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Abstract

In [15], the stochastic-game-analogue of Shepp and Shiryaev’s optimal stopping
problem (cf. [23] and [24]) was considered when driven by an exponential Brownian
motion. We consider the same stochastic game, which we call the Shepp–Shiryaev
stochastic game, but driven by a spectrally negative Lévy process and for a wider
parameter range. Unlike [15], we do not appeal predominantly to stochastic an-
alytic methods. Principally, this is due to difficulties in writing down variational
inequalities of candidate solutions on account of then having to work with non-
local integro-differential operators. We appeal instead to a mixture of techniques
including fluctuation theory, stochastic analytic methods associated with martin-
gale characterisations and reduction of the stochastic game to an optimal stopping
problem.
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1 Introduction

Let X = {Xt : t ≥ 0} be a Lévy process defined on a filtered probability space
(Ω,F ,F,P), where F = {Ft : t ≥ 0} is the filtration generated by X which is
naturally enlarged (cf. Definition 1.3.38 of [5]). For x ∈ R, denote by Px the
law of X when it is started at x and write simply P0 = P. Accordingly, we
shall write Ex and E for the associated expectation operators. We shall assume
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throughout that X is spectrally negative, meaning here that it has no positive
jumps and that it is not the negative of a subordinator. It is well known that
the latter allows us to talk about the Laplace exponent ψ(θ) := log E[eθX1 ]
for θ ≥ 0, which will be of frequent use in the sequel. The Laplace exponent
necessarily takes the form

ψ(θ) = aθ +
1

2
σ2θ2 +

∫
(−∞,0)

(eθx − 1− xθ1{x>−1}) ΠX(dx),

where a ∈ R, σ ≥ 0 is the Gaussian coefficient and ΠX is a measure concen-
trated on (−∞, 0) satisfying

∫
(−∞,0)(1∧x2) ΠX(dx) <∞. The reader is referred

to Bertoin [4] for a complete introduction to the theory of Lévy processes.

Denote by T0,∞ the family of all [0,∞]-valued stopping times with respect to
F. We are interested in establishing a solution to a special class of stochastic
games which are driven by spectrally negative Lévy processes. Specifically, for
a given q > 0 and δ > 0, we study the stochastic game consisting of two
players and expected pay-off given by

Mx(τ, σ) := Ex

[
e−qτ+(x∨Xτ )1{τ≤σ, τ<∞} + e−qσ

(
ex∨Xσ + δeXσ

)
1{σ<τ}

]
(1)

for x ≥ 0 where X t = sups≤tXs denotes the running supremum of X and
where a∨ b = max(a, b). The inf-player’s objective is to choose some σ ∈ T0,∞
which minimises (1), whereas the sup-player chooses some τ ∈ T0,∞ which
maximises this quantity. Our aim is to prove the existence of a saddle point
(τ ∗, σ∗) such that

Mx(τ, σ
∗) ≤Mx(τ

∗, σ∗) ≤Mx(τ
∗, σ)

for all τ, σ ∈ T0,∞ and for all x ≥ 0. The pair (τ ∗, σ∗) is also known as a Nash
equilibrium (cf. Ekström and Peskir [9] and Peskir [20]). When such a pair of
stopping times exists, we say that it solves the stochastic game (1) and we
denote the corresponding value by

V (x) = Mx(τ
∗, σ∗)

for x ≥ 0.
Note that we have included the indicator 1{τ<∞} in (1) since e−qt+(x∨Xt) may
not be well defined for t = ∞.

When q = 0, this issue does not occur since ex∨Xt is monotone in t, and in
this case we are interested in the saddle point to the stochastic game which,
for a given δ > 0, has expected pay-off given by

Mx(τ, σ) = Ex

[
ex∨Xτ 1{τ≤σ} +

(
ex∨Xσ + δeXσ

)
1{σ<τ}

]
. (2)
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The game (1) was solved for q > ψ(1) ≥ 0 (under an extra technical assump-
tion on the parameters) for a Brownian motion in [15]. In some sense, that
case is easier, since for a Brownian motion we can use standard Itô calculus
and general theory of optimal stopping to show that a solution to a related free
boundary problem (with a differential operator) also solves the game (1). The
solution to this free boundary problem is readily found in terms of exponential
functions. For a Lévy process with jumps, the corresponding free boundary
problem seems more difficult to solve directly (or even to establish existence
of a solution), as it involves an integro-differential operator. Instead, we use
a mixture of fluctuation theory, martingale techniques and reduction of the
stochastic game to an optimal stopping problem to solve (1). As a by-product,
we find that a technical assumption in [15] is not needed, see Remark 19.

When ψ(1) = q > 0, the stochastic game (1) can be understood to characterise
the risk neutral price of a so-called game option in a simple market consisting
of a risky asset the value of which is given by {eXt : t ≥ 0} and a riskless asset
which grows at rate q (cf. [12]). The latter game option is an American-type
contract with infinite horizon which offers the holder the right but not the
obligation to claim ex∨Xτ at any stopping time τ ∈ T0,∞, but in addition,
the contract also gives the writer the right but not the obligation to force
a payment of ex∨Xσ + δeXσ at any stopping time σ ∈ T0,∞; that is to say,
what the holder would claim at that moment plus a penalty proportional to
the current value of the asset. However, in this paper we do not discuss the
relevance of the stochastic games (1) and (2) in the context of mathematical
finance.

The stochastic games (1) and (2) are closely related to the Shepp–Shiryaev
optimal stopping problem

U(x) = sup
τ∈T0,∞

E[e−qτ+(x∨Xτ )1{τ<∞}], (3)

which characterises the value of a perpetual Russian option (cf. [23] and [24])
in the Brownian case and [2] for the Lévy case). See also [6], [8] and [18] for
the finite expiry case and [11] for a linear programming approach. Indeed, if it
is the case that the stochastic saddle point in (1) is achieved at σ = ∞, then it
holds that U = V . In the article [24], an idea which is instrumental in helping
provide the solution to (3), is to change measure from P to the measure P1,
where

dPλ

dP

∣∣∣∣∣
Ft

= eλXt−ψ(λ)t (4)

defines an equivalent measure on {Ft : t ≥ 0} for any λ ≥ 0. Under Pλ, the
process X still belongs to the class of spectrally negative processes and its
Laplace exponent is given by

ψλ(θ) = ψ(θ + λ)− ψ(λ) for θ ≥ −λ. (5)
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(For the latter conclusion it is important that F is naturally enlarged as
opposed to satisfying the usual conditions, see the discussion on p164–168
of [5]). The effect of the change of measure is to reduce the dimension of
the underlying driving Markov process of (3) from three to two. That is to
say, the driving source of randomness changes from {(t,Xt, X t) : t ≥ 0} to
{(t, (x ∨ X t) − Xt) : t ≥ 0}. The Shepp–Shiryaev optimal stopping problem
can be solved whenever it is possible to solve

U(x) = sup
τ∈T0,∞

E1[e−ατ+Y
x
τ 1{τ<∞}],

where

α = q − ψ(1)

and

Y x
τ = (x ∨Xτ )−Xτ .

The same effect occurs when the change of measure is applied to (1) in the
case that q > 0 and thus the expected pay-off function of the Shepp–Shiryaev
game can be rewritten as

Mx(τ, σ) = E1
[
e−ατ+Y

x
τ 1{τ≤σ, τ<∞} + e−ασ

(
eY

x
σ + δ

)
1{σ<τ}

]
when q > 0.

(6)
Establishing the saddle point (τ ∗, σ∗) of (1) or equivalently (6) in the case q > 0
and of (2) in the case q = 0, as well as establishing the value V (x) = M(τ ∗, σ∗)
in both cases is what is meant by solving Shepp–Shiryaev stochastic game. Note
that a saddle point may not be unique. The purpose of this paper is to give a
complete study of the solution of the Shepp–Shiryaev stochastic game within
the specified parameter regime q ≥ 0 and δ > 0.

In the Brownian motion case, the finite horizon version of (1) (i.e. when both
players have to choose stopping times valued in [0, T ] for some T > 0) was
solved in the preprint [13] preceding [14] by decomposing it into two finite
horizon optimal stopping problems, just as was done for the McKean stochastic
game.

2 The solution to the Shepp–Shiryaev stochastic game

Below, in Theorems 2, 3 and 4 we give a qualitative and quantitative exposition
of the solution to (1). Before doing so, we need to give a brief reminder of
a class of special functions which appear commonly in connection with the
study of spectrally negative Lévy processes and indeed in connection with the
description of the Shepp–Shiryaev stochastic game as given below. For each
q ≥ 0 we introduce the functions W (q) : R → [0,∞) which are known to
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satisfy for all x ∈ R and a ≥ 0

Ex[e
−qτ+

a 1{τ+
a <τ

−
0 }

] =
W (q)(x ∧ a)
W (q)(a)

, (7)

where

τ+
a := inf{t > 0 : Xt > a} and τ−0 = inf{t > 0 : Xt < 0}

(cf. Chapter 8 of [16]). In particular, it is evident that W (q)(x) = 0 for all
x < 0 and further it is known that W (q) is almost everywhere differentiable
on (0,∞), there is right-continuity at zero and

∫ ∞

0
e−βxW (q)(x) dx =

1

ψ(β)− q
(8)

for all β > Φ(q), where Φ(q) is the largest root of the equation ψ(θ) = q (of
which there are at most two). For convenience, we write W instead of W (0).

Associated to the functions W (q) are the functions Z(q) : R → [1,∞) defined
by

Z(q)(x) = 1 + q
∫ x

0
W (q)(y) dy

for q ≥ 0. Together, the functions W (q) and Z(q) are collectively known as
scale functions and predominantly appear in almost all fluctuation identities
for spectrally negative Lévy processes. For example, it is also known that for
all x ∈ R and a, q ≥ 0,

Ex[e
−qτ−0 1{τ+

a >τ
−
0 }

] = Z(q)(x ∧ a)− Z(q)(a)

W (q)(a)
W (q)(x ∧ a). (9)

We shall henceforth assume that

the jump measure of X, ΠX , has no atoms when X has bounded variation.

Then it is known from existing literature (cf. [16]) that W (q) ∈ C1(0,∞) and
hence Z(q) ∈ C2(0,∞). For computational convenience we shall proceed with
the above assumption on X. Recall that X has bounded variation if and only
if it can be written in the form Xt = dt− St for t ≥ 0 where {St : t ≥ 0} is a
driftless subordinator with jump measure ν satisfying ν(x,∞) = ΠX(−∞,−x)
(and then must necessarily satisfy

∫
(0,∞)(1∧ x) ν(dx) <∞) and d is a strictly

positive constant which is referred to as the drift. In that case, it is also
known that W (q)(0) = 1/d and otherwise, when X has unbounded variation,
W (q)(0) = 0.

For comparison with the main contributions of this paper (Theorems 2, 3 and
4), we review the solution to the Shepp–Shiryaev optimal stopping problem
(3), the essential part of which can be found in [2]. For convenience, we shall
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first introduce a subclass of spectrally negative Lévy processes. Denote by G
the general class of spectrally negative Lévy processes and the subclass

Hq =

{
X ∈ G :

∫
(−∞,0)

(1 ∧ |x|) ΠX(dx) = ∞ or σ > 0

or σ = 0,
∫
(−∞,0)

(1 ∧ |x|) ΠX(dx) <∞ and q < d

}

where we recall the constant d is the drift in the case of bounded variation
(see the previous paragraph). Also needed is the following class of stopping
times defined for all y ≥ 0 by

T+
y = inf{t > 0 : Y x

t ≥ y} and T−y = inf{t > 0 : Y x
t ≤ y}.

Finally, let us introduce the continuous function

f(x) = Z(q)(x)− qW (q)(x), (10)

which will play an important role in characterising optimal thresholds. Owing
to the fact that W (q)(x) = eΦ(q)xWΦ(q)(x), where WΦ(q)(x) plays the role of
W (x) under PΦ(q), we can differentiate f and easily deduce that, when q >
ψ(1) ∨ 0, the function f is strictly decreasing to −∞ and hence within this
regime

k∗ := inf{x ≥ 0 : f(x) ≤ 0} ∈ [0,∞).

In particular, when q > ψ(1) ∨ 0, k∗ = 0 if and only if X ∈ G\Hq. This
follows from the fact that Z(q)(0) = 1 and W (q)(0) = 0 unless X has bounded
variation in which case W (q)(0) = 1/d.

In the sequel, when U is attained by a stopping time in T0,∞, we shall denote
it by τ ∗. That is to say, when it exists, τ ∗ satisfies

U(x) = E[e−qτ
∗+(x∨Xτ∗ )1{τ∗<∞}].

Theorem 1 Let q ≥ 0.

(i) When q ≤ ψ(1) we have U(x) = ∞ which is not attained by any τ ∈ T0,∞,
(ii) when ψ(1) < q = 0

U(x) = ex +
1

Φ(0)− 1
ex(1−Φ(0)),

for x ≥ 0, which is not attained by any τ ∈ T0,∞,
(iii) when X ∈ G\Hq, then for x ≥ 0

U(x) = ex and τ ∗ = 0,
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(iv) when q > ψ(1) ∨ 0 and X ∈ Hq, then

U(x) = exZ(q)(k∗ − x) and τ ∗ = T+
k∗ .

Proof. Cases (iii) and (iv) are contained in Theorem 2 in [2]. Suppose q ≤
ψ(1). Since supt≥0 Y

x
t = supt≥0((x∨X t)−Xt) is P1-almost surely unbounded,

the sequence of stopping times {T+
n }n∈N is P1-almost surely finite. Hence when

α ≤ 0,

U(x) ≥ E1[e
−αT+

n +Y x

T+
n ] ≥ en,

which implies (i).

Suppose ψ(1) < q = 0. Then by monotonicity of X

E[ex∨X∞ ] ≥ sup
τ∈T0,∞

E[ex∨Xτ 1{τ<∞}] ≥ sup
t≥0

E[ex∨Xt ] = E[ex∨X∞ ].

As ψ(1) < 0, it follows that ψ′(0+) < 0 and hence by a well-known result for
spectrally negative processes, X∞ is exponentially distributed with parameter
Φ(0) = sup{θ ≥ 0 : ψ(θ) = 0} > 1 We thus we deduce (ii).

Note that when X ∈ G\Hq it follows that

q ≥ d > 0 ∨ (d +
∫
(−∞,0)

(ex − 1) ΠX(dx)) = 0 ∨ ψ(1)

and hence the four cases in the above theorem constitute an exhaustive par-
tition of the regime q ≥ 0 for the optimal stopping problem (3).

Now, turning to the solution of the Shepp–Shiryaev stochastic game, it turns
out that it is necessary to divide the regime q ≥ 0 into several sub-cases. We
present our main results accordingly.

Theorem 2 (The case q = 0) When q = 0 the solution to the Shepp–Shiryaev
stochastic game (2) is given as follows:

(i) when ψ(1) ≥ 0 we have for any δ > 0 that a saddle point is given by σ∗ = 0
and τ ∗ = ∞ and hence V (x) = ex + δ,

(ii) when ψ(1) < 0 and (Φ(0)− 1)δ > 1 we have that τ ∗ = σ∗ = ∞ and

V (x) = ex +
1

(Φ(0)− 1)
ex(1−Φ(0)),

for x ≥ 0,
(iii) when ψ(1) < 0 and (Φ(0)− 1)δ ≤ 1 we have τ ∗ = ∞, σ∗ = T−0 and

V (x) = ex + δex(1−Φ(0)).
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Theorem 3 (The case 0 < q < ψ(1)) Suppose 0 < q < ψ(1). Let f be
defined as in (10).

The equation
f(y) = 1, for y > 0 (11)

has a unique solution (which we denote by y∗). The solution to the Shepp–
Shiryaev stochastic game (6) is given as follows.

(i) If δ > Z(q)(y∗)− 1 then

V (x) =

 e
x + δ when x < a∗,

exZ(q)(b∗ − x) when x ≥ a∗,

where 0 < a∗ < b∗ <∞ satisfy

Z(q)(b∗ − a∗) = 1 + δe−a
∗
, (12)

b∗ = a∗ + y∗. (13)

A saddle point is given by σ∗ = T−a∗ and τ ∗ = T+
b∗ . Further, the function

V (x) is monotone increasing and V (x)− ex is monotone decreasing.
(ii) If δ ≤ Z(q)(y∗) − 1, then there exists a unique z∗ ∈ (0, y∗] which satisfies

Z(q)(z∗) = 1 + δ and then

V (x) = exZ(q)(z∗ − x)

and a saddle point is given by σ∗ = T−0 and τ ∗ = T+
z∗.

Theorem 4 (The case q > 0 and q ≥ ψ(1)) Let q > 0. Recall that z∗ is
the unique solution of Z(q)(z) = 1 + δ which always exists uniquely as Z(q) is
a strictly increasing function with Z(q)(0) = 1 and Z(q)(∞) = ∞. Also, recall
that for q > 0 and X ∈ Hq, the equation f(x) = 0 has a unique solution,
denoted by k∗. The solution to the Shepp–Shiryaev stochastic game (6) is given
as follows.

(i) When q = ψ(1) and δ > 0 we have σ∗ = T−0 , τ ∗ = T+
z∗ and

V (x) = exZ(q)(z∗ − x),

(ii) when q > ψ(1), X ∈ Hq and δ > Z(q)(k∗) − 1 (so that k∗ < z∗) we have
σ∗ = ∞, τ ∗ = T+

k∗ and

V (x) = U(x) = exZ(q)(k∗ − x),

(iii) when q > ψ(1), X ∈ Hq and δ ≤ Z(q)(k∗) − 1 so that k∗ ≥ z∗ we have
σ∗ = T−0 , τ ∗ = T+

z∗ and

V (x) = exZ(q)(z∗ − x),
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(iv) when q > ψ(1) and X ∈ G\Hq, we have for any δ > 0 that τ ∗ = 0 and
σ∗ = ∞ form a saddle point, hence

V (x) = ex.

Remark 5 (Intuition) We briefly discuss some of the intuition behind the
results of Theorems 2, 3 and 4.

When q = 0, one might expect it not to be optimal for the sup-player to stop,
since the gain in (2) is non-decreasing in time. One would also expect the
inf-player to never stop when the penalty δ is too large, which is indeed the
conclusion of Theorem 2 (ii). When ψ(1) ≥ 0 we have

E[eXt∨x] ≥ E[eXt ] = eψ(1)t,

which indicates that the inf-player cannot gain by waiting and hence should
stop immediately. When ψ(1) < 0 and δ is below a critical value, it becomes
worthwhile for the inf-player to stop. Since ψ(1) < 0 implies that E[eXt ] de-
creases in t, it might be lucrative for the inf-player not to stop immediately
and it turns out that it is optimal for the inf-player to stop when the reflected
process Y reaches its minimum 0. Note that this stopping time is infinite with
positive probability.

When q ≥ ψ(1) and q > 0, we observe the same phenomenon that the inf-
player stops when Y reaches 0 providing δ is below a critical value. This time,
since q > 0, the sup-player should stop as well in an almost surely finite
stopping time and indeed this happens at the first time Y exceeds a certain
positive value (possibly by a jump).

When 0 < q < ψ(1), the discount factor α in (6) is negative and therefore the
inf-player should stop at an almost surely finite time. It also seems plausible
that the inf-player should stop sooner than when ψ(1) ≤ q, resulting in an
optimal stopping set of the form [0, a∗]. However, this only happens when the
penalty δ is large enough. It might seem counterintuitive that the inf-player
is more eager to stop when the penalty is large, but this strategy could be
explained by reasoning that the inf-player is tolerant to the negative discount
factor α in (6) as long as δ is small enough. When δ becomes too large, the
inf-player needs to take evasive action by stopping sooner.

Remark 6 (Pasting conditions) Theorems 3 and 4 both state that the
value function of the Shepp–Shiryaev stochastic game necessarily takes the
form

V (x) =

 δ + ex when x < a,

exZ(q)(b− x) when x ≥ a,

for some 0 ≤ a ≤ b < ∞. As a consequence of the behaviour at the origin of
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the scale functions Z(q) and W (q), if follows that when a > 0, there is smooth
pasting at a (in accordance with the fact that 0 is regular for (0,∞) for X).
Further, when b < ∞ there always is continuity at b and smooth pasting at
b if and only if X has unbounded variation (corresponding to the case that 0
is regular for (−∞, 0) for X). See [1] for a discussion on the relevance of path
regularity to pasting conditions.

The rest of this paper is structured as follows. In the next section we make
note of a Verification Lemma for the optimal stopping game (6) under the
change of measure. This lemma essentially allows us to ‘verify’ directly that
the solutions presented in Theorems 3 and 4 are indeed optimal. In addition,
we present the candidate functions which will be used in conjunction with the
Verification Lemma to establish the solution. In Section 4 we give the proof
of Theorem 3. Having done this, one sees that the proof of Theorem 4 is a
straightforward variant of a part of the proof of Theorem 3. We only comment
briefly in Section 5 on the proof of Theorem 4, which is otherwise left as an
exercise for the reader. In Section 6 we give the proof of Theorem 2. The proof
differs from the proofs of Theorems 3 and 4 in the sense that one may no
longer appeal to the change of measure (4).

3 Preliminary results

Following classical ideas in optimal stopping, we verify that a candidate solu-
tion solves the Shepp–Shiryaev game by checking certain associated bounds
and martingale properties. Specifically, we use the following verification lemma
for the case q > 0, which is a variant of the similar one in [3].

Lemma 7 (Verification Lemma) Suppose that τ ∗ ∈ T0,∞ and σ∗ ∈ T0,∞
are candidate optimal strategies for the stochastic game (6) such that

eY
x
σ 1{σ<τ∗} (14)

is uniformly bounded by a constant for all σ ∈ T0,∞ and x ≥ 0. Let

V ∗(x) = E1[e−ατ
∗+Y x

τ∗1{τ∗≤σ∗, τ∗<∞} + e−ασ
∗ (
eY

x
σ∗ + δ

)
1{σ∗<τ∗}].

Then the triple (τ ∗, σ∗) is a saddle point to (6) if

(i) V ∗(x) ≥ ex,
(ii) V ∗(x) ≤ ex + δ,
(iii) V ∗(Yτ∗) = eYτ∗ almost surely on {τ ∗ <∞},
(iv) V ∗(Yσ∗) = eYσ∗ + δ almost surely on {σ∗ <∞},
(v) the process {e−α(t∧τ∗)V ∗(Yt∧τ∗)}t≥0 is a right-continuous submartingale un-

der P1 and
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(vi) the process {e−α(t∧σ∗)V ∗(Yt∧σ∗)}t≥0 is a right-continuous supermartingale
under P1.

Proof. Define for each τ, σ ∈ T0,∞

Θα
τ,σ = e−ατ+Y

x
τ 1{τ≤σ, τ<∞} + e−ασ

(
eY

x
σ + δ

)
1{σ<τ}. (15)

From the supermartingale property (vi), Doob’s optional stopping theorem
(iv) and (i) we know that for any τ ∈ T0,∞ and t ≥ 0,

V ∗(x)≥E1[e−α(t∧τ∧σ∗)V ∗(Xt∧τ∧σ∗)]

≥E1[e−α(t∧τ)+Y x
t∧τ 1{σ∗≥t∧τ, τ<∞} + e−ασ

∗
(eY

x
σ∗ + δ)1{σ∗<t∧τ}].

By taking limits t→∞, it follows from Fatou’s lemma that

V ∗(x) ≥ E1[Θα
τ,σ∗ ].

Next, we show that
V ∗(x) ≤ E1[Θα

τ∗,σ]. (16)

If σ is such that
E1[e−ασ1{σ<τ∗}] = ∞,

then (16) holds trivially, as V ∗(x) ≤ ∞. Hence, we assume σ ∈ T0,∞ satisfies

E1[e−ασ1{σ<τ∗}] <∞.

Using (v), Doob’s optional stopping theorem, (ii) and (iii) we find

V ∗(x)≤E1[e−α(t∧τ∗∧σ)V ∗(Xt∧τ∗∧σ)]

= E1[e−ατ
∗
V ∗(Xτ∗)1{τ∗≤t∧σ} + e−α(t∧σ)V ∗(Xt∧σ)1{τ∗>t∧σ}]

≤E1[e−ατ
∗+Y x

τ∗1{τ∗≤t∧σ} + e−α(t∧σ)(eY
x
t∧σ + δ)1{τ∗>t∧σ}].

Taking limits as t ↑ ∞ and applying the monotone convergence theorem to
the first term on the right hand side and the dominated convergence theorem
(see (14)) to the second term on the right hand side, we find that indeed

V ∗(x) ≤ E1[Θα
τ∗,σ]

and hence the saddle point is achieved with the strategies (τ ∗, σ∗).

Note that Lemma 7 implies that when δ ≥ supx≥0(U(x) − ex), a solution to
the game is given by taking V ∗ = U and τ ∗ as in Theorem 1 and σ∗ = ∞. This
agrees with the intuition that the inf-player will force a greater payment by
stopping than the sup-player would otherwise induce by stopping and hence
it is better for the inf-player not to stop at all.
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We shall often apply the above verification lemma to solutions of the form
V (x, a, b) for 0 ≤ a < x < b < ∞ corresponding to taking strategies σ = T−a
and τ = T+

b in (1). That is,

V (x, a, b) = E1[e
−αT+

b
+Y x

T+
b 1{T+

b
≤T−a } + e−αT

−
a

(
e
Y x

T−a + δ
)

1{T−a <T+
b
}]. (17)

Using fluctuation theory we prove the following result.

Lemma 8 Let 0 ≤ a < x < b <∞. Then

V (x, a, b) = ex
(
Z(q)(b− x)−W (q)(b− x)

Z(q)(b− a)

W (q)(b− a)

+(1 + δe−a)
W (q)(b− x)

W (q)(b− a)

)
. (18)

Proof. Let 0 ≤ a < x < b <∞. Note that τ−x−b = T+
b on the event {T+

b < T−a }
and τ+

x−a = T−a on the event {T−a < T+
b }. We change measure using (4), then

use (7) and (9) to derive

V (x, a, b) = E1[e
−αT+

b
+Y x

T+
b 1{T+

b
≤T−a } + e−αT

−
a

(
e
Y x

T−a + δ
)

1{T−a <T+
b
}]

= E[e
−qτ−

x−b
+(x∨X

τ−
x−b

)
1{τ−

x−b
≤τ+

x−a}
]

+ (δ + ea)E[e
−qτ+

x−a+X
τ+
x−a1{τ+

x−a<τ
−
b−x

}]

= ex
(
Z(q)(b− x)−W (q)(b− x)

Z(q)(b− a)

W (q)(b− a)

+(1 + δe−a)
W (q)(b− x)

W (q)(b− a)

)
,

which was to be shown.

4 Proof of Theorem 3

We begin with a preliminary lemma (from which the opening part of Theorem
3 follows) concerning the function f(x) defined in (10),

Lemma 9 Suppose 0 < q < ψ(1). The equation f(y) = 1 has a unique solu-
tion (denoted by y∗) on (0,∞) such that 0 < f(x) < 1 for 0 < x < y∗ and
f ′(y∗) > 0.
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Proof. In the case when X has unbounded variation, f(0) = 1 and

f ′(0+) = −qW (q)′(0+) = −q lim
λ→∞

λ2

ψ(λ)− q
=

−
2q
σ2 when σ > 0,

−∞ when σ = 0.

In the case of bounded variation with drift d, we have f(0) = 1 − q/d < 1.
Also d > ψ(1) > q, so f(0) > 0. Hence in either case of bounded or unbounded
variation, it follows that f(ε) < 1 for some ε > 0.

Recalling that W (q)(x) = eΦ(q)xWΦ(q)(x), we have for x > 0

f ′(x) = q(W (q)(x)−W (q)′(x))

= qeΦ(q)x((1− Φ(q))WΦ(q)(x)−W ′
Φ(q)(x)).

It is also known that

W ′
Φ(q)(x) = WΦ(q)(x)nΦ(q)(h > x),

where nΦ(q) is the excursion measure of X −X under PΦ(q). Hence,

f ′(x) = qW (q)(x)(1− Φ(q)− nΦ(q)(h > x)) (19)

and thus, in particular, f(∞) = ∞ implying that the function f attains its
minimum. From (19) it also follows that f ′(x) ≥ 0 for some x implies that
f ′(y) > 0 for all y > x. From the first paragraph of this proof we deduce that
the minimum of f is valued in (−∞, 1) and that this minimum is uniquely
attained (say at m). We deduce that the equation f(y) = 1 has a unique
solution on (0,∞) (denoted by y∗). Clearly, y∗ > m and it readily follows that
f ′(y∗) > 0 and that f(x) < 1 for all 0 < x < y∗.

We now show positivity of f . It is known from the Wiener–Hopf factorisation
(cf. Chapter 8 of [16]) that

1

q
>

1

q
P(−Xeq

∈ [0, x]) =
1

Φ(q)
W (q)(x)−

∫ x

0
W (q)(y) dy,

where eq is an independent and exponentially distributed random variable
with parameter q and X t = infs≤tXs. Since 0 < q < ψ(1), it follows that
−Φ(q)−1 < −1 and hence

f(x) > Z(q)(x)− q

Φ(q)
W (q)(x) = 1− q

(
1

Φ(q)
W (q)(x)−

∫ x

0
W (q)(y) dy

)
> 0,

which completes the proof.

We now divide the forthcoming analysis into the two cases δ > Z(q)(y∗)−1 and
δ ≤ Z(q)(y∗)− 1 corresponding to parts (i) and (ii) respectively of Theorem 3.

13



4.1 The case δ > Z(q)(y∗)− 1.

Under this sub-regime of 0 < q < ψ(1), we have the existence of 0 < a∗ <
b∗ <∞ satisfying

Z(q)(y∗) = 1 + δe−a
∗

and
b∗ = a∗ + y∗,

where y∗ was defined as the unique solution in (0,∞) of (11). Note that this
choice of a∗ and b∗ has the convenient implication that for x ≥ a∗

V (x, a∗, b∗) = exZ(q)(b∗ − x). (20)

From the latter, we see that on [a∗, b∗)

V (x, a∗, b∗) > ex.

Moreover, V ′(x, a∗, b∗) = exf(b∗ − x) and, on account of the fact that f(b∗ −
x) < 1 for all x > a∗, it follows that

V (x, a∗, b∗) < ex + δ for all x > a∗. (21)

Since f is positive, it also follows that V (x, a∗, b∗) is increasing in x, and thus,
in particular,

ea
∗
+ δ = V (a∗, a∗, b∗) < V (b∗, a∗, b∗) = eb

∗
. (22)

Next, define the function θ : R 7→ R by

θ(x) = Z(q)(b∗ − x)− 1− δe−x. (23)

We will shortly make use of the following lemma.

Lemma 10 The function θ satisfies θ(a∗) = 0 and

θ(x) < 0 for all x < a∗.

Proof. The statement θ(a∗) = 0 rephrases (12). Next, differentiating and
using the fact that b∗ − a∗ = y∗ (and hence f(b∗ − a∗) = 1), we have

θ′(a∗) = −qW (q)(b∗ − a∗) + δe−a
∗

= 1− Z(q)(b∗ − a∗) + δe−a
∗

= 0.

From Lemma 9 we have f ′(y∗) > 0 and hence W (q)′(b∗ − a∗) < W (q)(b∗ − a∗),
which in turn implies that

θ′′(a∗) = qW (q)′(b∗ − a∗)− δe−a
∗
< qW (q)(b∗ − a∗)− δe−a

∗
= 0. (24)
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In particular, θ(x) < 0 for all x ∈ (a∗−ε, a∗) and some sufficiently small ε > 0.

Suppose now, for contradiction, that c = sup{x < a∗ − ε : θ(x) = 0} > −∞.
Then by Rolle’s theorem, there exists d ∈ (c, a∗) such that θ(d) < 0 and
θ′(d) = 0. On the other hand, for x < a∗ we also have

θ(x) + θ′(x) = f(b∗ − x)− 1

>f(b∗ − a∗)− 1 = 0,

where we have used Lemma 9. In particular with x = d we find θ(d) > 0 which
is in contradiction with the definition of d. In conclusion, c = a∗ and θ(x) < 0
for all x < a∗ as required.

Our strategy for proving part (i) of Theorem 3 will be to look at an auxiliary
optimal stopping problem and then use the above information to associate the
solution of the aforementioned optimal stopping problem with the solution of
the Shepp–Shiryaev stochastic game. To this end, let

I(x) = inf
σ∈T0,∞

E1[e−ασg(Ỹ x
σ )], (25)

where Ỹ x
σ := Y x

σ∧T+
b∗

, g is any continuous function such that

g(x) =

 e
x + δ when x < a∗,

ex when x ≥ b∗

and

ex + δ > g(x) > exZ(q)(b∗ − x)

for any x ∈ (a∗, b∗).

Theorem 11 There exists a solution to the optimal stopping problem (25)
with the following properties.

(i) For x > a∗, I(x) = V (x, a∗, b∗).
(ii) For all x ∈ (0, b∗), I(x) > ex.

Proof. By taking σ = 0 in the expectation on the right hand side of (25), we
see that I(x) ≤ (ex + δ). Hence, it follows that

I(x) = I(x) ∧ (ex + δ) = inf
σ∈T0,∞

E1[(e−ασg(Ỹ x
σ )) ∧ (ex + δ)]

and (25) is an optimal stopping problem for a strong Markov process where,
for each fixed x ≥ 0, the pay-off function is continuous and bounded but as a
function of x the stochastic gain is locally bounded in x.
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Taking note of (2.2.80) in [21], we may now invoke Corollary 2.9 in the same
reference to deduce the existence of an optimal stopping time σ∗ in (25) which
is of the form

σ∗ = inf{t > 0 : Ỹ x
t ∈ D},

where D = {x : I(x) = g(x)}.

Since α = q − ψ(1) < 0 and g(x) ≥ 1 + δ, we have that 0 ∈ D. Now, define

s := sup{0 ≤ x < b∗ : I(x) = g(x)}.

Taking σ = T−a∗ in the expectation on the right hand side of (25) leads to a
value of V (x, a∗, b∗) and thus for any x > a∗ it holds that I(x) ≤ V (x, a∗, b∗) <
ex + δ where the last inequality follows by virtue of (21). As a consequence,
we now see that s ≤ a∗.

(i) We want to rule out the case that s < a∗ and then part (i) will follow.
Suppose for contradiction that s < a∗. Then, on [s, b∗] we have I = V (·, s, b∗).
In particular, it holds that

I ′(s+) =V ′(s, s, b∗)

= es + δ

+ es
(
−qW (q)(b− s) +

W (q)′(b− s)

W (q)(b− s)

(
Z(q)(b− s)− 1− δe−s

))
.

The fact that 0 < f ′(b∗ − a∗) implies that W (q)′(b∗ − s)/W (q)(b∗ − s) < 1 and
thus, using Lemma 10 we find

I ′(s)>es + δ + es
(
−qW (q)(b∗ − s) + Z(q)(b∗ − s)− 1− δe−s

)
>es,

where the last inequality is a consequence of the fact that f(b∗ − s) > f(b∗ −
a∗) = 1. Since I(s) = es + δ, the previous calculations indicate that I violates
its upper bound ex + δ. We conclude that s = a∗ and thus (a∗, b∗) ⊆ Dc.

(ii) The next step in the proof is to show that for all x ∈ [0, b∗)

I(x) > ex. (26)

We prove (26) by contradiction. First, we show that there are only a finite
number of intervals (l, r) satisfying (l, r) ⊂ Dc, 0 ≤ l < r ≤ a∗, I(l) = el + δ,
I(r) = er + δ and such that there is some x ∈ (l, r) for which I(x) ≤ ex.
Indeed, since α < 0, taking into account the fact that optimal stopping occurs
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whenever Ỹ x hits the domain D and that X is spectrally negative, we deduce
that for any x ∈ (l, r), with (l, r) an interval satisfying the properties above,

I(x) ≥ el + δ,

since (a∗, b∗) ⊂ Dc, and since from (22) it follows that

inf
x∈D∩[r,∞)

g(x) = er + δ > el + δ.

Hence, whenever x ∈ (l, r) satisfies I(x) < ex, then it must hold that x ≥
log(el + δ). In particular, (l, r) is necessarily of minimal length log(el + δ)− l
and therefore there can be only finitely many intervals of this form. Now let
(l∗, r∗) be the rightmost of such intervals. Fix x ∈ (l∗, r∗) and set

T(l∗,r∗) = inf{t > 0 : Y x
t /∈ (l∗, r∗)}.

Note that T(l∗,r∗) ≤ TD, where

TD = inf{t > 0 : Y x
t ∈ D}.

Since

{e−α(t∧TD)I(Y x
t∧TD

)}
is a P1-martingale (cf. Theorem 2.4 in [21]) we have

I(x) = E1[e−αT(l∗,r∗)I(Y x
T(l∗,r∗)

)]

= E1[e−αT(l∗,r∗)

(
(e
Y x

T−
l∗ + δ)1{T−

l∗<T
+
r∗}

+ I(Y x
T+

r∗
)1{T+

r∗<T
−
l∗}

)
]

≥E1[e−αT(l∗,r∗)

(
(e
Y x

T−
l∗ + δ)1{T−

l∗<T
+
r∗}

+ e
Y x

T+
r∗1{T+

r∗<T
−
l∗}

)
]

= V (x, l∗, r∗),

where for the inequality we used the fact that we have chosen (l∗, r∗) as the
rightmost interval on which I(x) > ex fails. Since r∗ ≤ b∗, we have for x ∈
(l∗, r∗)

V (x, l∗, r∗)

= ex
(
Z(q)(r∗ − x)−W (q)(r∗ − x)

Z(q)(r∗ − l∗)

W (q)(r∗ − l∗)
+ (1 + δe−l

∗
)
W (q)(r∗ − x)

W (q)(r∗ − l∗)

)

≥ ex
(
Z(q)(r∗ − x)− W (q)(r∗ − x)

W (q)(r∗ − l∗)

(
Z(q)(b∗ − l∗)− 1− δe−l

∗))
≥ exZ(q)(r∗ − x)

> ex,

17



where we have used Lemma 10. This contradiction has the desired implication
that I(x) > ex for all x < a∗.

In the next result we establish that there exists a saddle point for the Shepp–
Shiryaev stochastic game. Recall that I(x) is specified by (25) where the func-
tion g is arbitrary up to the specified constraints following equation (25).

Proposition 12 Let 0 < q < ψ(1) and δ > Z(q)(y∗)− 1. The stochastic game
(1) has a solution and its value satisfies V (x) = I(x) for all x ≥ 0.

Proof. The proof uses the Verification Lemma 7 applied to the function
V ∗ = I and the stopping times τ ∗ = T+

b∗ and

σ∗ = inf{t > 0 : Y x
t ∈ D ∩ [0, a∗]},

where D = {x ≥ 0 : I(x) = g(x)}.

From Theorem 11 we have that I(x) fulfils conditions (i)–(iv) of Lemma 7.
By standard optimal stopping theory and the strong Markov property, the
submartingale property (v) automatically holds, see for example Theorem
2.4 of [21]. It remains to justify the remaining condition (vi). By consider-
ing E1(Θα

T+
b∗ ,T

−
a∗
|Ft) where Θα

·,· was defined in (15) and applying the strong

Markov property, it is straightforward to show with the help of (20) that
{e−αteY x

t Z(q)(b∗ − Y x
t ) : t < T+

b∗ ∧ T−a∗} is a P1-martingale. Since I(x) =
exZ(q)(b∗ − x) for x ≥ a∗ it holds that I belongs to C2(a∗, b∗) and one may
to apply Itô’s formula for semi-martingales (cf. Theorem 32, p78 of [22]) to
deduce that (Γ−α)I(x) = 0 on (a∗, b∗), where Γ is the infinitesimal generator
of −X under P1. Note also that since {e−Xt−ψ(1)t : t ≥ 0} is a martingale
under P1 we have that (Γ − α)ex = −qex for all x ∈ R. It now follows that
(Γ − α)I(x) ≤ 0 for x > b∗. Appealing to the known behaviour of the scale
function Z(q) at zero (cf. Chapter 8 of [16]), if X has bounded variation then
I belongs to C2[(a∗, b∗)∪ (b∗,∞)]∩C0(a∗,∞) and otherwise, when X has un-
bounded variation, I belongs to C2[(a∗, b∗)∪ (b∗,∞)]∩C1(a∗,∞). In the first
case, the version of the change of variable formula (which is nothing more than
a special case of Itô’s formula for semi-martingales) in [17] may be used, and
in the second case the version of Itô’s formula established in [19] or [7] may
be used together with the fact that (Γ− α)I(x) ≤ 0 for x ∈ (a∗, b∗) ∪ (b∗,∞)
to deduce that {e−αteY x

t Z(q)(b∗ − Y x
t ) : t < T−a∗} is a supermartingale.

Note that right-continuity of the paths of all the above-mentioned semi mar-
tingales is clear on account of the continuity of I and the right-continuity of
Y x.

Were it not for the fact that we have not yet proved that I(x) = ex + δ for
all x ≤ a∗, i.e. that D ∩ [0, a∗] = [0, a∗], we would be able to claim that the
proof of Theorem 3 (i) is now complete. However, we must still rule out the
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possibility that I(x) < ex + δ for some interval ∅ 6= (l, r) ⊆ [0, a∗]. We finish
this subsection by excluding this possibility and hence concluding the proof
of Theorem 3 (i).

Theorem 13 The value function I(x) − ex is decreasing and hence part (i)
of Theorem 3 holds.

Proof. Let x > y ≥ 0. We use the notation σ(x) to make explicit the depen-
dency of the stopping time σ ∈ T0,∞ on the initial position of the process Y x.
We then find that for any x ≥ 0

V (x)≤E[e−qτ
∗(x)+(x∨Xτ∗(x))1{τ∗(x)≤σ∗(y)}]

+ E[e−qσ
∗(y)

(
ex∨Xσ∗(y) + δeXσ∗(y)

)
1{σ∗(y)<τ∗(x)}]

and similarly, for any y ≥ 0

V (y)≥E[e−qτ
∗(x)+(y∨Xτ∗(x))1{τ∗(x)≤σ∗(y)}]

+ E[e−qσ
∗(y)

(
ey∨Xσ∗(y) + δeXσ∗(y)

)
1{σ∗(y)<τ∗(x)}].

Now, let x > y ≥ 0. Then

V (x)− V (y)≤E[e−qτ
∗(x)

(
ex∨Xτ∗(x) − ey∨Xτ∗(x)

)
1{τ∗(x)≤σ∗(y)}]

+ E[e−qσ
∗(y)

(
ex∨Xσ∗(y) − ey∨Xτ∗(x)

)
1{σ∗(y)<τ∗(x)}].

Since for any a it holds that

ex∨a − ey∨a ≤ ex − ey,

we deduce
V (x)− V (y) ≤ ex − ey. (27)

Since V (a∗) = ea
∗

+ δ and since V (x) ≤ ex + δ for all x, it follows that
V (x) = ex + δ for all x ∈ [0, a∗]. The result follows.

4.2 The case δ ≤ Z(q)(y∗)− 1.

Let us now conclude this section and the proof of Theorem 3 by establishing
the following result. Recall that we are still under the regime 0 < q < ψ(1).

Theorem 14 If δ ≤ Z(q)(y∗)−1, then there exists a unique z∗ ∈ (0, y∗] which
satisfies Z(q)(z∗) = 1 + δ. The value function is given by

V (x) = exZ(q)(z∗ − x)
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and optimal stopping times are σ∗ = T−0 and τ ∗ = T+
z∗. In particular, part (ii)

of Theorem 3 holds.

Proof. Since 1 + δ ≤ Z(q)(y∗) and Z(q)(0) = 1, it follows that there exists a
z∗ ∈ (0, y∗] such that 1 + δ = Z(q)(z∗).

Next, note that from Lemma 8

V (x) = exZ(q)(z∗ − x) = V (x, 0, z∗)

and hence we can complete the proof by showing that the triple (V, T+
z∗ , T

−
0 )

fulfils the conditions (i) – (vi) of Lemma 7. It is immediately clear from the
definition of V that condition (i) holds. Next, note that V ′(x) = exf(z∗ − x).
Since by Lemma 9 the function f is strictly positive and since V (0) = δ,
it follows that V (x) ≤ δ + ex and hence condition (ii) of Lemma 7 holds.
Conditions (iii) and (iv) are automatic.

To establish conditions (v) and (vi) of Lemma 7 one needs to appeal to
the semi-martingale decomposition of e−αtV (Y x

t ). Similar arguments to those
given in the proof of Proposition 12 lead to

e−αtV (Y x
t ) =V (x) +

∫ t

0
(Γ− α)V (Y x

s ) ds+
∫ t

0
V ′(Y x

s ) d(x ∨Xs) +Mt

=V (x) +
∫ t

0
(Γ− α)V (Y x

s ) ds+ V ′(0+)(x ∨X t) +Mt, (28)

where Γ is the generator of −X under P1, (Γ−α)V (x) = 0 for x ∈ (0, z∗) and
(Γ − α)V (x) ≤ 0 for x > z∗ and M is a martingale. Note also that the term
V ′(Y x

s ) may be replaced by V ′(0+) as x∨Xs increases only when Y x
s = 0. From

this, one sees in the above semi-martingale decomposition that the process
{e−αtV (Y x

t ) : t ≤ T−0 ∧ T+
z∗} is a martingale and that {e−αtV (Y x

t ) : t ≤ T−0 } is
a supermartingale. Again, right-continuity of paths is obvious. As the second
integral in (28) is equal to V ′(0+)(x ∨X t) (in particular, it is an increasing,
continuous, adapted process), it follows that {e−αtV (Y x

t ) : t ≤ T+
z∗} is also a

right-continuous submartingale. This completes the proof of Theorem 3.

5 Proof of Theorem 4

The proof goes along the lines of the proof of Theorem 14, principally ap-
pealing to the semi-martingale decomposition (28) for the specified triple
(V, τ ∗, σ∗). For Theorem 4 (iv) it is possible to compute exactly the quan-
tities (Γ − α)V (x) and V ′(0+). In the remaining cases one may deduce the
necessary properties of (Γ − α)V (x) as in the proof of Theorem 14 and that

20



V ′(0+) = f(z∗ ∧ k∗) ≥ 0 from the properties of the function f mentioned in
Section 2.

6 Proof of Theorem 2

Recall that for q = 0, the pay-off of the game is given by

Gx
t,s = eXt∨x1{t≤s} + (eXs∨x + δeXs)1{s<t} (29)

Lemma 15 Suppose that there exists some σ∗ ∈ T0,∞ such that

E[Gx
∞,σ∗ ] = inf

σ∈T0,∞
E[Gx

∞,σ]. (30)

Then the Shepp–Shiryaev stochastic game (2) has value function V and a
saddle point is given by τ ∗ = ∞ and σ∗. Otherwise said, it is optimal for the
inf-player to never stop.

Proof. Let σ ∈ T0,∞. Then it is straightforward to show that Gx
·,σ is a mono-

tone non-decreasing function. We find that for any σ, τ ∈ T0,∞

E[Gx
τ,σ∗ ] ≤ E[Gx

∞,σ∗ ] ≤ E[Gx
∞,σ],

where the first inequality follows by the aforementioned monotonicity and the
second inequalitiy follows by the optimality of σ∗ in (30).

Remark 16 (Problems with change of measure) It is tempting to solve
(30) by the change of measure we have used throughout this paper, but the
following example shows that when q = 0, the corresponding optimal stopping
problem under P1 is a different one.

Let q = 0 and ψ(1) < 0 such that ψ′(1) ≥ 0. Since Gx
s,t ≥ ex for all s, t we

immediately see that
inf

σ∈T0,∞
E[Gx

∞,σ] ≥ ex.

However, the optimal stopping problem under the changed measure is given
by

inf
σ∈T0,∞

E[eψ(1)σ(eY
x
σ + δ)].

The latter optimal stopping problem has value zero, which can be seen by
considering the sequence of stopping times (σn)n∈N defined by

σn := inf{t ≥ n : Y x
t = 0}

which is almost surely finite under P1. The reason for this phenomenon is that
the equality

E[ex∨Xσ + δeXσ ] = E1[eY
x
σ + δ]
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holds whenever P1(σ < ∞) = P(σ < ∞) = 1. Since X drifts to −∞ under P
we have that P(σn <∞) < 1 for any n ∈ N.

On account of the above remark, we consider (30) as an optimal stopping
problem for (X,X), just as was done in the first paper on the Russian option
in [23]. We modify our notation and write for y ≥ x

V (x, y) := inf
σ∈T0,∞

E[ex∨(y+Xσ) + δey+Xσ ]. (31)

Again by standard theory on optimal stopping we know there exists a (possibly
infinite) stopping time σ∗ = σ∗(x, y) at which the infimum in (31) is attained.
We have the following verification lemma for (30), the proof of which is omitted
as it is similar to the proof of Lemma 7.

Lemma 17 Let σ∗ ∈ T0,∞ and let

V ∗(x, y) = E[ex∨(y+Xσ∗ ) + δey+Xσ∗ ].

Then (V ∗(x, 0), σ∗) is a solution to (30) if

(i) V ∗(x, y) ≤ ex + δey,
(ii) the process {V ∗(X t, Xt) : t ≥ 0} is a right-continuous submartingale.

Proof of Theorem 2.

First, suppose ψ(1) ≥ 0. Then {Mt}t≥0 defined by

Mt = ex∨(y+Xt) + δey+Xt

is a P-submartingale. Indeed, for 0 ≤ s ≤ t

E[Mt|Fs]≥ ex∨(Xs+y) + δey+XsE[eX̃t−s ]

= ex∨(Xs+y) + δey+Xseψ(1)(t−s)

≥Ms,

where X̃ denotes an independent copy of X. Hence, in this case Lemma 17
shows that V (x) = ex + δ and σ∗ = 0 solve (30), which agrees with part (i) of
Theorem 2.

Next, let ψ(1) < 0 and δ(Φ(0) − 1) > 1 and consider σ∗ = ∞. Since X∞ is
exponentially distributed with parameter Φ(0), we find for x ≥ y
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V ∗(x, y) : = E[ex∨(y+X∞) + δey+X∞ ]

= E[ex∨(X∞+y)]

= ex
∫ x−y

0
Φ(0)e−Φ(0)z dz +

∫ ∞

x−y
Φ(0)e−Φ(0)z+z+y dz

= ex(1− e−Φ(0)(x−y)) +
Φ(0)

Φ(0)− 1
exe−Φ(0)(x−y)

= ex +
1

Φ(0)− 1
e−(Φ(0)−1)x+Φ(0)y

and in particular, by the condition on δ

V ∗(x, y) ≤ ex + δey.

As X is a strong Markov process, we have that

X∞ = X t ∨ (Xt +X
′
∞)

where X
′
∞ is a copy of X∞ which is independent of Ft and thus

E[ex∨(X∞+y)|Ft] = E[ex∨(Xt+y)∨(Xt+y+X
′
∞)|Ft]

=V ∗(x ∨ (X t + y), Xt + y).

It now follows that {V ∗(X t, Xt)}t≥0 is a P-martingale (and hence in particular
a submartingale). Again using Lemma 17, we deduce part (ii) of Theorem 2.

Finally, let ψ(1) < 0 and δ(Φ(0)− 1) ≤ 1 and take x ≥ y. If we take

σ∗ = τ+
x = inf{t > 0 : Xt ≥ x} = T−0 ,

we have

V ∗(x, y) : = E[eXσ∗ + δeXσ∗ ]

= ex + δexP(τ+
x−y <∞)

= ex + δe−(Φ(0)−1)x+Φ(0)y

and again we have that V ∗(x, y) ≤ ex + δey. Since {eΦ(0)Xt} is a martingale,
the submartingale property follows from Itô’s formula and the fact that

∫ t

0

∂

∂x
V ∗(Xt, Xt) dX t =

∫ t

0
(eXt + δ(1− Φ(0))e−(Φ(0)−1)Xt+Φ(0)Xt) dX t

=
∫ t

0
eXt(1 + δ − Φ(0)δ) dX t ≥ 0,
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where the second equality is due to the fact that X t only increases when
Xt = X t and the proof of Theorem 2 is complete.

7 Concluding remarks

Remark 18 In the proof of Theorem 13, the spectral negativity of the process
is not used. This indicates that if a solution to the game exists, then the
(possibly empty) sets I1, I2 and I3 defined by

I1 : = {x ∈ [0,∞) : V (x) = ex + δ},
I2 : = {x ∈ [0,∞) : ex < V (x) < ex + δ},
I3 : = {x ∈ [0,∞) : V (x) = ex}

satisfy
x1 < x2 < x3 for all xi ∈ Ii, i = 1, 2, 3

and thus the solution to the game, if it exists, must be of the same nature
for a more general Lévy process. An existence result for Nash (saddle point)
equilibrium and the weaker Stackelberg equilibrium to optimal stopping games
in a general Markovian setting (including Lévy processes) can be found in [9].
In that paper, optimal stopping games are considered with a pay-off function
of the general form

G1(Xτ )1{τ<σ} +G1(Xσ)1{σ<τ} +G3(Xτ )1{σ=τ},

where τ and σ are the strategies of the sup-player and inf-player, respectively.
For the Shepp–Shiryaev game the right-continuous, quasi-left-continuous strong
Markov process is (t,Xt, X t) and the functions G1, G2 and G3 are given by

G1(t, x, s) = G3(t, x, s) = e−qt+s and G2(t, x, s) = e−qt(es + δex).

The assumptions

Ex sup
t≥0

|Gi(Xt)| <∞ for x ∈ R (i = 1, 2, 3) (32)

in [9] on the pay-off functions (to imply existence of a Nash equilibrium (saddle
point) to the corresponding optimal stopping game) are consistent with the
traditional assumption

Ex sup
t≥0

|G(Xt)| <∞

for results concerning existence of solutions optimal stopping problems with
pay-off G. We find that we cannot always fit the Shepp–Shiryaev game in this
framework because of the same reason the Russian optimal stopping prob-
lem does not always satisfy the assumptions of traditional optimal stopping
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theorems. For example, when X is a spectrally negative Lévy process with
ψ(1) > q, the conditions (32) are not satisfied since E supt≥0 |G2(t,Xt, X t)| is

bounded from below by supt≥0 δE[e−qt+Xt ] ≥ supt≥0 δe
(ψ(1)−q)t = ∞. On the

other hand, if we consider the Shepp–Shiryaev game with finite horizon then
the assumptions in [9] are automatically satisfied thus guaranteeing a saddle
point.

It should also be pointed out that there are examples of optimal stopping
games which have a value but where the failure of (32) means that there is
also failure for the existence of a saddle point. See for example [10].

Remark 19 When X is a Brownian motion with parameter σ > 0 and drift
µ, it can be directly checked by taking Laplace transforms that the scale
functions for X are given by

W (q)(x) =
2

σ2ε
eβx sinh(εx), Z(q)(x) = eβx cosh(εx)− β

ε
eγx sinh(εx),

where ε = 1
σ

√
µ2/σ2 + 2q and β = −µ/σ2. In [15] the game is solved whenever

q > ψ(1) ≥ 0. Since, when δ is large enough, z∗ satisfies Z(q)(z∗) = 1 + δ we
find that k∗ := ez

∗
solves

kβ∗ (k
ε
∗ + k−ε∗ )− β

ε
kβ∗ (k

ε
∗ − k−ε∗ ) = 2(1 + δ),

which agrees with (7) in [15]. In [15] there is an additional technical condi-
tion (4) on the optimal stopping boundary k∗. The aforementioned condition
pertains to the requirement that V ′(0+) ≥ 0 (which ultimately is required for
the appropriate submartingale property to hold). Working here with general
spectrally negative Lévy processes, and in particular with scale functions, has
seemingly produced arguments which have circumvented the need for such a
condition. Hence, from the results in this paper, it follows that the claim in
[15] (that this condition is necessary) is in fact false.
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