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Abstract

A long-standing obstacle to progress in deep

learning is the problem of vanishing and ex-

ploding gradients. Although, the problem has

largely been overcome via carefully constructed

initializations and batch normalization, archi-

tectures incorporating skip-connections such as

highway and resnets perform much better than

standard feedforward architectures despite well-

chosen initialization and batch normalization. In

this paper, we identify the shattered gradients

problem. Specifically, we show that the cor-

relation between gradients in standard feedfor-

ward networks decays exponentially with depth

resulting in gradients that resemble white noise

whereas, in contrast, the gradients in architec-

tures with skip-connections are far more resis-

tant to shattering, decaying sublinearly. Detailed

empirical evidence is presented in support of the

analysis, on both fully-connected networks and

convnets. Finally, we present a new “looks lin-

ear” (LL) initialization that prevents shattering,

with preliminary experiments showing the new

initialization allows to train very deep networks

without the addition of skip-connections.

1. Introduction

Deep neural networks have achieved outstanding perfor-

mance (Krizhevsky et al., 2012; Szegedy et al., 2015; He

et al., 2016b). Reducing the tendency of gradients to van-

ish or explode with depth (Hochreiter, 1991; Bengio et al.,

1994) has been essential to this progress.

Combining careful initialization (Glorot & Bengio, 2010;
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He et al., 2015) with batch normalization (Ioffe & Szegedy,

2015) bakes two solutions to the vanishing/exploding gra-

dient problem into a single architecture. The He initial-

ization ensures variance is preserved across rectifier lay-

ers, and batch normalization ensures that backpropagation

through layers is unaffected by the scale of the weights

(Ioffe & Szegedy, 2015).

It is perhaps surprising then that residual networks (resnets)

still perform so much better than standard architectures

when networks are sufficiently deep (He et al., 2016a;b).

This raises the question: If resnets are the solution, then

what is the problem? We identify the shattered gradient

problem: a previously unnoticed difficulty with gradients

in deep rectifier networks that is orthogonal to vanishing

and exploding gradients. The shattering gradients problem

is that, as depth increases, gradients in standard feedfor-

ward networks increasingly resemble white noise. Resnets

dramatically reduce the tendency of gradients to shatter.

Our analysis applies at initialization. Shattering should de-

crease during training. Understanding how shattering af-

fects training is an important open problem.

Terminology. We refer to networks without skip con-

nections as feedforward nets—in contrast to residual nets

(resnets) and highway nets. We distinguish between the

real-valued output of a rectifier and its binary activation:

the activation is 1 if the output is positive and 0 otherwise.

1.1. The Shattered Gradients Problem

The first step is to simply look at the gradients of neural net-

works. Gradients are averaged over minibatches, depend

on both the loss and the random sample from the data, and

are extremely high-dimensional, which introduces multiple

confounding factors and makes visualization difficult (but

see section 4). We therefore construct a minimal model

designed to eliminate these confounding factors. The min-

imal model is a neural network fW : R ! R taking scalars

to scalars; each hidden layer contains N = 200 rectifier

neurons. The model is not intended to be applied to real

data. Rather, it is a laboratory where gradients can be iso-

lated and investigated.

We are interested in how the gradient varies, at initializa-
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(a) 1-layer feedforward. (b) 24-layer feedforward. (c) 50-layer resnet. (d) Brown noise. (e) White noise.

Figure 1: Comparison between noise and gradients of rectifier nets with 200 neurons per hidden layer. Columns

d–e: brown and white noise. Columns a–c: Gradients of neural nets plotted for inputs taken from a uniform grid. The

24-layer net uses mean-centering. The 50-layer net uses batch normalization with � = 0.1, see Eq. (2).

tion, as a function of the input:

dfW
dx

(x(i)) where x(i) 2 [�2, 2] is in a (1)

1-dim grid of M = 256 “data points”.

Updates during training depend on derivatives with respect

to weights, not inputs. Our results are relevant because, by

the chain rule, @fW
@wij

= @fW
@nj

@nj

@wij
. Weight updates thus de-

pend on @fW
@nj

—i.e. how the output of the network varies

with the output of neurons in one layer (which are just in-

puts to the next layer).

The top row of figure 1 plots dfW
dx

(x(i)) for each point x(i)

in the 1-dim grid. The bottom row shows the (absolute

value) of the covariance matrix: |(g � ḡ)(g � ḡ)>|/�2
g

where g is the 256-vector of gradients, ḡ the mean, and �2
g

the variance.

If all the neurons were linear then the gradient would be

a horizontal line (i.e. the gradient would be constant as a

function of x). Rectifiers are not smooth, so the gradients

are discontinuous.

Gradients of shallow networks resemble brown noise.

Suppose the network has a single hidden layer: fw,b(x) =
w>⇢(x · v � b). Following Glorot & Bengio (2010),

weights w and biases b are sampled from N (0,�2) with

�2 = 1
N

. Set v = (1, . . . , 1).

Figure 1a shows the gradient of the network for inputs

x 2 [�2, 2] and its covariance matrix. Figure 1d shows

a discrete approximation to brownian motion: BN (t) =
Pt

s=1 Ws where Ws ⇠ N (0, 1
N
). The plots are strikingly

similar: both clearly exhibit spatial covariance structure.

The resemblance is not coincidental: section A1 applies

Donsker’s theorem to show the gradient converges to brow-

nian motion as N ! 1.

Gradients of deep networks resemble white noise. Fig-

ure 1b shows the gradient of a 24-layer fully-connected rec-

tifier network. Figure 1e shows white noise given by sam-

ples Wk ⇠ N (0, 1). Again, the plots are strikingly similar.

Since the inputs lie on a 1-dim grid, it makes sense to

compute the autocorrelation function (ACF) of the gradi-

ent. Figures 2a and 2d compare this function for feed-

forward networks of different depth with white and brown

noise. The ACF for shallow networks resembles the ACF

of brown noise. As the network gets deeper, the ACF

quickly comes to resemble that of white noise.

Theorem 1 explains this phenomenon. We show that corre-

lations between gradients decrease exponentially 1
2L

with

depth in feedforward rectifier networks.

Training is difficult when gradients behave like white

noise. The shattered gradient problem is that the spatial

structure of gradients is progressively obliterated as neural

nets deepen. The problem is clearly visible when inputs

are taken from a one-dimensional grid, but is difficult to

observe when inputs are randomly sampled from a high-

dimensional dataset.

Shattered gradients undermine the effectiveness of algo-

rithms that assume gradients at nearby points are sim-

ilar such as momentum-based and accelerated methods

(Sutskever et al., 2013; Balduzzi et al., 2017). If dfW
dnj

be-

haves like white noise, then a neuron’s effect on the output

of the network (whether increasing weights causes the net-

work to output more or less) becomes extremely unstable
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Figure 2: Autocorrelation Function (ACF). Comparison of the ACF between white and brown noise, and feedforward

and resnets of different depths. Average over 20 runs.

making learning difficult.

Gradients of deep resnets lie in between brown and

white noise. Introducing skip-connections allows much

deeper networks to be trained (Srivastava et al., 2015; He

et al., 2016b;a; Greff et al., 2017). Skip-connections signif-

icantly change the correlation structure of gradients. Fig-

ure 1c shows the concrete example of a 50-layer resnet

which has markedly more structure than the equivalent

feedforward net (figure 1b). Figure 2b shows the ACF of

resnets of different depths. Although the gradients become

progressively less structured, they do not whiten to the ex-

tent of the gradients in standard feedforward networks—

there are still correlations in the 50-layer resnet whereas in

the equivalent feedforward net, the gradients are indistin-

guishable from white noise. Figure 2c shows the dramatic

effect of recently proposed �-rescaling (Szegedy et al.,

2016): the ACF of even the 50 layer network resemble

brown-noise.

Theorem 3 shows that correlations between gradients decay

sublinearly with depth 1p
L

for resnets with batch normal-

ization. We also show, corollary 1, that modified highway

networks (where the gates are scalars) can achieve a depth

independent correlation structure on gradients. The analy-

sis explains why skip-connections, combined with suitable

rescaling, preserve the structure of gradients.

1.2. Outline

Section 2 shows that batch normalization increases neural

efficiency. We explore how batch normalization behaves

differently in feedforward and resnets, and draw out facts

that are relevant to the main results.

The main results are in section 3. They explain why gra-

dients shatter and how skip-connections reduce shatter-

ing. The proofs are for a mathematically amenable model:

fully-connected rectifier networks with the same number of

hidden neurons in each layer. Section 4 presents empirical

results which show gradients similarly shatter in convnets

for real data. It also shows that shattering causes average

gradients over minibatches to decrease with depth (relative

to the average variance of gradients).

Finally, section 5 proposes the LL-init (“looks linear initial-

ization”) which eliminates shattering. Preliminary experi-

ments show the LL-init allows training of extremely deep

networks (⇠200 layers) without skip-connections.

1.3. Related work

Carefully initializing neural networks has led to a series

of performance breakthroughs dating back (at least) to the

unsupervised pretraining in Hinton et al. (2006); Bengio

et al. (2006). The insight of Glorot & Bengio (2010) is

that controlling the variance of the distributions from which

weights are sampled allows to control how layers progres-

sively amplify or dampen the variance of activations and

error signals. More recently, He et al. (2015) refined the

approach to take rectifiers into account. Rectifiers effec-

tively halve the variance since, at initialization and on av-

erage, they are active for half their inputs. Orthogonalizing

weight matrices can yield further improvements albeit at a

computational cost (Saxe et al., 2014; Mishkin & Matas,

2016). The observation that the norms of weights form a

random walk was used by Sussillo & Abbott (2015) to tune

the gains of neurons.

In short, it has proven useful to treat weights and gradients

as random variables, and carefully examine their effect on

the variance of the signals propagated through the network.

This paper presents a more detailed analysis that considers

correlations between gradients at different datapoints.

The closest work to ours is Veit et al. (2016), which shows

resnets behave like ensembles of shallow networks. We

provide a more detailed analysis of the effect of skip-

connections on gradients. A recent paper showed resnets

have universal finite-sample expressivity and may lack spu-

rious local optima (Hardt & Ma, 2017) but does not explain

why deep feedforward nets are harder to train than resnets.

An interesting hypothesis is that skip-connections improve

performance by breaking symmetries (Orhan, 2017).
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Figure 3: Activations and coactivations in feedforward

networks. Plots are averaged over 100 fully connected rec-

tifier networks with 100 hidden units per layer. Without

BN: solid. With BN: dotted. Activations (green): Propor-

tion of inputs for which neurons in a given layer are active,

on average. Coactivations (blue): Proportion of distinct

pairs of inputs for which neurons are active, on average.

2. Observations on batch normalization

Batch normalization was introduced to reduce covariate

shift (Ioffe & Szegedy, 2015). However, it has other ef-

fects that are less well-known – and directly impact the

correlation structure of gradients. We investigate the effect

of batch normalization on neuronal activity at initialization

(i.e. when it mean-centers and rescales to unit variance).

We first investigate batch normalization’s effect on neural

activations. Neurons are active for half their inputs on aver-

age, figure 3, with or without batch normalization. Figure 3

also shows how often neurons are co-active for two inputs.

With batch normalization, neurons are co-active for 1
4 of

distinct pairs of inputs, which is what would happen if acti-

vations were decided by unbiased coin flips. Without batch

normalization, the co-active proportion climbs with depth,

suggesting neuronal responses are increasingly redundant.

Resnets with batch normalization behave the same as feed-

forward nets (not shown).

Figure 4 takes a closer look. It turns out that computing the

proportion of inputs causing neurons to be active on av-

erage is misleading. The distribution becomes increasingly

bimodal with depth. In particular, neurons are either always

active or always inactive for layer 50 in the feedforward net

without batch normalization (blue histogram in figure 4a).

Batch normalization causes most neurons to be active for

half the inputs, blue histograms in figures 4b,c.

Neurons that are always active may as well be linear. Neu-

rons that are always inactive may as well not exist. It fol-

lows that batch normalization increases the efficiency with

which rectifier nonlinearities are utilized.

The increased efficiency comes at a price. The raster plot

for feedforward networks resembles static television noise:

the spatial structure is obliterated. Resnets (Figure 4c) ex-

hibit a compromise where neurons are utilized efficiently

but the spatial structure is also somewhat preserved. The

preservation of spatial structure is quantified via the conti-

guity histograms which counts long runs of consistent acti-

vation. Resnets maintain a broad distribution of contiguity

even with deep networks whereas batch normalization on

feedforward nets shatters these into small sections.

3. Analysis

This section analyzes the correlation structure of gradients

in neural nets at initialization. The main ideas and results

are presented; the details provided in section A3.

Perhaps the simplest way to probe the structure of a ran-

dom process is to measure the first few moments: the mean,

variance and covariance. We investigate how the correla-

tion between typical datapoints (defined below) changes

with network structure and depth. Weaker correlations

correspond to whiter gradients. The analysis is for fully-

connected networks. Extending to convnets involves (sig-

nificant) additional bookkeeping.

Proof strategy. The covariance defines an inner product

on the vector space of real-valued random variables with

mean zero and finite second moment. It was shown in Bal-

duzzi et al. (2015); Balduzzi (2016) that the gradients in

neural nets are sums of path-weights over active paths, see

section A3. The first step is to observe that path-weights are

orthogonal with respect to the variance inner product. To

express gradients as linear combinations of path-weights is

thus to express them over an orthogonal basis.

Working in the path-weight basis reduces computing the

covariance between gradients at different datapoints to

counting the number of co-active paths through the net-

work. The second step is to count co-active paths and adjust

for rescaling factors (e.g. due to batch normalization).

The following assumption is crucial to the analysis:

Assumption 1 (typical datapoints). We say x(i) and x(j)

are typical datapoints if half of neurons per layer are active

for each and a quarter per layer are co-active for both. We

assume all pairs of datapoints are typical.

The assumption will not hold for every pair of datapoints.

Figure 3 shows the assumption holds, on average, under

batch normalization for both activations and coactivations.

The initialization in He et al. (2015) assumes datapoints

activate half the neurons per layer. The assumption on

co-activations is implied by (and so weaker than) the as-

sumption in Choromanska et al. (2015) that activations are

Bernoulli random variables independent of the inputs.
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(a) Feedforward net without batch norm. (b) Feedforward with batch normalization. (c) Resnet with batch normalization.

Figure 4: Activation of rectifiers in deep networks. Raster-plots: Activations of hidden units (y-axis) for inputs

indexed by the x-axis. Left histogram (activation per unit): distribution of average activation levels per neuron. Right

histogram (contiguity): distribution of “contiguity” (length of contiguous sequences of 0 or 1) along rows in the raster plot.

Correlations between gradients. Weight updates in a

neural network are proportional to

∆wjk /
#mb
X

i=1

P
X

p=1

@`

@fp

@fp
@nk

@nk

@wjk

�

x(i)
�

.

where fp is the pth coordinate of the output of the network

and nk is the output of the kth neuron. The derivatives @`
@fp

and @nk

@wjk
do not depend on the network’s internal struc-

ture. We are interested in the middle term
@fp
@nk

, which

does. It is mathematically convenient to work with the sum
PP

p=1 fp over output coordinates of the network. Section 4

shows that our results hold for convnets on real-data with

the cross-entropy loss. See also remark A2.

Definition 1. Let ri :=
PP

p=1
@fp
@n

(x(i)) be the deriva-

tive with respect to neuron n given input x(i) 2 D. For

each input x(i), the derivative ri is a real-valued random

variable. It has mean zero since weights are sampled from

distributions with mean zero. Denote the covariance and

correlation of gradients by

C(i, j) = E[ri rj ] and R(i, j) =
E[ri rj ]

q

E[r2
i ] · E[r2

j ]
,

where the expectations are w.r.t the distribution on weights.

3.1. Feedforward networks

Without loss of generality, pick a neuron n separated from

the output by L layers. The first major result is

Theorem 1 (covariance of gradients in feedforward nets).

Suppose weights are initialized with variance �2 = 2
N

fol-

lowing He et al. (2015). Then

a) The variance of the gradient at x(i) is C fnn(i) = 1.

b) The covariance is C fnn(i, j) = 1
2L

.

Part (a) recovers the observation in He et al. (2015) that

setting �2 = 2
N

preserves the variance across layers in rec-

tifier networks. Part (b) is new. It explains the empirical

observation, figure 2a, that gradients in feedforward nets

whiten with depth. Intuitively, gradients whiten because

the number of paths through the network grows exponen-

tially faster with depth than the fraction of co-active paths,

see section A3 for details.

3.2. Residual networks

The residual modules introduced in He et al. (2016a) are

xl = xl�1 +Wl⇢BN

⇣

Vl⇢BN (xl�1)
⌘

where ⇢BN (a) = ⇢(BN(a)) and ⇢(a) = max(0, a) is the

rectifier. We analyse the stripped-down variant

xl = ↵ ·
�

xl�1 + � ·Wl⇢BN (xl�1)
�

(2)

where ↵ and � are rescaling factors. Dropping Vl⇢BN

makes no essential difference to the analysis. The �-

rescaling was introduced in Szegedy et al. (2016) where

it was observed setting � 2 [0.1, 0.3] reduces instability.

We include ↵ for reasons of symmetry.

Theorem 2 (covariance of gradients in resnets). Consider

a resnet with batch normalization disabled and ↵ = � =
1. Suppose �2 = 2

N
as above. Then

a) The variance of the gradient at x(i) is Cres(i) = 2L.
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b) The covariance is Cres(i, j) =
�

3
2

�L
.

The correlation is Rres(i, j) =
�

3
4

�L
.

The theorem implies there are two problems in resnets

without batch normalization: (i) the variance of gradients

grows and (ii) their correlation decays exponentially with

depth. Both problems are visible empirically.

3.3. Rescaling in Resnets

A solution to the exploding variance of resnets is to rescale

layers by ↵ = 1p
2

which yields

Cres

↵=
p
2
(i) = 1 and Rres

↵=
p
2
(i, j) =

✓

3

4

◆L

and so controls the variance but the correlation between

gradients still decays exponentially with depth. Both theo-

retical predictions hold empirically.

In practice, ↵-rescaling is not used. Instead, activations are

rescaled by batch normalization (Ioffe & Szegedy, 2015)

and, more recently, setting � 2 [0.1, 0.3] per Szegedy et al.

(2016). The effect is dramatic:

Theorem 3 (covariance of gradients in resnets with BN and

rescaling). Under the assumptions above, for resnets with

batch normalization and �-rescaling,

a) the variance is Cres
�,BN(i) = �2(L� 1) + 1;

b) the covariance1 is Cres
�,BN(i, j) ⇠ �

p
L; and

the correlation is Rres
�,BN(i, j) ⇠ 1

�
p
L

.

The theorem explains the empirical observation, figure 2a,

that gradients in resnets whiten much more slowly with

depth than feedforward nets. It also explains why setting

� near zero further reduces whitening.

Batch normalization changes the decay of the correlations

from 1
2L

to 1p
L

. Intuitively, the reason is that the variance

of the outputs of layers grows linearly, so batch normal-

ization rescales them by different amounts. Rescaling by

� introduces a constant factor. Concretely, the model pre-

dicts using batch normalization with � = 0.1 on a 100-

layer resnet gives typical correlation Rres
0.1,BN(i, j) = 0.7.

Setting � = 1.0 gives Rres
1.0,BN(i, j) = 0.1. By contrast, a

100-layer feedforward net has correlation indistinguishable

from zero.

3.4. Highway networks

Highway networks can be thought of as a generalization of

resnets, that were in fact introduced slightly earlier (Srivas-

1See section A3.4 for exact computations.

tava et al., 2015; Greff et al., 2017). The standard highway

network has layers of the form

xl =
�

1� T (xl�1)
�

· xl�1 + T (xl�1) ·H(xl�1)

where T (·) and H(·) are learned gates and features respec-

tively. Consider the following modification where �1 and

�2 are scalars satisfying �2
1 + �2

2 = 1:

xl = �1 · xl�1 + �2 ·W
l⇢(xl�1)

The module can be recovered by judiciously choosing ↵

and � in equation (2). However, it is worth studying in its

own right:

Corollary 1 (covariance of gradients in highway net-

works). Under the assumptions above, for modified high-

way networks with �-rescaling,

a) the variance of gradients is CHN
� (i) = 1; and

b) the correlation is RHN
� (i, j) =

�

�2
1 + 1

2�
2
2

�L
.

In particular, if �1 =
q

1� 1
L

and �2 =
q

1
L

then the

correlation between gradients does not decay with depth

lim
L!1

RHN
� (i, j) =

1p
e
.

The tradeoff is that the contributions of the layers becomes

increasingly trivial (i.e. close to the identity) as L ! 1.

4. Gradients shatter in convnets

In this section we provide empirical evidence that the main

results also hold for deep convnets using the CIFAR-10

dataset. We instantiate feedforward and resnets with 2,

4, 10, 24 and 50 layers of equivalent size. Using a slight

modification of the “bottleneck” architecture in He et al.

(2016a), we introduce one skip-connection for every two

convolutional layers and both network architectures use

batch normalization.

Figures 5a and b compare the covariance of gradients in

the first layer of feedforward and resnets (� = 0.1) with a

minibatch of 256 random samples from CIFAR-10 for net-

works of depth 2 and 50. To highlight the spatial structure

of the gradients, the indices of the minibatches were re-

ordered according to a k-means clustering (k = 10) applied

to the gradients of the two-layer networks. The same per-

mutation is used for all networks within a row. The spatial

structure is visible in both two-layer networks, although it

is more apparent in the resnet. In the feedforward network

the structure quickly disappears with depth. In the resnet,

the structure remains apparent at 50 layers.
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Figure 5: Results on CIFAR-10. Figures a–b show the covariance matrices for a single minibatch for feedforward- and

resnets. Figures c–d show the relative effective rank and average norms of the gradients averaged over 30 minibatches.

To quantify this effect we consider the “whiteness” of the

gradient using relative effective rank. Let ∆ be the ma-

trix whose columns are the gradients with respect to the

input, for each datapoint x(i) in a minibatch. The effective

rank is r(∆) = tr(∆>
∆)/k∆k22 and measures the intrin-

sic dimension of a matrix (Vershynin, 2012). It is bounded

above by the rank of ∆—a matrix with highly correlated

columns and therefore more structure will have a lower ef-

fective rank. We are interested in the effective rank of the

covariance matrix of the gradients relative to a “white” ma-

trix Y of the same dimensions with i.i.d. Gaussian entries.

The relative effective rank r(∆)/r(Y) measures the simi-

larity between the second moments of ∆ and Y.

Figure 5c shows that the relative effective rank (averaged

over 30 minibatches) grows much faster as a function of

depth for networks without skip-connections. For resnets,

the parameter � slows down the rate of growth of the effec-

tive rank as predicted by theorem 3.

Figure 5d shows the average `2-norm of the gradient in

each coordinate (normalized by the standard deviation

computed per minibatch). We observe that this quantity

decays much more rapidly as a function of depth for feed-

forward networks. This is due to the effect of averaging

increasingly whitening gradients within each minibatch.

In other words, the noise within minibatches overwhelms

the signal. The phenomenon is much less pronounced in

resnets.

Taken together these results confirm the results in section 3

for networks with convolutional layers and show that the

gradients in resnets are indeed more structured than those

in feedforward nets and therefore do not vanish when av-

eraged within a minibatch. This phenomena allows for the

training of very deep resnets.

5. The “looks linear” initialization

Shattering gradients are not a problem for linear networks,

see remark after equation (1). Unfortunately, linear net-

works are not useful since they lack expressivity.

The LL-init combines the best of linear and rectifier nets by

initializing rectifiers to look linear. Several implementa-

tions are possible; see Zagoruyko & Komodakis (2017) for

related architectures yielding good empirical results. We

use concatenated rectifiers or CReLUs (Shang et al., 2016):

x 7!
✓

⇢(x)
⇢(�x)

◆

The key observation is that initializing weights with a mir-

rored block structure yields linear outputs

�

W �W
�

·

✓

⇢(x)
⇢(�x)

◆

= W⇢(x)�W⇢(�x) = Wx.

The output will cease to be linear as soon as weight updates

cause the two blocks to diverge.

An alternative architecture is based on the PReLU intro-

duced in He et al. (2015):

PReLU: ⇢p(x) =

(

x if x > 0

ax else.

Setting a = 1 at initialization obtains a different kind of

LL-init. Preliminary experiments, not shown, suggest that

the LL-init is more effective on the CReLU-based architec-

ture than PReLU. The reason is unclear.

Orthogonal convolutions. A detailed analysis of learn-

ing in linear neural networks by Saxe et al. (2014) showed,

theoretically and experimentally, that arbitrarily deep linear

networks can be trained when initialized with orthogonal

weights. Motivated by these results, we use the LL-init in

conjunction with orthogonal weights.
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Figure 6: CIFAR-10 test accuracy. Comparison of test ac-

curacy between networks of different depths with and with-

out LL initialization.

We briefly describe how we orthogonally initialize a kernel

K of size A ⇥ B ⇥ 3 ⇥ 3 where A � B. First, set all the

entries of K to zero. Second, sample a random matrix W

of size (A ⇥ B) with orthonormal columns. Finally, set

K[:, :, 2, 2] := W. The kernel is used in conjunction with

strides of one and zero-padding.

5.1. Experiments

We investigated the performance of the LL-init on very

deep networks, evaluated on CIFAR-10. The aim was not

to match the state-of-the-art, but rather to test the hypothe-

sis that shattered gradients adversely affect training in very

deep rectifier nets. We therefore designed an experiment

where (concatenated) rectifier nets are and are not shattered

at initialization. We find that the LL-init allows to train sig-

nificantly deeper nets, which confirms the hypothesis.

We compared a CReLU architecture with an orthogonal

LL-init against an equivalent CReLU network, resnet, and a

standard feedforward ReLU network. The other networks

were initialized according to He et al. (2015). The archi-

tectures are thin with the number of filters per layer in the

ReLU networks ranging from 8 at the input layer to 64, see

section A4. Doubling with each spatial extent reduction.

The thinness of the architecture makes it particularly diffi-

cult for gradients to propagate at high depth. The reduction

is performed by convolutional layers with strides of 2, and

following the last reduction the representation is passed to

a fully connected layer with 10 neurons for classification.

The numbers of filters per layer of the CReLU models were

adjusted by a factor of 1/
p
2 to achieve parameter parity

with the ReLU models. The Resnet version of the model is

the same as the basic ReLU model with skip-connections

after every two modules following He et al. (2016a).

Updates were performed with Adam (Kingma & Ba, 2015).

Training schedules were automatically determined by an

auto-scheduler that measures how quickly the loss on the

training set has been decreasing over the last ten epochs,

and drops the learning rate if a threshold remains crossed

for five measurements in a row. Standard data augmenta-

tion was performed; translating up to 4 pixels in any direc-

tion and flipping horizontally with p = 0.5.

Results are shown in figure 6. Each point is the mean of

10 trained models. The ReLU and CReLU nets performed

steadily worse with depth; the ReLU net performing worse

than the linear baseline of 40% at the maximum depth of

198. The feedforward net with LL-init performs compa-

rably to a resnet, suggesting that shattered gradients are a

large part of the problem in training very deep networks.

6. Conclusion

The representational power of rectifier networks depends

on the number of linear regions into which it splits the in-

put space. It was shown in Montufar et al. (2014) that the

number of linear regions can grow exponentially with depth

(but only polynomially with width). Hence deep neural

networks are capable of far richer mappings than shallow

ones (Telgarsky, 2016). An underappreciated consequence

of the exponential growth in linear regions is the prolifera-

tion of discontinuities in the gradients of rectifier nets.

This paper has identified and analyzed a previously un-

noticed problem with gradients in deep networks: in a

randomly initialized network, the gradients of deeper lay-

ers are increasingly uncorrelated. Shattered gradients play

havoc with the optimization methods currently in use2 and

may explain the difficulty in training deep feedforward

networks even when effective initialization and batch nor-

malization are employed. Averaging gradients over mini-

batches becomes analogous to integrating over white noise

– there is no clear trend that can be summarized in a single

average direction. Shattered gradients can also introduce

numerical instabilities, since small differences in the input

can lead to large differences in gradients.

Skip-connections in combination with suitable rescaling

reduce shattering. Specifically, we show that the rate at

which correlations between gradients decays changes from

exponential for feedforward architectures to sublinear for

resnets. The analysis uncovers a surprising and (to us at

least) unexpected side-effect of batch normalization. An

alternate solution to the shattering gradient problem is to

design initializations that do not shatter such as the LL-

init. An interesting future direction is to investigate hybrid

architectures combining the LL-init with skip connections.

2Note that even the choice of a step size in SGD typically re-
flects an assumption about the correlation scale of the gradients.
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