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Abstract

We give a generalization of the shift bound on the minimum dis-
tance for cyclic codes which applies to Reed-Muller and algebraic-
geometric codes. The number of errors one can correct by majority
coset decoding is up to half the shift bound.

1991 Mathematics Subject Classification: 94B27, 14H45.

1 Introduction

In this paper we survey various bounds on the minimum distance of cyclic
and algebraic-geometric codes. For cyclic codes the BCH, Hartmann-Tzeng
[12, 27], Roos [22] and the shift bound of van Lint, Wilson and van Eupen
[7, 16] for the minimum distance are well known. In Section 2 we give sev-
eral formulations of independent sets for the definition of the shift bound for
cyclic codes. With this last reformulation we obtained, in cooperation with
Shen and Tzeng [25], a generalization of the definition of independent sets
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and the shift bound for arbitrary linear codes in Section 3. It appears that all
these bounds give a method for finding non-singular square submatrices of a
matrix of syndromes. The shift bound for Reed-Muller codes is equal to the
minimum distance. In Section 4 we treat shift bounds on generalized weights.
Error-correcting arrays [15, 20] are treated in Section 5. With this concept
the Feng-Rao bound [11, 9] is generalized from geometric Goppa codes to
arbitrary linear codes. In this setting one gets in general an improvement
of the Goppa bound of algebraic-geometric codes. Although it is in many
cases the true minimum distance, this is not always the case. In Section 6
we sketch how majority coset decoding of Feng-Rao [8] and Duursma [3, 4]
corrects up to half the shift bound. This procedure is in the worst case not
efficient. Therefore we define a restricted shift bound such that the proposed
algorithm has polynomial complexity. The shift bound improves all bounds
except the Roos bound. The restricted shift bound still improves the FR
bound and is equal to the minimum distance of Reed-Muller codes.

A finite field is denoted by F and the multiplicative group of non-zero
elements by F∗. We denote a subfield of F by F0. The finite field with q
elements is denoted by Fq. We denote the coordinatewise multiplication of
a and b in Fn by a ∗ b, so aibi is the ith coordinate of a ∗ b. With this
multiplication Fn becomes an F-algebra. We define < a,b >=

∑
aibi. The

integers are denoted by Z, the positive integers are denoted by N and the
non-negative integers by N0. The integers modulo n are denoted by Zn. The
number of elements of a finite set A we denote by #A.

2 Cyclic codes and the shift bound

Fundamental for the definition of the shift bound is the notion of an indepen-
dent set. In the sequel we give several equivalent definitions of this notion for
cyclic codes. In Section 3 we generalize one of these definitions to a broader
context which is well suited for Reed-Muller and algebraic-geometric codes.

Definition 2.1. Let F be a finite field. Let α be an element in F∗ of order
n. Let J be a subset of Zn. Define the F-linear code C̃(J) by

C̃(J) = {(c0, c1, . . . , cn−1) ∈ Fn |
∑n−1

k=0ckα
jk = 0 for all j ∈ J},

and the F0-linear subfield subcode C(J) by C(J) = C̃(J) ∩ Fn0 . The codes
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C̃(J) and C(J) are cyclic with defining set J . The code C(J ∪ {j}) is con-
tained in C(J) for every j ∈ Zn. Let J∗ be the set of all j ∈ Zn such that
C(J) = C(J ∪ {j}). Hence J ⊆ J∗ and C(J) = C(J∗). We call J∗ the
complete defining set of C(J), and we call J complete if J = J∗.

We give first the inductive definition of van Lint and Wilson [16] of the
notion of an independent set with respect to a defining set.

Definition 2.2. Let F be a finite field and α a non-zero element of F of order
n. The multiplicative subgroup of the non-zero elements of F generated by
α we denote by 〈α〉. Let R be a subset of 〈α〉. A subset A of 〈α〉 is called
independent with respect to R if it can be obtained by the following rules:

(I∗.1) the empty set is independent with respect to R.

(I∗.2) if A is independent with respect to R and A is a subset of R and
b ∈ 〈α〉 is not an element of R, then A∪{b} is independent with respect to R.

(I∗.3) if A is independent with respect to R and c ∈ 〈α〉, then cA is
independent with respect to R, where cA = {ca | a ∈ A}.

Remark 2.3. The defining set R is complete if and only if R is invariant
under the Frobenius map β 7→ βq0 , that is to say: if β ∈ R, then βq0 ∈ R,
where q0 is the number of elements of F0.

We transform the multiplicative definition into an additive description as
follows. Every element of 〈α〉 is of the form αi for some i ∈ Zn, since α has
order n. So we can translate the definition of an independent set with respect
to a subset of 〈α〉 to a subset of Zn. Let R be a subset of Zn. A subset A
of Zn is called independent with respect to R if it can be obtained by the
following rules:

(I+.1) the empty set is independent with respect to R.

(I+.2) if A is independent with respect to R and A is a subset of R and
b ∈ Zn is not an element of R, then A ∪ {b} is independent with respect to
R.
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(I+.3) if A is independent with respect to R and c ∈ Zn, then c + A is
independent with respect to R, where c+ A = {c+ a | a ∈ A}.

The name ”shifting” is referring to this last condition. A set A is in-
dependent with respect to R if and only if there exists a sequence of sets
A0, A1, . . . , Aw and integers ai, bi, 0 ≤ i < w such that A0 is the empty set
and A = Aw and furthermore

Ai+1 = (ai + Ai) ∪ {bi} and

ai + Ai is a subset of R and bi is not an element of R.

Then
Ai = {bl−1 +

∑i−1
j=laj | l = 1, . . . , i },

and all Ai are independent with respect to R.

Let i1, i2, . . . , iw and j1, j2, . . . , jw be new sequences which are obtained
from the sequences a0, . . . , aw and b0, . . . , bw by:

iw = 0, iw−1 = a1 , . . . , iw−k = a1 + · · ·+ ak and jk = bk−1 − iw−k+1.

By this transformation it is easy to see that a set A is independent with
respect to R if and only if there exist sequences i1, i2, . . . , iw and j1, j2, . . . , jw
such that A = {i1 + jl | 1 ≤ l ≤ w} and

ik + jl ∈ R for all l + k ≤ w and ik + jl 6∈ R for all l + k = w + 1.

Notice that in this formulation we did not assume that the sets {ik | 1 ≤
k ≤ w}, {jl | 1 ≤ l ≤ w} and A have size w, since this is a consequence
of this definition. If for instance ik = ik′ for some 1 ≤ k < k′ ≤ w, then
ik+iw+1−k′ = ik′+iw+1−k′ 6∈ R, but ik+iw+1−k′ ∈ R, which is a contradiction.

The last formulation and the following definition is from van Eupen and
van Lint [7, Definition 1] and is well suited for generalizations as we will see
in the next section.

Definition 2.4. For a subset R of Zn, let n(R) be the maximal size of a set
which is independent with respect to R. Define the shift bound for a subset
J of Zn as follows:

δSHIFT (J) = min{n(R) | J ⊆ R ⊆ Zn and R∗ = R 6= Zn}.
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Theorem 2.5 The minimum distance of C(J) is at least δSHIFT (J).

Proof. See the proof of Theorem 1 in [7] or Theorem 3.7 in the next section.
�

Definition 2.6. The Bose-RayChaudhuri-Hocquenghem bound [17]. For a
subset J of Zn, let δBCH(J) be the largest δ ≤ n such that i+1, . . . , i+δ−1 ∈ J
for some i.

Definition 2.7. The Hartmann-Tzeng bound [12]. For a subset J of Zn, let
δHT (J) be the largest number δ+ s, such that there exist i, a and s with the
property that GCD(a, n) < δ and {i+ j + ka | 1 ≤ j < δ, 0 ≤ k ≤ s} ⊆ J .

Proposition 2.8 The following inequalities hold:

δSHIFT (J) ≥ δHT (J) ≥ δBCH(J).

Proof. The last inequality is obvious. Let J be a subset of Zn which contains
{i + j + ka | 1 ≤ j < δ, 0 ≤ k ≤ s}. Suppose R is a complete defining set
which contains J and is not equal to Zn. Then there exists a δ′ ≥ δ such that
i + j ∈ R for all 1 ≤ j < δ′ and i + δ′ 6∈ R. The set {i + j + ka | 1 ≤ j <
δ, k ∈ Zn} is equal to Zn, since GCD(a, n) < δ. So there exist s′ ≥ s and j′

such that i+ j+ka ∈ R for all 1 ≤ j < δ and 0 ≤ k ≤ s′, and 1 ≤ j′ < δ and
i+ j′+ (s′+ 1)a 6∈ R. Let w = δ+ s′. Let ik = (k− 1)a for all 1 ≤ k ≤ s′+ 1,
and ik = δ′ − δ − s′ − 1 + k for all k such that s′ + 2 ≤ k ≤ δ + s′. Let
jl = i + l for all 1 ≤ l ≤ δ − 1, and let jl = i + j′ + (l − δ + 1)a for all l
such that δ ≤ l ≤ δ + s′. Then one easily checks that ik + jl ∈ R for all
k+ l ≤ w, and ik + jw−k+1 = i+ j′+ (s′+ 1)a 6∈ R for all 1 ≤ k ≤ s′+ 1, and
ik + jw−k+1 = i + δ′ 6∈ R for all s′ + 2 ≤ k ≤ δ + s′. So we have a set which
is independent with respect to R and has size w = δ + s′ ≥ δ + s. Hence
n(R) ≥ δ + s for all complete defining sets R which contain J and are not
equal to Zn. Therefore δSHIFT (J) ≥ δHT (J). �

Example 2.9. It is easy to make examples of defining sets J such that
δBCH(J) < δHT (J). In the following example we show that the shift bound
is strictly greater than the HT bound and is still not equal to the minimum
distance. The binary Golay code of length 23 can be defined as the cyclic code
with defining set R1 which is the cyclotomic coset of 1, that is to say 1, 2, 3,
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4, 6, 8, 9, 12, 13, 16, 18 are the elements of R1, see [16, Example 7], where F =
F2048, F0 = F2 and α an element of F of order 23. Then δBCH(R) = δHT (R) =
5. Let (a0, . . . , a5) = (1,−1,−3, 7, 4, 13) and (b0, . . . , b5) = (5, 5, 5, 14, 5, 5).
Then A0 = ∅, A1 = {5}, A2 = {4, 5}, A3 = {1, 2, 5}, A4 = {8, 9, 12, 14},
A5 = {12, 13, 16, 18, 5}, A6 = {2, 3, 6, 8, 18, 5} are independent sets with re-
spect to R1. The corresponding sequences (ik) and (jl) are (i1, . . . , i6) =
(−3, 7, 3,−4,−1, 0) and (j1, . . . , j6) = (5, 6, 9, 11,−2, 8). So R1 has an inde-
pendent set of size 6, in fact this is the maximal size of an independent set of
R1, so n(R1) = 6. LetR0 = {0}, andR5 = {5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22}.
The sets R0, R1, R5 and their unions have the property that R = R∗, that is
to say they are complete, and these are the only ones. Let R0,1 = R0 ∪ R1,
then R0,1 has an independent set of size 7, since A6 is independent with re-
spect to R1 and also with respect to R0,1, and −2 + A6 = {0, 1, 4, 6, 16, 3}
is a subset of R0,1 and 5 6∈ R0,1, so A7 = {0, 1, 4, 6, 16, 3, 5} is independent
with respect to R0,1. Furthermore R1,5 = R1 ∪ R5 contains a sequence of 22
consecutive elements, so n(R1,5) = 23. Therefore δSHIFT (R1) = 6. But the
minimum distance of the binary Golay code is 7, since otherwise there would
be a word c ∈ C(R1) of weight 6, so c ∈ C(R0,1), but δSHIFT (R0,1) = 7,
which is a contradiction.

Remark 2.10. In many cases of binary codes of length at most 62 the
shift bound is equal to the minimum distance, see [16]. In about 95% of all
ternary codes of length at most 40 the shift bound is equal to the minimum
distance, see [7].

Example 2.11. It is necessary to take the minimum of all n(R) in the
definition of the shift bound. It does not suffice to take n(J∗) as the following
example shows. Let F be a finite field of odd characteristic. Let α be a
non-zero element of F of even order n ≥ 6. Let J = {2, 4, . . . , n − 2} and
R = {0, 2, 4, . . . , n − 2}. Then J and R are complete and n(J) = 3, since
{2, 0, 1} is independent with respect to J , but n(R) = 2. In particular, take
n = 6, q = 7 and α = 3 as generator of the cyclic group F∗7. Consider the
cyclic code of length 6 over F7 with generator polynomial g(X) = X3 − 1 =
(X − 1)(X − 2)(X − 4). Then C has defining set {0, 2, 4}, since α0 = 1,
α2 = 2 and α4 = 4. The code C has minimum distance 2.

Definition 2.12. Let b and n be positive integers such that GCD(b, n) = 1.
If B = {i1b, i2b, . . . , itb}, where 0 ≤ i1 < · · · < it < n, then we denote by
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B̄ the set {ib | i1 ≤ i ≤ it}. The Roos bound [16, 22] of a defining set J ,
which we denote by δR(J), is the largest number #B+dA−1 such that there
exist defining sets A and B = {i1b, i2b, . . . , itb}, where 0 ≤ i1 < · · · < it < n,
with the property that A+B ⊆ J , and C̃(A) has minimum distance dA and
#B̄ ≤ #B + dA − 2.

Example 2.13. Let n = 26, F = F27, and F0 = F3. Let 0, 13, 14, 16, 17, 22,
23 and 25 be the elements of J , see [7, Example 26.7]. Let A = {13, 14} and
B = {0, 3, 9, 12}. Then dA = 3 and B̄ = {0, 3, 6, 9, 12}, so #B̄ = 5 ≤ 4+3−2.
Moreover J contains A+B. Hence δR(J) = 4+3−1 = 6, but δSHIFT (J) = 5.

Remark 2.14. It follows directly from the definitions that the Roos bound
is a generalization of the HT bound, so δR ≥ δHT . The above example shows
that sometimes δR(J) > δSHIFT (J). In section 6 we will see a general method
to decode up to half the shift bound. A general algorithm which decodes up
to half the Roos bound is not known, but it is still possible to decode in many
cases up to half the Roos bound with error-correcting pairs, see [4, 6, 19]. It
is possible to generalize the Roos bound to general linear codes, see [5, 21].

3 A generalization of the shift bound

One way to get a bound on the weight of a codeword c = (c0, . . . , cn−1)
is obtained by looking for a maximal non-singular square submatrix of the
matrix of syndromes (Si,j). For cyclic codes we get in this way a matrix,
with entries Si,j =

∑
ckα

k(i+j), which is constant along back-diagonals. For
Reed-Muller and algebraic-geometric codes this is not the case anymore. So
instead of looking at an independent set which is a subset of Zn we give a
definition of an independent set which is a subset of N2, and we think of it
as a set of indices of entries of a matrix of syndromes.

In a discussion with B.-Z. Shen we came to the following generalization
of independent sets and the shift bound, see also Shen and Tzeng [25] and
Augot, Charpin and Sendrier [1] on generalized Newton identities.

Definition 3.1. Let N = N or N = {1, . . . , n} for some n ∈ N. Let R
be a subset of N2. A subset A of N2 is called independent with respect
to R if there exist sequences i1, i2, . . . , iw and j1, j2, . . . , jw such that A =
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{(i1, jl) | 1 ≤ l ≤ w} and

(ik, jl) ∈ R for all k + l ≤ w and (ik, jl) 6∈ R for all k + l = w + 1.

Let F be a finite field and F0 a subfield of F. Consider Fn with the mul-
tiplication ∗ as an F-algebra. Let K be an F-algebra. Let ϕ : K → Fn be a
morphism of F-algebras. Let (fi | i ∈ N) and (gj | j ∈ N) be two sequences
in K such that {ϕ(figj) | i, j ∈ N} generates Fn as a vector space.

We have now the following generalization of a theorem of van Lint and
Wilson [16, Theorem 11].

Lemma 3.2 Let y ∈ Fn0 . Let R = {(i, j) ∈ N2 | < y, ϕ(figj) >= 0}. If A
is independent with respect to R, then wt(y) ≥ #A.

Proof. The syndrome of a word y ∈ Fn0 with respect to fi and gj is defined
by

Si,j(y) =< y, ϕ(figj) > .

Let S(y) be the matrix with entries Si,j(y). Suppose A is independent with
respect to R and has w elements, then there exist sequences i1, . . . , iw and
j1, . . . , jw such that A = {(i1, j1), (i1, j2), . . . , (i1, jw)} and (ik, jl) ∈ R for all
k+ l ≤ w and (ik, jl) 6∈ R for all k+ l = w+ 1. Consider the (w×w) matrix
M with entries Mk,l = Sik,jl(y). By the assumptions we have that M is a
matrix such that Mk,l = 0 for all k+ l ≤ w and Mk,l 6= 0 for all k+ l = w+1,
that is to say with zeros above the back-diagonal and non-zeros on the back-
diagonal, so M has rank w. Moreover M is a submatrix of the matrix S(y)
which can be written as a product:

S(y) = Y D(y)X,

where Y is the matrix with the ϕ(fi) as row vectors, D(y) is the diagonal
matrix with the entries of y on the diagonal and zeros outside this diagonal,
and X is the matrix with the ϕ(gj)

T as column vectors. Hence

#A = w = rank(M) ≤ rank(S(y)) ≤ rank(D(y)) = wt(y).

This proves the lemma. �

Definition 3.3. Let J be a subset of N2. Define the F-linear code C̃(J) by

C̃(J) = {y ∈ Fn | < y, ϕ(figj) >= 0 for all (i, j) ∈ J},
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and the F0-linear subfield subcode C(J) by C(J) = C̃(J) ∩ Fn0 . The code
C(J ∪ {(i, j)}) is contained in C(J) for every (i, j) ∈ N2. Let J∗ be the
set of all (i, j) ∈ N2 such that C(J) = C(J ∪ {(i, j)}). Hence J ⊆ J∗

and C(J) = C(J∗). We call J a defining set for the code C(J), and J∗

the complete defining set of this code. We call a defining set J complete if
J = J∗. For a subset R of N2, let n(R) be the maximal size of a set which
is independent with respect to R. Define the shift bound for a subset J of
N2 as follows:

δSHIFT (J) = min{n(R) | J ⊆ R ⊆ N2 and R∗ = R 6= N2}.

Remark 3.4. The number of subsets R of N2 such that R = R∗ is finite,
since the number of subspaces of the given vector space Fn0 is finite.

Lemma 3.5 Let J be a complete defining set. If y ∈ C(J) and y 6∈ C(I)
for all complete defining sets I which contain J and are not equal to J , then
wt(y) ≥ n(J).

Proof. Let y ∈ C(J) and y 6∈ C(I) for all I such that J ⊆ I = I∗ 6= J .
Define

R = {(i, j) | < y, ϕ(figj) >= 0}.

We always have that R ⊆ R∗ and C(R) = C(R∗). Now y ∈ C(R), so
y ∈ C(R∗). If (i, j) ∈ R∗, then < y, ϕ(figj) >= 0, so (i, j) ∈ R. Hence R
is a complete defining set. Clearly J ⊆ R, since y ∈ C(J). If J 6= R, then
y ∈ C(I) and J ⊆ I = I∗ 6= J for I = R, which is a contradiction. Hence
J = R, and wt(y) ≥ n(J), by Lemma 3.2. This proves the lemma. �

The following theorem generalizes Theorem 1 of van Eupen and van Lint
[7].

Theorem 3.6 The minimum distance of C(J) is at least δSHIFT (J).

Proof. Let y be a non-zero codeword of C(J). Let R be equal to {(i, j) | <
y, ϕ(figj) >= 0}. Then R 6= N2, since y is not zero and {ϕ(figj) | i, j ∈ N}
generates Fn. The theorem now follows from Lemma 3.5 and the definition
of the shift bound. �

Remark 3.7. The computation of the shift bound is quite involved, and is
done by the use of a computer. It makes sense if one classifies codes with
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respect to the minimum distance, since in order to get δSHIFT (J) one gets
at the same time the δSHIFT (R) for all J ⊆ R.

Example 3.8. Reed-Solomon and cyclic codes. Let F be a finite field. Let
K = F[X] be the ring of polynomials in one variable and coefficients in F; this
is an F-algebra by the ordinary multiplication of polynomials. Let α1, . . . , αn
be n distinct elements of F. Let ϕ : K → Fn be the evaluation map which
is defined by ϕ(f) = (f(α1), . . . , f(αn)) for f ∈ K, then ϕ is a morphism of
F-algebras. Let fi = gi = X i−1, then figj = fi+j−1 = X i+j−1. Then

C(J) = {(c0, c1, . . . , cn−1) ∈ Fn0 |
n−1∑
k=0

ckα
i+j−1
k = 0 for all (i, j) ∈ J},

If in particular {i + j − 1 | (i, j) ∈ J} = {0, 1, . . . , k − 1} and F = F0, then
C(J) is the dual of a Reed-Solomon code. Let J be a subset of N2 and let J+

be the subset of Zn defined by J+ = {i+ j − 1 + nZ | (i, j) ∈ J}. If αi = αi,
for some non-zero α ∈ F of order n, then C(J) is a cyclic code with defining
set J+. For cyclic codes we have defined in Definition 2.1 for a subset J of
Zn,

C(J) = {(c0, c1, . . . , cn−1) ∈ Fn0 |
n−1∑
k=0

ckα
kj = 0 for all j ∈ J},

by abuse of notation. This ambiguity is justified, since C(J) = C(J+) and
(J∗)+ = (J+)∗ and n(J) = n(J+) and δSHIFT (J) = δSHIFT (J+) for all
J ⊆ N2.

Example 3.9. Generalized Reed-Muller codes. Let F = F0 = Fq. Let K
be the ring F[X1, . . . , Xm] of polynomials in m variables with coefficients in
F. We abbreviate the notation for the monomial Xε1

1 · · ·Xεm
m by Xε, where

ε = (ε1, . . . , εm). The degree of a polynomial f is denoted by deg(f). Define
a total order on the monomials by the total degree lexicographic order, that
is to say Xε < Xϕ if and only if deg(Xε) < deg(Xϕ), or deg(Xε) = deg(Xϕ)
and there exists a k such that 1 ≤ k ≤ m and εk < ϕk and εl = ϕl for all
1 ≤ l < k. Hence

1 < Xm < · · · < X1 < X2
m < XmXm−1 < X2

m−1 < XmXm−2 < Xm−1Xm−2 < · · ·

Let fi be the ith element in this sequence and let gi = fi. Let n = qm and
P1, . . . , Pn be an enumeration of all elements of Fmq . Let ϕ : K → Fn be



The shift bound 11

the evaluation map defined by ϕ(f) = (f(P1), . . . , f(Pn)). The Generalized
Reed-Muller code of order r and length qm is defined by

RMq(r,m) = {ϕ(f) | f ∈ K and deg(f) ≤ r}.

The dual of RMq(r,m) is equal to RMq(m(q−1)−r−1,m). Write r+1 =
ρ(q− 1) +µ with ρ, µ ∈ N0 such that µ < q− 1. Then the minimum distance
of the dual of RMq(r,m) is equal to (µ + 1)qρ, see [2, 13, 29] and also
[16]. Remark that ϕ(f) = ϕ(f q). Denote the reduction modulo q − 1 of a
positive integer ε by ε′, that is to say ε = ϕ(q − 1) + ε′ where ε′, ϕ ∈ N0

and 0 < ε′ < q. If ε = 0, then ε′ = 0. We denote
∑
ε′i by rdeg(Xε) for a

monomial Xε, and call it the reduced degree. We call a monomial Xε reduced
if εi < q for all i. Let R(r,m) = {(i, j) | rdeg(fifj) ≤ r}. Then R(r,m)
is a complete defining set for the dual of the Reed-Muller code RMq(r,m),
so C(R(r,m)) = RMq(m(q − 1) − r − 1,m). We will show that the shift
bound for R(r,m) also gives (µ + 1)qρ. Let R be a complete defining set
which contains R(r,m) and is not equal to N2. Then there exists an s ≥ r
such that R(s,m) ⊆ R and R(s + 1,m) is not a subset of R. Let fj be the
smallest monomial of degree s + 1 such that (1, j) 6∈ R. Hence (k, l) ∈ R
in case fkfl < fj. The monomial fj = Xε is reduced. The number of all
monomials Xϕ such that 0 ≤ ϕi ≤ εi for all i is equal to w =

∏
(εi + 1), and

let fi1 , . . . , fiw with i1 < · · · < iw, be an enumeration of these monomials in
increasing order with respect to the total order on the monomials. So fi1 = 1
and fiw = Xε. If Xϕ < Xψ and 0 ≤ ϕi ≤ εi and 0 ≤ ψi ≤ εi for all i,
then Xε−ψ < Xε−ϕ. Hence the sequence fi1 , . . . , fiw is transformed into the
sequence fiw , . . . , fi1 under the operation Xϕ 7→ Xε−ϕ, so fikfil = Xε for all
k+l = w+1. Furthermore if k+l ≤ w, then there exists a k′ such that k < k′

and k′+ l = w+ 1, so fikfil < fik′fil = Xε. Let jl = il. Therefore (ik, jl) ∈ R
for all k + l ≤ w and (ik, jl) 6∈ R for all k + l = w + 1. Hence we have a
set of size w which is independent with respect to R. Now w =

∏
(εi + 1)

and
∑
εi = s + 1 ≥ r + 1. Write s + 1 = σ(q − 1) + ν. We leave it as

an exercise in the calculus of functions in several variables to show that the
function F (ε1, . . . , εm) =

∏
(εi + 1) on the domain defined by the constraints

0 ≤ εi < q for all i and
∑
εi = s + 1, has as a minimum (ν + 1)qσ, which is

at least (µ + 1)qρ. If in particular s = r and εi = (q − 1) for all 1 ≤ i ≤ ρ,
and ερ+1 = µ and εi = 0 for all i > ρ + 1, then w = (µ + 1)qρ. Therefore
δSHIFT (R(r,m)) = (µ + 1)qρ. Remark that the independent sets we have
found have the property that fikfjw−k+1

is equal to a fixed fj for all k.
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4 Shift bound for generalized weights

In order to compute the shift bound of the code C(J) with defining set J
we have to compute the maximum size n(R) of a set A which is independent
with respect to R, for all complete defining sets R which contain J . Wei
[28] has defined the notion of generalized weights of a linear code which is
a generalization of the minimum distance. A simple observation leads to a
bound for the rth generalized weight of C(J) without any extra costs.

Definition 4.1. The support supp(C) of a code C is defined by

supp(C) = {i | ci 6= 0 for some c ∈ C}.

The rth generalized weight dr(C) of a linear code C is defined by

dr(C) = min{#supp(D) | D is a linear subcode of C and dim(D) = r }.

Lemma 4.2 If C2 ⊆ C1 and C2 has codimension s in C1, then dr+s(C1) ≥
dr(C2).

Proof. Let D1 be a linear subcode of C1 of dimension r + s such that
#supp(D1) = dr+s(C1). The dimension of the intersection of D1 with C2,
which we denote by D2, is at least r, since C2 has codimension s in C1. So
#supp(D2) ≥ dr(C2). The support of D2 is contained in the support of D1.
Hence dr+s(C1) ≥ dr(C2). This proves the lemma. �

Definition 4.3. Let J and R be defining sets such that J ⊆ R. The height
of R above J is by definition the largest t ∈ N0 such that there is a sequence
R0, . . . , Rt of t + 1 distinct complete defining sets such that J∗ = R0 and
R∗ = Rt and Ri ⊆ Ri+1 for all i < t. We denote the height of R above J by
h(R, J).

Remark 4.4. If F = F0, and J and R are defining sets such that J ⊆ R,
then C(R) has codimension h(R, J) in C(J).

Definition 4.5. Define for an r ∈ N

δr,SHIFT (J) = max{δSHIFT (R) | J ⊆ R ⊆ N2 and R 6= N2 and h(R, J) = r−1}.
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Theorem 4.6 If F = F0, then

dr(C(J)) ≥ δr,SHIFT (J).

Proof. This follows directly from the Definitions, Lemma 4.2 and Remark 4.4.
�

Example 4.7. The higher weights of Reed-Muller codes are not very well
explained by the shift bound. Take for instance the first order Reed-Muller
code RMq(1,m). The sequence of generalized weights is equal to

qm − qm−1, qm − qm−2, . . . , qm − q, qm − 1, qm,

whereas every subcode of RMq(1,m), which is not zero and not equal to
RMq(0,m), has minimum distance qm − qm−1. We will see in the follow-
ing section that the shift bound explains the higher weights of algebraic-
geometric codes very well.

5 Shift bound for algebraic-geometric codes

and error-correcting arrays

The following definition is from [15, 20].

Definition 5.1. Consider Fn with the multiplication ∗ as an F-algebra.
Let K be an F-algebra. Let ϕ : K → Fn be a morphism of F-algebras. Let
C = (Cr)r∈N0 be a sequence of linear codes in Fn0 . An array for the sequence
of codes C is a triple (U ,V ,W) of sequences of sub spaces of K enumerated
by U = (Ui)i∈N0 , V = (Vj)j∈N0 and W = (Wr)r∈N0 , such that

Cr = {y ∈ Fn0 | < y, ϕ(h) >= 0 for all h ∈ Wr}

and the following holds:

(A.1) dim(Ui) = i, dim(Vj) = j and dim(Wr) = r for all i, j, r ∈ N0.

(A.2) Ui ⊆ Ui+1, Vj ⊆ Vj+1 and Wr ⊆ Wr+1 for all i, j, r ∈ N0.
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(A.3) For all i, j ∈ N0 there exists an r ∈ N0 such that UiVj ⊆ Wr, where
UiVj is the set of products fg in K of elements f ∈ Ui and g ∈ Vj. For
every i, j ∈ N0, we define r(i, j) to be the smallest index r ∈ N0 such that
UiVj ⊆ Wr.

(A.4) If f ∈ Ui \ Ui−1 and g ∈ Vj \ Vj−1 and r = r(i, j), then fg ∈
Wr \Wr−1, for all i, j ∈ N.

(A.5) r(i− 1, j) < r(i, j) and r(i, j − 1) < r(i, j), for all i, j ∈ N.

We denote the intersection of all Cr, r ∈ N by C∞. We say that the array
is an error-correcting array if moreover:

(A.6) C∞ = 0.

Remark 5.2. For the sequel we choose elements fi ∈ Ui \ Ui−1, and gj ∈
Vj \ Vj−1, and hr ∈ Wr \Wr−1. From Conditions (A.1) and (A.2) it follows
that these elements exist and that f1, . . . , fi is a basis of Ui, and g1, . . . , gj
is a basis of Vj, and h1, . . . , hr is a basis of Wr. Either Condition (A.4) or
(A.5) is superfluous, [15]. Condition (A.6) implies that {ϕ(figj) | i, j ∈ N}
generates Fn.

Definition 5.3. Define the following set

Nr = {(i, j) ∈ N2 | r(i, j) = r + 1}.

Let nr be the number of elements of Nr. Define

δFR(r) = min{ns | r ≤ s ∈ N} ∪ {d(C∞)}.

The minimum distance of the zero code is by definition∞. We call δFR(r) the
Feng-Rao designed minimum distance of the code Cr of the array of codes.

Theorem 5.4 For an array for a sequence of codes we have that the min-
imum distance of Cr is at least δFR(r). If moreover F = F0, then the sth

generalized weight of Cr is at least δFR(r + s− 1).

Proof. See [11, 9, 15, 20].
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Example 5.5. Geometric Goppa or algebraic-geometric codes. Let F be
a finite field and let F0 = F. Let X be an algebraic curve over F of genus
g with at least n + 1 distinct rational points P and P1, . . . , Pn over F. Let
K be the F-algebra of rational functions on X which have only poles at P .
Define the map ϕ : K → Fn by ϕ(f) = (f(P1), . . . , f(Pn)) for f ∈ K, then ϕ
is a morphism of F-algebras. The function o : K → N0 is defined by: o(f) is
the pole order of f at P . Then o is a degree function on K. Let (µi) be the
non-gap sequence at P , that is to say it is the increasing sequence of numbers
such that there exists a rational function fi which has only a pole of order µi
at P . Let Ui = Vi = Wi be the vector space of rational functions which have
only poles at P of order at most µi. Then Nr = {(i, j) ∈ N2 | µi+µj = µr+1}
and nr ≥ r+1−g if r ≥ g, and equality holds in case r > 3g−2. See [15, 20]
for more properties of the FR bound in terms of the semigroup of non-gaps
at P . The Goppa bound of Cr is defined by r+1−g for r ≥ g and denoted by
δΓ(r). It is shown in [11, 9, 15] that the FR bound improves the Goppa bound
for algebraic-geometric codes. Furthermore we gave several properties for the
FR bound in terms of the semigroup of non-gaps, see [14, 15]. Majority coset
decoding decodes up to half the FR bound. We will generalize this decoding
algorithm for the shift bound in Section 6.

Example 5.6. Hermitian codes. It follows from the work of Yang, Kumar
and Stichtenoth [30] that the sth generalized weights of the code Cr on the
Hermitian curve is equal to δFR(r + s− 1), see also Munuera [18].

Finally we compare the FR bound with the shift bound.

Definition 5.7. Define the set Jr = {(i, j) ∈ N2 | r(i, j) ≤ r} for an error-
correcting array and consider the following two conditions:

(A.7) For every r ∈ N there exist i, j ∈ N0 such that r(i, j) = r.

(A.8) Wr is generated as a vector space by {figj | r(i, j) ≤ r} for all
r ∈ N0.

Remark 5.8. The Conditions (A.7) and (A.8) are equivalent for an error-
correcting array.

Suppose (A.7) holds. Condition (A.8) is now shown by induction on r.
W0 = 0 is generated by the empty set. Now assume that Wr−1 is generated
as a vector space by {figj | r(i, j) ≤ r − 1}. There exist i, j ∈ N0 such
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that r(i, j) = r, so figj ∈ Wr \Wr−1. Furthermore dim(Wr) = dim(Wr−1) +
1, so Wr = 〈figj〉 + Wr−1. Hence Wr is generated as a vector space by
{figj | r(i, j) ≤ r}.

Suppose (A.8) holds. If r(i, j) ≤ r implies r(i, j) < r for all i, j, then
Wr−1 ⊆ Wr, and {figj | r(i, j) ≤ r} is a subset of Wr−1 and Wr is generated
as a vector space by {figj | r(i, j) ≤ r}, so Wr = Wr−1. But dim(Wr) =
dim(Wr−1) + 1, which gives a contradiction. Hence there exists a pair (i, j)
such that r(i, j) = r, so (A.7) holds.

Lemma 5.9 For an error-correcting array of codes such that moreover Con-
dition (A.8) holds we have that:

Cr = C(Jr)

Proof. The inclusion Cr ⊆ C(Jr) holds always, since if y ∈ Cr and r(i, j) ≤ r,
then figj ∈ Wr, so < y, ϕ(figj) >= 0. If moreover Wr is generated as a vector
space by {figj | r(i, j) ≤ r}, then Cr = C(Jr). Because, if y ∈ C(Jr), then
< y, ϕ(figj) >= 0, for all (i, j) ∈ Jr. We assumed that Wr is generated by
{figj | (i, j) ∈ Jr}, so < y, ϕ(h) >= 0 for all h ∈ Wr, hence y ∈ Cr. This
proves the lemma. �

Proposition 5.10 For an error-correcting array of codes such that moreover
Condition (A.8) holds we have that:

δSHIFT (Jr) ≥ δFR(r).

Proof. Let R be a subset of N2 which contains Jr and such that R∗ = R 6= N2.
Let s ∈ N be the greatest number such that Js ⊆ R. Such an s exists, since
Jr ⊆ R and R 6= N2. Hence (i, j) ∈ R if r(i, j) ≤ s, and there exists
a pair (k, l) such that r(k, l) = s + 1 and (k, l) 6∈ R. So there exists a
c ∈ C(R) such that < c, ϕ(fkgl) >6= 0, since R = R∗. Suppose there exists
a pair (u, v) ∈ R such that r(u, v) = s + 1 and < c, ϕ(fugv) >= 0. Then
〈fugv〉+Ws = Ws+1 and < y, ϕ(h) >= 0 for all h ∈ Ws and y ∈ C(R), since
Ws is generated as a vector space by {figj | (i, j) ∈ Js} and Js ⊆ R. So
< y, ϕ(h) >= 0 for all h ∈ Ws+1 and y ∈ C(R). This gives a contradiction,
since fkgl ∈ Ws+1, c ∈ C(R) and < c, ϕ(fkgl) >6= 0. Hence (i, j) ∈ R
for all (i, j) such that r(i, j) ≤ s and (u, v) 6∈ R for all (u, v) such that
r(u, v) = s+ 1. Let Ns = {(ik, jw−k+1) | 1 ≤ k ≤ w} such that j1 < · · · < jw
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and w = ns. Then r(ik, jl) < r(ik, jk) = s + 1, by Condition (A.5), so
(ik, jl) ∈ Js ⊆ R for all k + l ≤ w and (ik, jl) 6∈ R for all k + l = w + 1.
Let A = {(i1, il) | 1 ≤ l ≤ w}, then A is independent with respect to R and
has size ns. So δFR(r) ≤ ns ≤ n(R). Hence δFR(r) is a lower bound for all
complete defining sets which contain Jr and are not equal to N2. Therefore
δFR(r) ≤ δSHIFT (Jr). �

Example 5.11. Consider the hyperelliptic curve with equation Y 2 = F (X),
where F (X) has odd degree m and has no square divisors. It is shown in [15,
Remark 7.5] that δFR(r) = 2 for all r ≤ (m + 1)/2. If the n distinct points
Pi = (xi, yi), 1 ≤ i ≤ n are chosen in such a way that xi = xj for some i < j,
then the minimum distance is equal to 2. If the xi are mutually distinct,
then Cr is a Reed-Solomon code of dimension n − r, so Cr has parameters
[n, n − r, r + 1]. This follows also from the shift bound. Let fi = X i−1 for
1 ≤ i ≤ (m + 1)/2, fi = XjY for i = (m + 3)/2 + 2j, and fi = X i−1+j for
i = (m + 1)/2 + 2j and 0 < j. Let ik = jk be the positive integer such that
fik = Xk−1. Then fikfjl = Xk+l−1. The set {ϕ(X i) | i ∈ N0} generates Fn,
since the xi are mutually distinct. Let R be a complete defining set which
contains Jr and is not equal to N2, for some r ≤ (m + 1)/2. Then there
exists a w > r such that (ik, jl) ∈ R for all k + l ≤ w and (ik, jl) 6∈ R for all
k + l = w + 1. Hence n(R) ≥ w > r and δSHIFT (Jr) = r + 1.

6 Decoding up to half the shift bound

With majority coset decoding one decodes up to half the FR designed mini-
mum distance, see [3, 4, 8, 15, 20]. We have seen in Section 5 that the shift
bound improves the FR bound. In this section we will sketch how majority
coset decoding can be generalized and decodes up to half the shift bound.
This algorithm is not polynomial, therefore we define a restricted shift bound
and show that the complexity of the algorithm for the restricted case is at
most O(n3).

Suppose R1 is a complete defining set for C1 = C(R1). Let y1 be a re-
ceived word with error e with respect to C1 with at most b(δSHIFT (R1)−1)/2c
errors, so y1 = c1 + e for some c1 ∈ C1 and wt(e) ≤ (n(R1) − 1)/2. Let A
be an independent set with respect to R1 of size w = n(R1), that is to say
there exist i1, . . . , iw and j1, . . . , jw such that (ik, jl) ∈ R1 if k + l ≤ w, and
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(ik, jk) 6∈ R1 if k + l = w + 1.

Define
Si,j(y) =< y, ϕ(figj) > .

We denote Si,j(e) by Si,j. Now Si,j(y1) = Si,j for all (i, j) ∈ R1. So we
have a (w × w)-matrix M with entries Mk,l = Sik,jl of syndromes and these
are known for all k + l ≤ w.

First we introduce some definitions, see [3, 4, 8, 11, 9, 15, 20]. Let M(u, v)
be the (u × v)-matrix with entries Mi,j, 1 ≤ i ≤ u, 1 ≤ j ≤ v. Consider the
following two conditions:

(D.1) rank(M(u− 1, v − 1)) = rank(M(u− 1, v)) = rank(M(u, v − 1))

(D.2) rank(M(u− 1, v − 1)) = rank(M(u, v))

Clearly Condition (D.2) implies (D.1); conversely if Condition (D.1)
holds, then there exists a unique value for Mu,v such that Condition (D.2)
holds, we denote this value by M ′

u,v. We call (u, v) a discrepancy if Condi-
tion (D.1) holds and Condition (D.2) does not hold. Remark that Con-
dition (D.1) holds for (u, v) if and only if Condition (D.2) holds for all
(i, v), 1 ≤ i < u and all (u, j), 1 ≤ j < v. Hence in every row there is
at most one discrepancy and the same holds for every column. The number
of discrepancies of M is equal to the rank of M .

We call a pair (u, v) a candidate if u + v = w + 1 and Condition (D.1)
holds. A candidate is called true or correct if Condition (D.2) holds, and
false or incorrect otherwise. We know the candidates but we do not know
which candidates are true nor false. We first prove that the number of true
candidates, which we will denote by T , is strictly greater than the number
of false candidates, which we will denote by F . We have seen already in
the proof of Lemma 3.2 that the rank of M is at most wt(e). Denote the
number of known discrepancies, that is discrepancies at entries (u, v) such
that u+ v ≤ w, by K. The other discrepancies are called unknown. Clearly
we have that all false candidates are unknown discrepancies. Hence

K + F ≤ the number of all discrepancies = rank(M)≤wt(e).
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Every known discrepancy (i, j) gives rise to exactly two non-candidates (i, w−
i+ 1) and (w− j+ 1, j) on the back-diagonal u+ v = w+ 1. Furthermore for
every pair (u, v) such that u+v = w+1 which is not a candidate, there exists
a known discrepancy in the same row or column, possibly in both. Hence
the number of pairs (u, v) on the back-diagonal u+ v = w+ 1, which are not
candidates, is at most 2K. For every candidate, true or false, there exists
no known discrepancy in the same row nor column. M is a square matrix of
size w = n(R1). Hence

n(R1) ≤ T + F + 2K.

If we combine the two inequalities above and use that 2wt(e) < n(R1), then
we get

n(R1) ≤ T + F + 2K ≤ T + F + (2wt(e)− 2F ) < T − F + n(R1).

Therefore
F < T,

that is the number of true candidates is greater than the number of false
candidates.

Let R2 = (R1 ∪ {(ik, jw−k+1) | 1 ≤ k ≤ w})∗ be the complete defining set
for C2 = C(R2). We want to find a word y2 which has the same coset as e
with respect to C2, so y2 = c2 +e for some c2 ∈ C2 and y2 = y1 +c for some
c ∈ C1.

Lemma 6.1 The set of equations:

Si,j(x) = Si,j − Si,j(y1) for all (i, j) ∈ R2

has the coset c + C2 as the unique solution in C1/C2.

Proof. We leave this as an exercise for the reader, see [3, 4]. �

Furthermore Si,j(x) = 0 for all (i, j) ∈ R1 if and only if x is an element
of C1, andMk,w−k+1 = M ′

k,w−k+1 if and only if (k, w−k+1) is a true candidate.

Assume for simplicity that R2 = (R1 ∪ {(i1, jw)})∗, then R2 is equal to
(R1 ∪ {(ik, jw−k+1)})∗ for all k, and the equation Sik,jw−k+1

(x) = M ′
k,w−k+1 −

Sik,jw−k+1
(y1) has a unique coset x + C2 in C1/C2 as a solution for all true
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candidates (k, w − k + 1). In this case we compute for all candidates this
unique coset. If there is not such a coset, then we know that the candi-
date was false. Choose the coset which appears most often, by a major-
ity vote. We know that this majority vote gives the true candidates, since
T > F . In this way we find a y2 and the unknown syndromes Sik,jw−k+1

for
all k. By continuing in this way we find a finite sequence R1, . . . , Rt, Rt+1 of
complete defining sets and a sequence of pairs (u1, v1), . . . , (ut, vt) such that
Ri+1 = (Ri ∪ {(ui, vi)})∗ and Rt+1 = N2. For the corresponding decreasing
sequence of codes Ci = C(Ri) we will find words yi such that yi = ci + e for
some ci ∈ Ci. So we end with yt+1 = e, since Ct+1 = 0.

In general we do not have R2 = (R1 ∪ {(i1, jw)})∗ and we have to look
at all R2,k = (R1 ∪ {(ik, jw−k+1)})∗. So instead of an increasing chain we
get a partial order of complete defining sets. We apply the majority voting
on these defining sets, combined with a depth first search in this partial order.

Hence we have sketched the proof of the following theorem:

Theorem 6.2 A combination of majority voting and depth first search gives
a decoding algorithm which corrects at least (δSHIFT (J) − 1)/2 errors with
respect to the code C(J).

The depth first search might give in the worst case that we have to search
the whole partial order of all possible larger complete defining sets, hence our
algorithm will have exponential complexity as a function of the code length.
In case of the restricted shift bound we have (ik, jw−k+1) ∈ (R ∪ {(i1, jw)})∗
for all k, by the following definition.

Definition 6.3. Let R be a complete defining set and let r ∈ N2 and
r 6∈ R. Let n(R, r) be the greatest number w such that there exist sequences
i1, i2, . . . , iw and j1, j2, . . . , jw such that

(ik, jl) ∈ R for all k+l ≤ w , and (ik, jl) ∈ (R∪{r})∗\R for all k+l = w+1.

Lemma 6.4 Let y ∈ Fn0 . Let R = {(i, j) ∈ N2 | < y, ϕ(figj) >= 0}. If
r ∈ N2 and r 6∈ R, then wt(y) ≥ n(R, r).

Proof. The proof is the same as the proof of Lemma 3.2. �
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Lemma 6.5 Let R be a subset of N2. Let r ∈ N2 and r 6∈ R.

If y ∈ C(R) and y 6∈ C(R ∪ {r}), then wt(y) ≥ n(R, r).

Proof. The proof is the same as the proof of Lemma 3.5. �

Definition 6.6. We call a finite sequence R = (R1, . . . , Rt, Rt+1) of
complete defining sets with the property that there exists a sequence of
pairs r1, . . . , rt ∈ N2 such that Ri+1 = (Ri ∪ {ri})∗ and R1 = J∗ and
Rt+1 = N2 a restricted chain starting at J . For such a restricted chain
R = (R1, . . . , Rt, Rt+1) we define

δRES(R) = min{n(Ri, ri) | 1 ≤ i ≤ t}.

Define the restricted shift bound for a subset J of N2 as follows:

δRES(J) = max{δRES(R) | R is a restricted chain starting at J}.

Theorem 6.7 The minimum distance of C(J) is at least δRES(J).

Proof. This follows directly from Lemma 6.5 and the Definitions. �

Theorem 6.8 Majority coset decoding corrects at least (δRES(J)− 1)/2 er-
rors with respect to the code C(J) and its complexity is at most O(n3).

Proof. This is shown at the beginning of this section. The complexity of all
computations is not greater than solving systems of linear equations. �

For fast decoding algorithms we refer to [11, 23, 24].

Proposition 6.9
δRES(J) ≤ δSHIFT (J).

Proof. Let R = (R1, . . . , Rt, Rt+1) be a sequence of complete defining sets
which is a restricted chain starting at J such that δRES(J) = δRES(R). Then
there exists a sequence of pairs r1, . . . , rt ∈ N2 such that Ri+1 = (Ri ∪ {ri})∗
and R1 = J∗ and Rt+1 = N2. Let R be a complete defining set which contains
J and is not equal to N2. So R contains R1 and is not equal to Rt+1. Let
i be the smallest index such that R contains Ri and does not contain Ri+1.
Then ri 6∈ R and n(R) ≥ n(Ri, ri). Hence n(R) ≥ δRES(R) = δRES(J) for all
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complete defining sets R which contain J and are not equal to N2. Therefore
δRES(J) ≤ δSHIFT (J). This proves the proposition. �

Remark 6.10. We have seen in Example 3.9 that the independent sets
for the Generalized Reed-Muller codes have the property that the function
associated with (ik, jw−k+1) is the same for all k, hence

δRES(R(r,m)) = δSHIFT (R(r,m)) = (µ+ 1)qρ,

where r + 1 = ρ(q − 1) + µ for µ < q − 1.

Remark 6.11. The same proof of Proposition 5.10 will give δRES(Jr) ≥
δFR(r).

Remark 6.12. We construct an example with the HT bound such that
the restricted shift bound is strictly smaller than the shift bound. Take
J = {1, 2, 4, 5}, a = 3 and s = 1. If n is not divisible by 3, then δSHIFT (J) ≥
δHT (J) = 4. If n = 8, then δRES(J) = 4, since we can make an independent
set with the following diagram.

2 1 5 0
0 2 1 5 0
3 5 4 0
7 1 0
6 0

If n ≥ 10, then δRES(J) = 3, as one sees by inspecting all possibilities.
Let n = 10, F = F0 = F11 and J = {1, 2, 4, 5}. Then δSHIFT (J) > δRES(J).

Classes For the independent sets for the HT bound we get for the pairs
(ik, jl) on the back-diagonal k + l = w + 1, two districts 1 ≤ k ≤ s′ + 1 and
s′ + 2 ≤ k ≤ δ + s′ where ik + jw−k+1 is constant, see the proof of Proposi-
tion 2.8. We perform a majority vote in both districts, and the true candi-
dates have a majority in at least one of the two districts, since the number
of true candidates has the majority in the union of both districts. Suppose
the number of true candidates is T1 and T2 in the first and second district,
respectively, and the number of false candidates is F1 and F2 in the first and
second district, respectively. If T1≥F1 and F2≥T2, then T1 − F1 > F2 − T2,
since T1 +T2 = T > F = F1 +F2. So if we take the district and the candidate
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which has the largest majority, then we get a true candidate. Therefore we
still can decode up to half the HT bound with complexity O(n3).
See Theorem 3 of [10] on the Majority Principle for Two Conjugate Syn-
drome. See also Algorithm 2 (Majority Voting Scheme) of [26] that covers
the cases w = 1 and w = 2, where w is the number of districts.

Acknowledgement I want to thank I.M. Duursma, M. van Eupen, G.-
L. Feng and B.-Z. Shen for numerous discussions I had with them on several
topics discussed in this paper.

Update

1. (31 October 1997) I want to thank G. Schiffels for several remarks. In
particular the example in Remark 6.12 was not correct.

2. (7 January 2013) References are updated.

References

[1] Augot, D., P. Charpin, N. Sendrier, Studying the locator polynomials of
minimum weight codewords of BCH codes. IEEE Trans. Inform. Theory
38 (1992), 960-973.

[2] Delsarte, P., J.-M. Goethals, F.J. MacWilliams, On generalized Reed-
Muller codes and their relatives. Information and Control 16 (1970),
403-422.

[3] Duursma, I.M., Majority coset decoding. IEEE Trans. Inform. Theory
39 (1993), 1067-1070.

[4] Duursma, I.M., Decoding codes from curves and cyclic codes. PhD The-
sis, Eindhoven Un. Techn., Sept. 1993.

[5] Duursma, I.M., A symmetric Roos bound for general linear codes.
Preprint 1994.

[6] Duursma, I.M., R. Kötter, Error-locating pairs for cyclic codes. IEEE
Trans. Inform. Theory 40 (1994), 1108-1121.



The shift bound 24

[7] van Eupen, M., J.H. van Lint, On the minimum distance of ternary
cyclic codes. IEEE Trans. Inform. Theory 39 (1993), 409-422.

[8] Feng, G.-L., T.R.N. Rao, Decoding of algebraic geometric codes up to
the designed minimum distance. IEEE Trans. Inform. Theory 39 (1993),
37-46.

[9] Feng, G.-L., T.R.N. Rao, A simple approach for construction of
algebraic-geometric codes from affine plane curves. IEEE Trans. Inform.
Theory 40 (1994), 1003-1012.

[10] Feng, G.-L., K.K. Tzeng, A new procedure for decoding cyclic and BCH
codes up to the actual minimum distance. IEEE Trans. Inform. Theory
40 (1994), 1364-1374.

[11] Feng, G.-L., V.K. Wei, T.R.N. Rao, K.K Tzeng, Simplified understand-
ing and efficient decoding of a class of algebraic-geometric codes. IEEE
Trans. Inform. Theory 40 (1994), 981-1002.

[12] Hartmann, C.R.P., K.K. Tzeng, Generalizations of the BCH bound.
Inform. and Control 20 (1972), 489-498.

[13] Kasami, T. , S. Lin, W.W. Peterson, New generalizations of Reed-Muller
codes, Part I: Primitive codes. IEEE Trans. Inform. Theory 14 (1968),
189-199.

[14] Kirfel, C., On the Clifford defect of special curves. These proceedings.

[15] Kirfel, C., R. Pellikaan, On the minimum distance of codes in an ar-
ray coming from telescopic semigroups. IEEE Trans. Inform. Theory 41
(1995), 1720-1732.

[16] van Lint, J.H., R.M. Wilson, On the minimum distance of cyclic codes.
IEEE Trans. Inform. Theory 32 (1986), 23-40.

[17] Macwilliams, F.J., N.J.A. Sloane, The theory of error-correcting codes.
North-Holland Math. Library 16, North-Holland, Amsterdam 1977.

[18] Munuera, C., On the generalized Hamming weigths of geometric Goppa
codes. IEEE Trans. Inform. Theory 40 (1994), 2092-2099.



The shift bound 25

[19] Pellikaan, R., On decoding by error location and dependent sets of error
positions. Discrete Math. 106/107 (1992), 369-381.

[20] Pellikaan, R., On the efficient decoding of algebraic-geometric codes.
Eurocode 92, edited by P.Camion, P. Charpin and S. Harari, Udine,
CISM Courses and Lectures 339, Springer-Verlag, Wien-New York 1993,
231-253.

[21] Pellikaan, R., On the existence of error-correcting pairs. Journal of Sta-
tistical Planning and Inference 51 (1996), 229-242.

[22] Roos, C., A new lower bound for the minimum distance of a cyclic code.
IEEE Trans. Inform. Theory 29 (1983), 330-332.

[23] Sakata, S., J. Justesen, Y. Madelung, H. Elbrønd Jensen, T. Høholdt,
Fast decoding of algebraic-geometric codes up to the designed minimum
distance. IEEE Trans. Inform. Theory 41 (1995), 1672-1677.

[24] Sakata, S., H. Elbrønd Jensen, T. Høholdt, Generalized Berlekamp-
Massey decoding of algebraic geometric codes up to half the Feng-Rao
bound. Proceedings 1994 IEEE ISIT, Trondheim, Norway July 1994.

[25] Shen, B.-Z., K.K. Tzeng, Generation of matrices for determining mini-
mum distance and decoding of algebraic-geometric codes. IEEE Trans.
Inform. Theory 41 (1995), 1703-1708.

[26] Shen, B.-Z., K. K. Tzeng, A code decomposition approach for decoding
cyclic and algebraic-geometric codes. International Symposium on In-
formation Theory and Its Applications, Sydney, Australia Nov. 20-25,
1994; IEEE Trans. Inform. Theory 41 (1995), 1969-1987.

[27] Tzeng, K.K., C.R.P. Hartmann, On the minimum distance of certain
reversible cyclic codes. IEEE Trans. Inform. Theory 16 (1970), 644-646.

[28] Wei, V.K., Generalized Hamming weigths for linear codes. IEEE Trans.
Inform. Theory 37 (1991), 1412-1418.

[29] Weldon Jr., E.J., New generalizations of the Reed-Muller codes, Part II:
Nonprimitive codes. IEEE Trans. Inform. Theory 14 (1968), 199-205.

[30] Yang, K., P.V. Kumar, H. Stichtenoth, On the weight hierarchy of geo-
metric Goppa codes. IEEE Trans. Inform. Theory 40 (1994), 913-920.


