality, that ‖f‖Lp∗ (Rn) = 1. By Lemma 10, let

a, b, x0 be such that λ(f) = ‖f − ga,b,x0‖p∗

Lp∗ (Rn)
, and denote ga,b,x0 simply by g0. Call x the

projection of x0 on H, and set g = ga,b,x. Then,

λ(f |H) ≤
∫

Rn

|f − g|p∗ ≤ 2p∗−1

{
λ(f) +

∫

Rn

|g0 − g|p∗
}

. (4.10)

Let us now consider the half-spaces K± = (x0 − x) + H±. Clearly

1
2

=
∫

K±
gp∗
0 =

∫

H±
fp∗ =

∫

H±
gp∗ .

On interchanging K+ with K−, if necessary, we may also assume that K+ ⊆ H+ and H− ⊆ K−.
Thus ∫

H−
|g0 − g|p∗ =

∫

K+

|g0 − g|p∗ ≤
∫

H+

|g0 − g|p∗ ,

whence ∫

Rn

|g0 − g|p∗ ≤ 2
∫

H+

|g0 − g|p∗ . (4.11)
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One has g0(x) ≥ g(x) for x ∈ K+, and hence |g0(x) − g(x)|p∗ ≤ g0(x)p∗ − g(x)p∗ for the same
values of x. Thus,

∫

K+

|g0 − g|p∗ ≤
∫

K+

gp∗
0 −

∫

K+

gp∗ =
1
2
−

∫

H−
gp∗
0 =

∫

H−
fp∗ −

∫

H−
gp∗
0

≤ C
(
‖f‖Lp∗ (H−) − ‖g0‖Lp∗ (H−)

)
≤ C‖f − g0‖Lp∗ (H−) ≤ Cλ(f)1/p∗ ,

(4.12)

for some positive constant C. Note that we have made use of the fact that
∫
K+ gp∗ =

∫
H− gp∗

0 ,
by symmetry. On the other hand, by symmetry again,

∫

H+\K+

|g0 − g|p∗ ≤ 2p∗−1

∫

H+\K+

(gp∗
0 + gp∗) = 2p∗

∫

H+\K+

gp∗
0 .

We have ∫

H+\K+

gp∗
0 =

∫

H+

gp∗
0 − 1

2
=

∫

H+

gp∗
0 −

∫

H+

fp∗ ,

whence, similarly as in (4.12), one gets
∫

H+\K+

gp∗
0 ≤ Cλ(f)1/p∗ . (4.13)

Thus, (4.8) follows from (4.10), (4.11), (4.12) and (4.13). As far as (4.9) is concerned, if a, b and
x̂ ∈ H are chosen, thanks to Lemma 10, in such a way that

λ(f |H) = ‖f − ga,b,x̂‖Lp∗ (Rn) ,

then, by (4.8),
∫

H±
|f ◦ TH − f |p∗ ≤ 2p∗−1

(∫

H+

|f ◦ TH − ga,b,x̂|p∗ +
∫

H+

|f − ga,b,x̂|p∗
)

= 2p∗−1

∫

Rn

|f − ga,b,x̂|p∗ = 2p∗−1λ(f |H) ≤ Cλ(f)1/p∗ .

¤

Our next result can be regarded as a qualitative version of Theorem 1, and enables us to
restrict our attention to the case where λ(f) does not exceed some arbitrarily prescribed constant
depending only on p and n.

Lemma 12. Let n ≥ 2 and let 1 < p < n. For every ε > 0 there exists δ̄ > 0 such that if
f ∈ W 1,p(Rn), and δ(f) ≤ δ̄ then λ(f) ≤ ε.

Proof. Assume, by contradiction, that a sequence {fh} ⊆ W 1,p(Rn) exists such that lim
h→∞

δ(fh) =

0 but lim
h→∞

λ(fh) > 0. On normalizing, if necessary, we may assume that ‖fh‖Lp∗ (Rn) = 1 for

every h ∈ N. Since lim
h→∞

‖∇fh‖Lp∗ (Rn) = S(p, n), the concentration-compactness method of

Lions ([Li]) can be applied (as in [St]) to show that there exists a subsequence of rescaled-
translated functions f̃h(x) = r

n/p∗
h fh

(
rh(x − xh)

)
such that f̃h → f strongly in Lp∗(Rn) for

some f ∈ W 1,p(Rn). Notice that λ(f̃h) = λ(fh), δ(f̃h) = δ(fh) and the functional f 7→ λ(f) is
strongly continuous in Lp∗(Rn). Hence, λ(f) = lim

h→∞
λ(fh) > 0. On the other hand, by lower

semicontinuity, 0 = lim
h→∞

δ(fh) ≥ δ(f), namely δ(f) = 0. Consequently, since the functions

in (1.2) are the only optimal functions in (1.1) as proved in [CNV], one obtains λ(f) = 0, a
contradiction. ¤
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We are now at the core of the proof of Theorem 6, which basically consists of two steps. The
first one amounts to an application of suitable reflections to the original function f , and results
in a (n − 1)-symmetric function f̃ having the property that λ(f) and δ(f) are controlled from
above and from below, respectively, in terms of λ(f̃) and δ(f̃). This will be accomplished in
Lemma 13. In the second and final step, the passage from the (n−1)-symmetric function f̃ to a
n-symmetric function f̂ is performed. This requires a more delicate double reflection argument,
and also involves the conclusion of Corollary 4. Its use, which seems indispensable at this stage,
explains the presence of the exponent 1/βp∗ in estimate (4.1).

Lemma 13. Let n ≥ 2 and let 1 < p < n. Then a positive constant C exists having the following
property. For every nonnegative function f ∈ W 1,p(Rn) there exists a (n−1)-symmetric function
f̃ ∈ W 1,p(Rn) such that

λ(f) ≤ Cλ(f̃) , δ(f̃) ≤ 2n−1δ(f) . (4.14)

Proof. As usual, we may assume that ‖f‖Lp∗ (Rn) = 1. Moreover we may suppose that δ(f) ≤ δ̄

for some positive constant δ̄ (depending only on p and n) to be chosen later. Indeed, if δ(f) ≥ δ̄,
one can pick a spherically symmetric function g, independent of f , such that 0 < δ(g) ≤ 2n−1δ̄.
Thus δ(g) ≤ 2n−1δ(f), and λ(f) ≤ 2p∗ ≤ (2p∗/λ(g))λ(g) ≤ Cλ(g), and hence the first inequality
in (4.14) is fulfilled with f̃ = g.
If δ(f) ≤ δ̄, fixed any coordinate direction ek, with 1 ≤ k ≤ n, consider a hyperplane Hk

orthogonal to ek and the corresponding half-spaces H+
k and H−

k , having the property that
∫

H+
k

fp∗ =
∫

H−
k

fp∗ =
1
2

.

Denote, for simplicity, by Tk : Rn → Rn the reflection THk
about Hk, and define

f+
k (x) =

{
f(x) if x ∈ H+

k ,

f(Tk(x)) if x ∈ H−
k ;

f−k (x) =
{

f(Tk(x)) if x ∈ H+
k .

f(x) if x ∈ H−
k .

(4.15)

Clearly, f±k are nonnegative functions from W 1,p(Rn), symmetric about Hk, and satisfying
‖f±k ‖Lp∗ (Rn) = 1. Moreover,

‖∇f‖Lp(Rn) =

(∫

H+
k

|∇f+
k |p +

∫

H−
k

|∇f−k |p
)1/p

=
(

1
2

∫

Rn

|∇f+
k |p +

1
2

∫

Rn

|∇f−k |p
)1/p

≥ 1
2

(‖∇f+
k ‖Lp(Rn) + ‖∇f−k ‖Lp(Rn)

)
.

In particular,
max

{
δ(f+

k ), δ(f−k )
} ≤ 2δ(f) . (4.16)

Denote by g+
k and g−k two functions realizing the minima in λ(f±k |Hk), again thanks to Lemma 10.

Then

λ(f) ≤
∫

Rn

|f − g+
k |p

∗
=

∫

H+
k

|f+
k − g+

k |p
∗
+

∫

H−
k

|f−k − g+
k |p

∗

≤ 2p∗−1

(
λ(f+

k |Hk) + λ(f−k |Hk)
2

+
∫

H−
k

|g+
k − g−k |p

∗
)

≤ 2p∗−23p∗
(

λ(f+
k ) + λ(f−k ) +

∫

H−
k

|g+
k − g−k |p

∗
)

.

(4.17)
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Note that, in the last inequality, we have applied Lemma 7 to f±k . Now, we claim that positive
constants C and δ̄ exist having the following property: whenever δ(f) ≤ δ̄ and 1 ≤ i < j ≤ n,
there exists k ∈ {i, j} such that

∫

H−
k

|g+
k − g−k |p

∗ ≤ C

(∫

H+
k

|f+
k − g+

k |p
∗
+

∫

H−
k

|f−k − g−k |p
∗
)

. (4.18)

Observe that once this claim is established, (4.14) will follow. Indeed, take i = 1 and j = 2 and
suppose (up to relabelling the indices) that (4.18) holds with k = 1. Then from (4.17) and (4.16)
applied with k = 1, we infer that

λ(f) ≤ C ′(λ(f+
1 ) + λ(f−1 )) , max{δ(f+

1 ), δ(f−1 )} ≤ 2δ(f)

for some constant C ′. In particular, at least one of the functions f±1 , denote it by f1, satisfies
λ(f) ≤ 2C ′λ(f1) and δ(f1) ≤ 2δ(f). Moreover, f1 is 1-symmetric and satisfies ‖f1‖Lp∗ (Rn) = 1.
Then, one can repeat the argument starting from f1, and obtain a 2-symmetric function f2

fulfilling λ(f) ≤ 4C ′2λ(f2) and δ(f2) ≤ 4δ(f). On iterating this procedure, (4.14) follows.
We have now to prove our claim. The crucial observation is that, when δ is sufficiently small,
all the functions g±k , 1 ≤ k ≤ n, are close to each other in the Lp∗ norm, in the sense that a
constant C0 exists such that

∫

Rn

|gσ
i − gτ

j |p
∗ ≤ C0

∫

Hσ
i ∩Hτ

j

|gσ
i − gτ

j |p
∗

for every 1 ≤ i < j ≤ n, σ, τ ∈ {+,−} . (4.19)

To verify (4.19), let us begin by noting that constants % and C1 exist such that if

(i)
∫

Rn

gp∗
a,b,x0

=
∫

Rn

gp∗
c,d,y0

= 1,

(ii) I and J are two orthogonal half-spaces with x0 ∈ ∂I and y0 ∈ ∂J ,

(iii)
∫

I∩J
gp∗
a,b,x0

≥ 1
8

and
∫

I∩J
gp∗
c,d,y0

≥ 1
8
,

(iv)
∫

Rn

|ga,b,x0 − gc,d,y0 |p
∗ ≤ %,

then ∫

Rn

|ga,b,x0 − gc,d,y0 |p
∗ ≤ C1

∫

I∩J
|ga,b,x0 − gc,d,y0 |p

∗
.

Since (4.19) is a consequence of this assertion with the choice ga,b,x0 = gσ
i , gc,d,y0 = gτ

j , I = Hσ
i

and J = Hτ
j we have only to check that (i)-(iv) are fulfilled in the present situation.

Properties (i), (ii) hold by construction. The choice of δ̄ comes into play in connection with
conditions (iii) and (iv). Actually condition (iii) is easily seen to hold provided that λ(f) is
sufficiently small, and we may suppose that this is the case, thanks to Lemma 12, since we are
assuming that δ(f) ≤ δ̄. Inequality (iv) relies upon Lemmas 11 and 12. Indeed,

‖gσ
i −gτ

j ‖Lp∗ (Rn) ≤ ‖gσ
i −fσ

i ‖Lp∗ (Rn)+‖fσ
i −f‖Lp∗ (Rn)+‖f−f τ

j ‖Lp∗ (Rn)+‖f τ
j −gτ

j ‖Lp∗ (Rn) . (4.20)

By (4.9), ∫

Rn

|fσ
i − f |p∗ =

1
2

∫

Rn

|f ◦ Ti − f |p∗ ≤ Cλ(f)1/p∗ ,

and hence the second and the third norm on the right-hand side of (4.20) can be made arbitrarily
small, owing to Lemma 12, by a suitable choice of δ̄. The same assertion holds also for the other
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two norms, inasmuch as
∫

Rn

|gσ
i − fσ

i |p
∗ ≤ 2p∗−1

(
λ(f |Hi) + ‖f − fσ

i ‖p∗

Lp∗ (Rn)

)
≤ Cλ(f)1/p∗ ,

for some constant C, by (4.8). Inequality (4.19) is thus established. It remains only to make
use of (4.19) to prove the claim concerning (4.18). To fix ideas, suppose that i = 1 and j = 2.
Set, for k = 1, 2,

hk = g+
k χ

H+
k

+ g−k χ
H−

k

.

By (4.19)
∫

Rn

|h1 − h2|p∗ ≥
∫

H+
1 ∩H+

2

|h1 − h2|p∗ =
∫

H+
1 ∩H+

2

|g+
1 − g+

2 |p
∗ ≥ 1

C0

∫

Rn

|g+
1 − g+

2 |p
∗
.

A similar chain, with H+
1 ∩H+

2 replaced by H−
1 ∩H+

2 yields
∫

Rn

|h1 − h2|p∗ ≥ 1
C0

∫

Rn

|g−1 − g+
2 |p

∗
.

In conclusion, ∫

Rn

|g+
1 − g−1 |p

∗ ≤ 2p∗−1C0

∫

Rn

|h1 − h2|p∗ . (4.21)

An analogous argument tells us that
∫

Rn

|g+
2 − g−2 |p

∗ ≤ 2p∗−1C0

∫

Rn

|h1 − h2|p∗ .

On the other hand,
∫

Rn

|h1 − h2|p∗ ≤ 2p∗−1

(∫

Rn

|h1 − f |p∗ +
∫

Rn

|h2 − f |p∗
)

= 2p∗−1

(∫

H+
1

|g+
1 − f+

1 |p
∗
+

∫

H−
1

|g−1 − f−1 |p
∗
+

∫

H+
2

|g+
2 − f+

2 |p
∗
+

∫

H−
2

|g−2 − f−2 |p
∗
)

.

(4.22)

Combining (4.21)–(4.22) ensures that (4.18) holds, for an appropriate constant C, with either
k = 1 or k = 2. ¤

Proof of Theorem 6. We may assume that ‖f‖Lp∗ (Rn) = 1 and, by Lemma 13, that f is (n− 1)-
symmetric. As in the proof of that lemma, we may also suppose that δ(f) does not exceed a
constant δ̄ to be chosen later. Finally, up to an isometry, we may assume that f is symmetric
about the last (n− 1)-coordinate hyperplanes and that

∫

{x1>0}
fp∗ =

1
2

.

Let f+ and f− be defined as in (4.15), with H1 = {x1 = 0}; denote by C0 a (sufficiently large)
positive constant to be chosen later. By (4.16),

max
{
δ(f+), δ(f−)

} ≤ 2δ(f) .

Thus, if either λ(f) ≤ C0λ(f+), or λ(f) ≤ C0λ(f−), inequality (4.1) immediately follows, with
either f̂ = f+ or f̂ = f−, since both f+ and f− are n-symmetric. Therefore, we may focus on
the case where

λ(f) ≥ C0 max{λ(f+), λ(f−)} . (4.23)



26 A. CIANCHI, N. FUSCO, F. MAGGI, AND A. PRATELLI

Consider the set Q = {x ∈ Rn : |x1| ≤ x2} and define the function f̂ : Rn → [0,∞) as

f̂(x) =





f(x) , if x ∈ Q ,

f(R1(x)) , if x ∈ R1(Q) ,

f(R2(x)) , if x ∈ R2(Q ∪R1(Q)) ,

where R1, R2 : Rn → Rn denote the reflections about the hyperplanes {x ∈ Rn : x2 = x1} and
{x ∈ Rn : x2 = −x1}, respectively; notice that f̂ is symmetric with respect to the hyperplanes
{x1 = ±x2} and {x1 = 0} for 3 ≤ i ≤ n, hence n−symmetric. Moreover, on setting Q+ = {x ∈
Q : x1 > 0} and Q− = {x ∈ Q : x1 < 0}, one has

f̂ = f+ in Q+ , f̂ = f− in Q− .

We claim that, if C0 is sufficiently large, then a constant C exists such that (4.1) holds. Let us
begin by proving the first inequality: obviously

∫
Rn f̂p∗ ≤ 2 so that, on denoting by ĝ, g+ and

g− functions having the form (1.2), at which the infima in the definitions of λ(f̂ |{0}), λ(f+|{0})
and λ(f−|{0}) are attained, we have

3p∗λ(f̂) ≥ λ(f̂ |{0}) =

∫

Rn

|f̂ − ĝ|p∗
∫

Rn

f̂p∗
= 4

∫

Q
|f − ĝ|p∗

∫

Rn

f̂p∗
≥ 2

(∫

Q+

|f+ − ĝ|p∗ +
∫

Q−
|f− − ĝ|p∗

)

= 2
(∫

Q+

|f+ − ĝ|p∗ +
∫

Q+

|f− − ĝ|p∗
)
≥ 1

2p∗−2

∫

Q+

|f+ − f−|p∗ .

Observe that the first inequality holds thanks to Lemma 7. We are going to show that
∫

Q+

|f+ − f−|p∗ ≥ λ(f)
4p∗+2

, (4.24)

provided that C0 is large enough, whence the first inequality in (4.1) follows. One has

‖f+ − f−‖Lp∗ (Q+) ≥
1
2
‖f+ − f−‖Lp∗ (Q)

≥ 1
2

(
‖g+ − g−‖Lp∗ (Q) − ‖f+ − g+‖Lp∗ (Q) − ‖f− − g−‖Lp∗ (Q)

)
.

(4.25)

Moreover ∫

Q
|f± − g±|p∗ ≤

∫

Rn

|f± − g±|p∗ = λ(f±|{0}) ≤ 3p∗λ(f±) ≤ 3p∗

C0
λ(f) , (4.26)

where we have exploited Lemma 7 and (4.23). From (4.25) and (4.26) we get

‖f+ − f−‖Lp∗ (Q+) ≥
1
2

(
‖g+ − g−‖Lp∗ (Q) − 2

(
3p∗

C0
λ(f)

)1/p∗
)

. (4.27)

On the other hand, owing to (4.26),

λ(f) ≤
∫

Rn

|f − g+|p∗ =
1
2

∫

Rn

|g+ − f+|p∗ +
1
2

∫

Rn

|g+ − f−|p∗

≤ 3p∗

2C0
λ(f) + 2p∗−2

(
3p∗

C0
λ(f) +

∫

Rn

|g+ − g−|p∗
)

.

Thus, ∫

Rn

|g+ − g−|p∗ ≥ 1
2p∗−2

(
1− 3p∗

C0

( 1
2

+ 2p∗−2
))

λ(f) ≥ 1
2p∗ λ(f) (4.28)
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if C0 is sufficiently large. Coupling (4.27) and (4.28) yields (4.24), provided that C0 is large
enough.
Let us now prove the second inequality in (4.1). One has

∣∣∣∣‖f‖Lp∗ (Q+) −
1

81/p∗

∣∣∣∣ =
∣∣∣‖f+‖Lp∗ (Q+) − ‖g+‖Lp∗ (Q+)

∣∣∣ ≤ ‖f+ − g+‖Lp∗ (Q+) .

Since a constant C exists such that |sp∗ − rp∗ | ≤ C|s− r| if r, s ∈ [0, 1], we have
∣∣∣∣
∫

Q+

fp∗ − 1
8

∣∣∣∣ ≤ C‖f+ − g+‖Lp∗ (Q+) ≤ Cλ(f+|{0})1/p∗ ≤ Cλ(f+)1/p∗ ≤ Cδ(f+)1/βp∗

≤ Cδ(f)1/βp∗
(4.29)

for a suitable constant C. Note that the third inequality relies on Lemma 7, whereas Corollary 4
plays its role in the fourth one. The same estimate holds also in Q−, U+ = {x2 > 0, x1 > 0}\Q

and U− = {x2 > 0, x1 < 0} \Q. As a consequence,
∣∣∣∣
∫

Rn

f̂p∗ − 1
∣∣∣∣ ≤ Cδ(f)1/βp∗ . (4.30)

As far as the gradient of f̂ is concerned, we obviously have
∫

Rn

|∇f̂p| = 4
∫

Q
|∇f̂ |p = 4

(∫

{x2>0}
|∇f |p −

∫

U+∪U−
|∇f |p

)
. (4.31)

Since f is symmetric about the hyperplane {x2 = 0},
∫

{x2>0}
|∇f |p =

1
2

∫

Rn

|∇f |p = S(p, n)p (1 + δ(f))p

2
≤ S(p, n)p (1 + Cδ(f))

2
. (4.32)

Here, we have made use of the fact that δ(f) ≤ δ̄. Applying the Sobolev inequality (1.1) to the
function obtained reflecting f|U+ first about {x2 = x1}, then about {x1 = 0}, and finally about
{x2 = 0}, and keeping in mind (4.29), we have

∫

U+

|∇f |p ≥ 8−1+p/p∗S(p, n)p

(∫

U+

fp∗
)p/p∗

≥ 8−1+p/p∗S(p, n)p

(
1
8
− Cδ(f)1/βp∗

)p/p∗

≥ S(p, n)p

(
1
8
− Cδ(f)1/βp∗

)
,

provided that δ̄ is small enough. An analogous estimate holds for
∫
U− |∇f |p. Combining these

estimates with (4.31) and (4.32) tells us that
∫

Rn

|∇f̂ |p ≤ 4
(

S(p, n)p(1 + Cδ(f))
2

− 2S(p, n)p
( 1

8
− Cδ(f)1/βp∗

))

≤ S(p, n)p(1 + Cδ(f)1/βp∗) .

Therefore, from (4.30) we conclude that

δ(f̂) =
‖∇f̂‖Lp(Rn

S(p, n)‖f̂‖Lp∗ (Rn)

− 1 ≤ S(p, n)(1 + Cδ(f)1/βp∗)
S(p, n)(1− Cδ(f)1/βp∗)

− 1 ≤ Cδ(f)1/βp∗ ,

namely the second inequality in (4.1). ¤
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