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Abstract

Improving the performance of distant speech recognition is of

considerable current interest, driven by a desire to bring speech

recognition into people’s homes. Standard approaches to this

task aim to enhance the signal prior to recognition, typically us-

ing beamforming techniques on multiple channels. Only few

real-world recordings are available that allow experimentation

with such techniques. This has become even more pertinent

with recent works with deep neural networks aiming to learn

beamforming from data. Such approaches require large multi-

channel training sets, ideally with location annotation for mov-

ing speakers, which is scarce in existing corpora. This paper

presents a freely available and new extended corpus of En-

glish speech recordings in a natural setting, with moving speak-

ers. The data is recorded with diverse microphone arrays, and

uniquely, with ground truth location tracking. It extends the 8.0

hour Sheffield Wargames Corpus released in Interspeech 2013,

with a further 16.6 hours of fully annotated data, including 6.1

hours of female speech to improve gender bias. Additional

blog-based language model data is provided alongside, as well

as a Kaldi baseline system. Results are reported with a standard

Kaldi configuration, and a baseline meeting recognition system.

Index Terms: distant speech recognition, multi-channel speech

recognition, natural speech corpora, deep neural network.

1. Introduction

Multi-channel based speech enhancement has been shown to be

effective for Distant Speech Recongition (DSR), in both clas-

sical HMM-GMM systems and state-of-art Deep Neural Net-

works (DNNs) based systems. Compared to using recordings

from single distant microphone only, beamforming is reported

to reduce word error rate (WER) by 6-10% relative in large

vocabulary conversational speech recognition tasks [1–3], and

up to 60% relative in specific tasks [4, 5]. Multi-channel dere-

verberation brings an extra 20% relative WER reduction over

single channel dereverberation [6]. Recently progress in neu-

ral networks have introduced further performance improvement

in a variety of tasks, particularly from three aspects: progress

in novel network structures [7, 8], application-oriented neural

network structure and parameter manipulation [9–12], and data

manipulation for neural network training [1, 13]. While the

overall WERs keep going down, the recognition performance

gap remains between using recordings from close-talking mi-

crophones and from distant microphones. To reduce this gap,

research effort has focused on three approaches: develop-

ing novel structures to better utilize multichannel recordings

in DNN [14, 15], employing task dependent meta informa-

tion [16, 17], and simulating training data for specific DSR

tasks [6, 18]. However research progress is limited by lack

of data that provides multichannel distant recordings accom-

panied with headset recordings and speaker location tracking,

in a natural speech setting where speakers are allowed to move

freely. To address this problem, the present study extends the

first Sheffield Wargames Corpus (SWC1, [19]) with more nat-

ural speech recordings from both headsets and distant micro-

phones in moving talker conditions, accompanied with real time

speaker location tracking.

The paper is organized as follows. §2 reviews related work,

§3 provides basic information about the set-up for the new

recording days SWC2 and SWC3. §4 discusses dataset defi-

nitions for two different ASR tasks: adaptation and standalone

training. The details about language models (LMs) are intro-

duced in §5. §6 provides results for two tasks, using HTK, TNet

and Kaldi. All WERs on eval set are above 40% for headset

recordings, and above 70% for distant recordings. §7 concludes

the work.

2. Multi-channel Recordings in DSR

Research on utilizing multi-channel recordings within DNN

structure started with directly concatenating features from mul-

tiple channels at DNN input [1, 2]. Such method was found to

perform similar or better than weighted delay and sum beam-

forming (wDSB) in 2 and 4 channel cases. Furthermore, joint

optimization of beamforming and DNNs achieved 5.3% relative

improvement over using wDSB in [15]. In [14], beamforming

and standard feature pipeline are completely replaced with neu-

ral networks. Different neural networks are combined to extract

information from raw signals, achieving 5.8% relative WER im-

provement over 8 channel delay and sum beamforming (DSB).

Meta-information can also be provided to DNNs. In [16],

adding noise information provides a 5.1% relative improvement

over feature enchancement. In [17], adding room information

via feature augmention improves performance by 2.8% relative

on the ReverbChallenge real data. In [2], geometry information

was added via augmenting the concatenated multi-channel fea-

tures with Time Difference of Arrival (TDOA) at DNN input.

However, no improvement was observed.

Above approaches all require large data sets for training.

One main challenge in DSR is the variety in environment con-

ditions of real recordings. Even within the same room, speak-

ers may move around a room, resulting in continually changing

room impulse responses (RIRs). One method to address this is-

sue is multi-condition training [6], by simulating data of differ-

ent environment conditions with different RIRs and by adding

background noise to clean speech. The RIRs can be either gen-

erated by simulation or measured in real environments [20–22].

Examples of corpora with simulated environment effects are

Aurora [23–25], DIRHA-GRID [26] and DIRHA-ENGLISH

[27]. Another method is to select targeted RIRs that match best

to the test scenario [18]. However there is a lack of corpora



Figure 1: SWC2 recording (from Camera C1 in Fig. 2).

covering different environment conditions that also have natu-

ral speech. Existing research corpora of real multi-channel dis-

tant recordings often use artificial scenarios, read speech and

re-recorded speech. Examples are the real recording part of

MC-WSJ-AV corpus [28] used in ReverbChallenge 2014 [6], or

the CHiME corpora [29]. Other corpora are recorded with con-

trolled environment and speaker movement, such as the meeting

corpora AMI [30] and ICSI [31].

The first Sheffield Wargame Corpus (SWC1, [19]) released

in 2013 is a natural, spontaneous speech corpus of native En-

glish speakers who are constantly speaking and moving while

playing tabletop games. It includes 3-channel video recordings

and 96-channel audio recordings from headsets and distant mi-

crophones at static known locations in the room. Besides, it

includes ground truth head location, providing a reference for

research on localization and beamforming algorithms. The task

is challenging as it represents everyday colloquial conversation

among friends, with emotional speech, laugher, overlapping

speech fragments as well as body movement while speaking.

The size of SWC1, 8 hour speech, limits its usefulness

for training and adaptation. In addition, SWC1 contains male

speech only. This paper releases, for free use in the research

community, the extended Sheffield Wargame Corpus recording

Day 2 (SWC2) and Day 3 (SWC3). In addition, it releases blog

and wikipedia based text data to build in-domain LMs, along

with a well built set of in-domain LM and dictionary. SWC3

provides 6.1h of female speech to provide a gender balance.

Combined with SWC1, the corpora form a total of 24.6h speech

database. Standard datasets are defined to enable comparative

research on combined corpora for two scenarios: adapting exist-

ing acoustic models (AMs) to SWC data, and standalone train-

ing of AMs with SWC data only. An open-source Kaldi recipe

is provided for standalone training. Baseline experiment results

are reported for both standalone and adaptation systems.

3. SWC2 and SWC3 Recordings

Following the set-up for SWC1 [19], the extended corpora are

comprised of recordings where four participants play the table-

top battle game Warhammer 40K1 (Fig. 1). The game is chosen

as a close proxy for sections of business meetings and social

interactions where participants are moving and talking at the

same time. Such joint motion and talking is difficult to record

for extended periods in those contexts but the game promotes

it constantly for hours at a time, allowing much more relevant

1https://en.wikipedia.org/wiki/Warhammer 40,000
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Figure 2: Video location in SWC2.

data to be captured. The game is also played by a tight com-

munity of friends, many of whom are used to wearing headset

microphones from online gaming, and are generally uninhib-

ited by recording technology. Thus they speak more naturally

and colloquially during recording, and they could move while

speaking. In SWC2, the final two sessions have male viewers

commenting on the game, to simulate a cocktail-party scenario.

In SWC3, female players (with headsets) are instructed by two

male tutors (without headsets) due to less game experience.

The recordings of SWC2 and SWC3 were performed in

the same meeting room as SWC1, whose geometry is detailed

in [19]. The recording system has three parts: multiple micro-

phone audio recording, multiple camera video recording and lo-

cation tracking. The three corpora use the same location track-

ing system Ubisense, which tracks the real time 3D head loca-

tion of four players during the recording process [19]. Three

channels of video recordings from cameras installed at three

corners of the ceiling are also provided in SWC2 (Fig. 2).

24-channel audio recordings from the integrated Sheffield

IML audio recording system [32] are shared among all three

corpora (Fig. 2). They contains 4 headsets for 4 game players, 8

microphones in a circular array at the center of table (diameter:

20cm), 8 microphones hanging on a grid from the ceiling and 4

microphones distributed on the walls, all synchronized at sam-

ple level [19]. In SWC2, extra audio recordings are included

using a Microcone array, a circular digital MEMs microphone

array and an Eigenmic array. The Microcone array has 6 mi-

crophones in a circular array (diameter: 8cm), plus the seventh

microphone pointing right up to the ceiling. The MEMs digital

array has 8 microphones in a circular array with a diameter of

4cm. Both Microcone array and MEMs microphone array are

situated on the table. The Eigenmic array is a 32-channel sphere

array (diameter: 8.4cm). Only part of Session 1 in SWC2 has

Eigenmic recordings due to software failure.

Table 1 lists statistics of SWC1 [19], SWC2 and SWC3.

The vocabulary of SWC3 is much smaller compared to SWC1

and SWC2. This is because the game set-up is simplified for

less experienced players, leading to simpler conversation.

4. Dataset Definition

Consistent datasets have been defined for SWC1, SWC2 and

SWC3. Each recording session, i.e. a continuous recording file

(Table 1), is first split into three successive strips of approxi-

mately equal speech duration: A, B and C. Such “data strip”

allows flexible session combination to create datasets for which

results can be easily shared among researchers. Four dataset



Table 1: SWC statistics.

SWC1 SWC2 SWC3 overall

#session 10 8 6 24

#game 4 4 3 11

#unique speaker 9 11 8 22

gender M M F&M F&M

#unique mic 96 71 24 103

#shared mic - - - 24

speech duration 8.0h 10.5h 6.1h 24.6h

#speech utt. 14.0k 15.4k 10.2k 39.6k

duration per utt. 2.1s 2.5s 2.2s 2.2s

#word per utt. 6.6 7.9 5.5 6.8

vocabulary 4.4k 5.7k 2.9k 8.5k

video
√ √

-
√

location
√ √ √ √

Table 2: Dataset statistics (“spk.”: speaker; “dur.”: duration).

config. set strips dur. #utt. #spk.

AD1
dev {1, 2, 3}.A+B 16.3h 26.2k 22

eval {1, 2, 3}.C 8.2h 13.3k 22

AD2
dev 1 8.0h 14.0k 9

eval 2, 3 16.6h 25.6k 18

SA1

train 1, {2, 3}.A 13.5h 22.6k 22

dev {2, 3}.B 5.5h 8.5k 18

eval {2, 3}.C 5.6h 8.4k 18

SA2

train 1 8.0h 14.0k 9

dev {2, 3}.A 5.5h 8.7k 18

eval {2, 3}.B+C 11.1h 16.9k 18

definitions based on strips are proposed to serve for two typical

tasks: adaptation and standalone training. For each task, two

configurations are available with different data separation and

difficulty level, as listed in Table 2.

Adaptation task (“AD”) only has dev and eval datasets. The

“AD1” configuration uses 16.3h speech of Strip A and Strip B

from all three recordings as dev set, and the remaining 8.2h of

speech from Strip C as evaluation set. This dataset definition

provides the least separation of speaker and speaking style. The

“AD2” configuration only uses 8.0h SWC1 as dev set, while

using the whole SWC2 and SWC3 for eval set. This is repre-

sentative of many real applications where significant mismatch

exists between trained system and test conditions, with limited

data for adaptation and a variety in speaker, speaking style, and

with subtle differences in topic and vocabulary.

Standalone training task (“SA”) has train, dev and eval

datasets. The “SA1” configuration uses 13.5h speech for train-

ing, comprised of whole SWC1, Strip A of SWC2 and SWC3.

The development set uses 5.5h speech of Strip B from SWC2

and SWC3, and evaluation set uses 5.6h speech of Strip C from

SWC2 and SWC3. This dataset definition takes into account the

balance in gender and speaking style across training and testing.

The “SA2” configuration provides only 8h speech from SWC1

for training, 5.5h speech from Strip A of SWC2 and SWC3 for

development, and the remaining 11.1h as evaluation set. This

dataset definition provides the best separation of speaker, ses-

sion, game and speaking style between training and testing.

5. Language Modelling and Dictionary

SWC corpora are designed for research on acoustic modelling

in natural speech recognition, particularly with multi-channel

distant recordings. Since the conversation topic and vocabu-

lary differ from most existing corpora, text data is harvested

Table 3: LM data size and interpolation weights (4-gram).

LM component #words weight

Conversational web data 165.9M 0.65

Blog 1 (addict) 21.1k 0.05

Blog 2 (atomic) 126.8k 0.05

Blog 3 (cadia) 40.4k 0.19

Blog 4 (cast) 71.2k 0.06

wikipedia (warhammer) 26.2k 0.003

from four Warhammer 40K blogs and Warhammer wikipedia

pages. These data are added to the conversational web data [33]

to build an in-domain LM. N-gram components are trained us-

ing SRILM toolkit [34] on a 30k vocabulary list. The vocab-

ulary list is built from all words in the harvested text plus the

most frequent words in the conversational web data. The LM

components are first built on each type of data, and then inter-

polated using SWC1 as development set. Table 3 lists the LM

components and the interpolation weights for 4-gram LM. In

initial experiments it was observed that a 4-gram LM trained

on 30k vocabulary performs similarly to the RT’09 50k 3-gram

LM, while using 3-gram or only using a smaller vocabulary de-

grades recognition performance. Thus results based on 4-gram

LM with a vocabulary of 30k words are reported in following

experiments. The perplexity of the interpolated 4-gram LM is

173.4 on SWC1, 195.9 on SWC2, 135.0 on SWC3 and 173.3

overall. The number of words out-of-vocabulary (OOV) is 1.4k

on SWC1 (1.6%), 2.8k on SWC2 (2.4%), 3.9k on SWC3 (6.9%)

and 8.1k overall (3.1%). Pronunciations are obtained using

the Combilex pronunciation dictionary [35]. The Phonetisaurus

toolkit [36] is used to automatically generate the pronunciation

for words not in Combilex.

6. Baseline System

6.1. Adaptation task

The acoustic models trained on AMI corpus data are used in

“AD2” configuration. The experiments here are performed with

HTK and TNet. TNet is used to train DNN and to generate bot-

tleneck features. HTK is used to train HMM-GMM using bot-

tleneck features. The configuration mostly follows the proce-

dure presented in [2]. The AMI dataset definition however fol-

lows [1] for a better comparison with other research groups. The

368 dimensional input to DNN are compressed from 31 contex-

tual frames of 23 dimensional log-Mel-filter bank features with

DCT [2]. The DNN topology is 368:2048×3:26:1993.

When adapting AMI models to SWC data, the trained DNN

is first fine-tuned with dev data using manual transcription. The

alignment is obtained with AMI DNN-HMM-GMM and SWC

headset recordings. Bottleneck features are then generated with

the updated DNN, followed by segmental mean normalization.

The AMI HMM-GMM is then maximum-a-posterior (MAP)

adapted using “AD2” dev set data for 8 iterations. Neither

speaker adaptation or normalization is involved. Results of the

baseline systems are reported on individual headset microphone

(IHM), single distant microphone (SDM) and multiple distant

microphones (MDM) in Table 4. For MDM, weighted delay and

sum beamforming is performed using BeamformIt [37], with

the 8 channels circular array in the integrated IML recording

system (“TBL1”). The scoring for IHM is performed with NIST

tool sclite, while the scoring for SDM and MDM is performed

with asclite with a maximum of 4 overlapping speakers.

Even with supervised adaptation on dev data, it still yields a

WER of 24.9% for IHM, 55.2% for SDM and 53.5% for MDM



Table 4: AMI to SWC: “AD2” baseline (WER in %).

dev eval

SWC1 SWC2 SWC3
overall

Sub. Del. Ins. WER

IHM 24.9 46.4 50.5 33.4 9.3 5.0 47.7

SDM 55.2 75.0 85.2 53.2 19.1 6.0 78.2

MDM 53.5 71.6 82.4 52.4 15.4 7.3 75.0

with 8 channel beamforming. WER on eval data is much higher,

particularly for SWC3 due to mismatch in gender and speak-

ing style. Beamforming lowered the WER by 3.1% relative on

SWC1, 4.5% relative on SWC2 and 3.3% relative on SWC3.

6.2. Standalone training task

A Kaldi recipe is released with the corpora, providing scripts

to train a state-of-the-art context dependent DNN-HMM hybrid

system on SWC data only. It follows the routine in other Kaldi

recipes (such as AMI).

Following the default configuration, 13 dimensional MFCC

features from 7 contextual frames (+/-3) are extracted and com-

pressed with linear discriminant analysis (LDA) to 40 dimen-

sion. The output will be further referred to as “LDA features”.

The LDA features are used to train HMM-GMM. No external

alignment is used in the recipe. Instead, the initial model train-

ing uses hypothesis timing where utterances are split into equal

chunks. The alignment is updated each time the acoustic model

significantly improves during the training process.

An HMM-GMM based on monophone is first trained, then

an HMM-GMM based on clustered states is trained, followed

by LDA and maximum likelihood linear transform (MLLT),

speaker adaptive training (SAT), and maximum mutual infor-

mation (MMI) training. Alignments from the system with

LDA+MLLT is used for DNN training. The input of DNN

is a 520 dimensional feature vector, comprised of 13 (+/-6)

contextual 40 dimensional features that were used for HMM-

GMM training. DNN parameters are initialized with a stack

of restricted Boltzmann machines (RBMs), in a topology of

520:2048×6:3804. DNN parameters are then fine-tuned to min-

imize cross-entropy. This is followed by 4 iterations of further

fine-tuning for minimum phone error (MPE) or using the state

level variant of the minimum Bayes risk (sMBR) training with

updated alignment.

For IHM, results with speaker adaptation is provided.

HMM-GMMs with LDA+MLLT+SAT provide the alignment

and speaker feature level maximum likelihood linear regression

(fMLLR) for DNN training. The DNN parameters are initial-

ized with RBMs in a topology of 143:2048×6:3710. DNN in-

put features are comprised of 11 (+/-5) contextual 13 dimen-

sional MFCC features with fMLLR applied.

For MDM, the weighted delay and sum beamforming is

performed with BeamformIt [37] on 8 channel microphones

from the circular array in the middle of the table. The automatic

noise thresholding is disabled.

To reduce memory cost, the 30k 4-gram LM introduced

in §5 is pruned. Table 5 shows the performance using dif-

ferent acoustic models and microphone channels. As shown,

IHM SAT reduces the overall WER of HMM-GMM based sys-

tem by 5.1% relative, while MMI did not reduce WER further.

For DNN-HMM hybrid system however, speaker adaptation via

fMLLR degraded the performance. The best overall WER of

42.0% on IHM is achieved with sMBR fine-tuning on DNN pa-

rameters without speaker adaptation. Therefore, fMLLR is not

Table 5: SWC “SA1” baseline (WER in %).

dev eval
overall

Sub. Del. Ins. WER

IHM

LDA+MLLT 50.9 51.8 35.9 8.9 6.4 51.3

+SAT 48.7 48.8 34.4 8.1 6.3 48.7

+MMI 48.8 49.1 34.4 8.8 5.7 48.9

DNN 44.4 44.3 30.5 9.7 4.1 44.4

+sMBR 42.0 42.0 29.5 7.6 5.0 42.0

+fMLLR 48.1 48.1 32.9 11.4 3.8 48.1

+sMBR 44.9 44.8 31.2 9.8 3.8 44.9

SDM
DNN 78.9 80.5 53.9 21.4 4.4 79.7

+sMBR 76.4 77.3 39.1 35.5 2.2 76.8

MDM
DNN 76.0 77.9 53.3 18.2 5.5 76.9

+sMBR 73.8 74.9 36.0 36.0 2.4 74.3

used in experiments with SDM or MDM hybrid system. Fine-

tuning DNN with sMBR is effective for both SDM and MDM,

achieving the best overall WER of 76.8% on SDM and 74.3%

on MDM. Beamforming reduced the WER by 3.3% relative.

7. Conclusions

This paper presents the extended recordings for Sheffield

Wargame Corpus, which is freely available for research use

in the speech community, and which is designed for distant

speech recognition work with multi-channel recordings. It in-

cludes unique ground truth annotation of speaker location. The

extended corpus adds up to around 24.6h of multi-media and

multi-channel data for natural native English speech. Four

dataset definitions are provided for two different tasks: low

resource adaptation of existing acoustic model and standalone

training of acoustic model. A Kaldi recipe is provided for stan-

dalone training. Performance of baseline deep neural network

systems for each task is illustrated. The WERs on the eval sets

are above 40% for all systems, suggesting a high difficulty level

in SWC corpora compared to other corpora. The WERs for

SDM on eval set are all above 70%. Beamforming reduced the

WER by 3-4% relatively. The best overall WER obtained is

42.0% for IHM, 76.8% for SDM and 74.3% for MDM.

8. Acknowledgements

This research was supported by EPSRC Programme Grant

EP/I031022/1, Natural Speech Technology (NST). The results

reported in this work could be accessed from https://

dx.doi.org/10.15131/shef.data.3119743. More

details and some samples of SWC recordings can be

found at http://mini-vm20.dcs.shef.ac.uk/swc/

SWC-home.html.

9. References

[1] P. Swietojanski, A. Ghoshal, and S. Renals, “Hybrid acous-
tic models for distant and multichannel large vocabulary speech
recognition,” in Automatic Speech Recognition and Understand-

ing (ASRU), 2013 IEEE Workshop on, Dec 2013, pp. 285–290.

[2] Y. Liu, P. Zhang, and T. Hain, “Using neural network front-ends
on far field multiple microphones based speech recognition,” in
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE

International Conference on, May 2014, pp. 5542–5546.

[3] T. Yoshioka, X. Chen, and M. J. F. Gales, “Impact of single-
microphone dereverberation on dnn-based meeting transcription
systems,” in Acoustics, Speech and Signal Processing (ICASSP),

2014 IEEE International Conference on, May 2014, pp. 5527–
5531.

https://dx.doi.org/10.15131/shef.data.3119743
https://dx.doi.org/10.15131/shef.data.3119743
http://mini-vm20.dcs.shef.ac.uk/swc/SWC-home.html
http://mini-vm20.dcs.shef.ac.uk/swc/SWC-home.html


[4] K. Kumatani, J. McDonough, B. Rauch, D. Klakow, P. N. Garner,
and W. Li, “Beamforming with a maximum negentropy criterion,”
IEEE Transactions on Audio, Speech, and Language Processing,
vol. 17, no. 5, pp. 994–1008, July 2009.

[5] K. Kumatani, J. McDonough, and B. Raj, “Maximum kurto-
sis beamforming with a subspace filter for distant speech recog-
nition,” in Automatic Speech Recognition and Understanding

(ASRU), 2011 IEEE Workshop on, Dec 2011, pp. 179–184.

[6] M. Delcroix, T. Yoshioka, A. Ogawa, Y. Kubo, M. Fujimoto,
N. Ito, K. Kinoshita, M. Espi, T. Hori, T. Nakatani et al., “Linear
prediction-based dereverberation with advanced speech enhance-
ment and recognition technologies for the REVERB challenge,”
in Proc. REVERB Workshop, 2014.

[7] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, L. Deng, G. Penn,
and D. Yu, “Convolutional neural networks for speech recogni-
tion,” IEEE ACM Trans. Audio, Speech and Lang. Proc., vol. 22,
no. 10, pp. 1533–1545, Oct. 2014.

[8] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory
based recurrent neural network architectures for large vocabulary
speech recognition,” CoRR, vol. abs/1402.1128, 2014.

[9] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neu-
ral networks for LVCSR using rectified linear units and dropout,”
in IEEE International Conference on Acoustics, Speech and Sig-

nal Processing, ICASSP 2013, Vancouver, BC, Canada, May 26-

31, 2013, 2013, pp. 8609–8613.

[10] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker adap-
tation of neural network acoustic models using i-vectors,” in Au-

tomatic Speech Recognition and Understanding (ASRU), 2013

IEEE Workshop on, Dec 2013, pp. 55–59.

[11] Y. Zhang, E. Chuangsuwanich, and J. Glass, “Extracting deep
neural network bottleneck features using low-rank matrix factor-
ization,” in Acoustics, Speech and Signal Processing (ICASSP),

2014 IEEE International Conference on, May 2014, pp. 185–189.

[12] M. Ravanelli and M. Omologo, “Contaminated speech training
methods for robust DNN-HMM distant speech recognition,” in
INTERSPEECH. ISCA, 2015, pp. 756–760.

[13] P. Zhang, Y. Liu, and T. Hain, “Semi-supervised dnn training in
meeting recognition,” in 2014 IEEE Spoken Language Technology

Workshop (SLT 2014), South Lake Tahoe, USA, December 2014.

[14] T. N. Sainath, R. J. Weiss, K. W. Wilson, A. Narayanan, M. Bac-
chiani, and A. Senior, “Speaker location and microphone spacing
invariant acoustic modeling from raw multichannel waveforms,”
in ASRU 2015. IEEE, December 2015.

[15] X. Xiao, S. Watanabe, H. Erdogan, L. Lu, J. Hershey, M. L.
Seltzer, G. Chen, Y. Zhang, M. Mandel, and D. Yu, “Deep
beamforming networks for multi-channel speech recognition,” in
Acoustics Speech and Signal Processing (ICASSP), 2016 IEEE

International Conference on, March 2016.

[16] M. L. Seltzer, D. Yu, and Y. Wang, “An investigation of deep
neural networks for noise robust speech recognition,” in Acous-

tics, Speech and Signal Processing (ICASSP), 2013 IEEE Inter-

national Conference on, May 2013, pp. 7398–7402.

[17] R. Giri, M. L. Seltzer, J. Droppo, and D. Yu, “Improving speech
recognition in reverberation using a room-aware deep neural net-
work and multi-task learning.” IEEE Institute of Electrical and
Electronics Engineers, April 2015.

[18] M. Ravanelli and M. Omologo, “On the selection of the impulse
responses for distant-speech recognition based on contaminated
speech training,” in INTERSPEECH. ISCA, 2014, pp. 1028–
1032.

[19] C. Fox, Y. Liu, E. Zwyssig, and T. Hain, “The sheffield wargames
corpus.” in Proceedings of Interspeech 2013, Lyon, France, Au-
gust 2013.

[20] J. Wen, N. D. Gaubitch, E. Habets, T. Myatt, and P. A. Nay-
lor, “Evaluation of speech dereverberation algorithms using the
MARDY database,” in Proc. Intl. Workshop Acoust. Echo Noise

Control (IWAENC), Paris, France, 2006.

[21] M. Jeub, M. Schafer, and P. Vary, “A binaural room impulse re-
sponse database for the evaluation of dereverberation algorithms,”
in Digital Signal Processing, 2009 16th International Conference

on, July 2009, pp. 1–5.

[22] R. Stewart and M. Sandler, “Database of omnidirectional and B-
format room impulse responses,” in Acoustics Speech and Signal

Processing (ICASSP), 2010 IEEE International Conference on,
March 2010, pp. 165–168.

[23] D. Pearce, H. günter Hirsch, and E. E. D. Gmbh, “The aurora
experimental framework for the performance evaluation of speech
recognition systems under noisy conditions,” in in ISCA ITRW

ASR2000, 2000, pp. 29–32.

[24] S.-K. Au Yeung and M.-H. Siu, “Improved performance of Aurora
4 using HTK and unsupervised MLLR adaptation,” in Proceed-

ings of Interspeech 2004—ICSLP: 8th International Conference

on Spoken Language Processing, Jeju Island, Korea, 2004, pp.
161–164.

[25] H. G. Hirsch and H. Finster, “The simulation of realistic acous-
tic input scenarios for speech recognition systems,” in in Proc.

ICSLP, 2005.

[26] M. Wolf and C. Nadeu, “Channel selection measures for multi-
microphone speech recognition,” Speech Communication, vol. 57,
pp. 170 – 180, 2014.

[27] M. Ravanelli, L. Cristoforetti, R. Gretter, M. Pellin, A. Sosi, and
M. Omologo, “The DIRHA-ENGLISH corpus and related tasks
for distant-speech recognition in domestic environments,” in Au-

tomatic Speech Recognition and Understanding (ASRU), 2015

IEEE Workshop on, Dec 2015, pp. 275–282.

[28] M. Lincoln, I. McCowan, J. Vepa, and H. Maganti, “The
multi-channel wall street journal audio visual corpus (MC-WSJ-
AV): specification and initial experiments,” in Automatic Speech

Recognition and Understanding, 2005 IEEE Workshop on, Nov
2005, pp. 357–362.

[29] J. Barker, R. Marxer, E. Vincent, and S. Watanabe, “The third
‘CHiME’ speech separation and recognition challenge: Dataset,
task and baselines,” in 2015 IEEE Automatic Speech Recogni-

tion and Understanding Workshop (ASRU 2015), Scottsdale, AZ,
United States, Dec. 2015.

[30] I. McCowan, J. Carletta, W. Kraaij, S. Ashby, S. Bourban,
M. Flynn, M. Guillemot, T. Hain, J. Kadlec, V. Karaiskos et al.,
“The AMI meeting corpus,” in Proceedings of the 5th Interna-

tional Conference on Methods and Techniques in Behavioral Re-

search, vol. 88, 2005.

[31] A. Janin, D. Baron, J. Edwards, D. Ellis, D. Gelbart, N. Morgan,
B. Peskin, T. Pfau, E. Shriberg, A. Stolcke, and C. Wooters, “The
ICSI meeting corpus,” 2003, pp. 364–367.

[32] C. Fox, H. Christensen, and T. Hain, “Studio report: Linux au-
dio for multi-speaker natural speech technology.” in Proc. Linux

Audio Conference, 2012.

[33] T. Hain, V. Wan, L. Burget, M. Karafiat, J. Dines, J. Vepa, G. Ga-
rau, and M. Lincoln, “The ami system for the transcription of
speech in meetings,” in Acoustics, Speech and Signal Processing,

2007. ICASSP 2007. IEEE International Conference on, vol. 4.
IEEE, 2007, pp. IV–357.

[34] A. Stolcke, “SRILM – An Extensible Language Modeling
Toolkit,” in ICSLP’02: Proc. of International Conference on Spo-

ken Language Processing, 2002.

[35] K. Richmond, R. Clark, and S. Fitt, “On generating combilex pro-
nunciations via morphological analysis,” in Proceedings of ISCA

Interspeech, Makuhari, Japan, 2010, pp. 1974–1977.

[36] J. Novak, N. Minematsu, and K. Hirose, “WSFT–based
grapheme–to–phoneme conversion: Open source tools for align-
ment, model–building and decoding,” in Proceedings of the 10th

International Workshop on Finite State Methods and Natural Lan-

guage Processing, San Sebastián, Spain, 2012.

[37] X. Anguera, C. Wooters, and J. Hernando, “Acoustic beamform-
ing for speaker diarization of meetings,” IEEE Transactions on

Audio, Speech, and Language Processing, vol. 15, no. 7, pp.
2011–2022, Sept 2007.


	 Introduction
	 Multi-channel Recordings in DSR
	 SWC2 and SWC3 Recordings
	 Dataset Definition
	 Language Modelling and Dictionary
	 Baseline System
	 Adaptation task
	 Standalone training task

	 Conclusions
	 Acknowledgements
	 References

