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1. INTRODUCTION

The shift (or code) space of an iterated function system (IFS for short)
and the address of the points lying on the attractor of the IFS are very good
tools to get a more precise description of the invariant dynamics of the IFS. The
theory of fractal tops provides a useful mapping from an IFS attractor into the
associated code space that may be applied to assign colors to the IFS attractor
via a method introduced by M.F. Barnsley and J. Hutchinson (which they
refer as colour-stealing) and to construct homeomorphisms between attractors
(roughly speaking, if the symbolic dynamical systems associated with the tops
of two IFSs are topologically conjugate, then the attractors of the IFSs are
homeomorphic). Moreover, Barnsley [2] proved that if two hyperbolic IFS
attractors are homeomorphic, then they have the same entropy.

In this paper we present a generalization of the notion of shift space
associated with an IFS. More precisely, we define the shift space of an infinite
iterated function systems (IIFS) and describe the relation between this space
and the attractor of the IIFS. We construct a canonical projection (which
turns out to be continuous) from the shift space of an IIFS on its attractor
and provide sufficient conditions for this function to be onto.
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2. PRELIMINARIES

In this section we present notation and the main results concerning the
Hausdorff-Pompeiu semidistance and infinite iterated function systems.

Notation 2.1. Let (X, dX) and (Y, dY ) be two metric spaces. By C(X, Y )
we denote the set of continuous functions from X to Y .

Definition 2.1. Let (X, dX) and (Y, dY ) be two metric spaces. A family of
functions (fi)i∈I ⊆ C(X, Y ) is called bounded if the set ∪

i∈I
fi(A) is bounded,

for every bounded subset A of X.

Definition 2.2. Let (X, d) be a metric space. For a function f : X → X,
the Lipschitz constant associated with f is

Lip(f) = sup
x,y∈X; x 6=y

d(f(x), f(y))
d(x, y)

∈ [0,+∞].

A function f : X → X is called Lipschitz if Lip(f) < +∞ and is called
contraction if Lip(f) < 1.

Lemma 2.1. For a metric space (X, d) and a function f : X → X,
we have

diam(f(A)) ≤ Lip(f) diam(A),

for all subsets A of X.

Notation 2.2. For a set X, P(X) denotes the set of all subsets of X. By
P∗(X) we mean P(X) − {∅} while, for a subset A ∈ P(X), by A∗ we mean
A− {∅}.

For a metric space (X, d), K(X) denotes the set of compact subsets of
X and B(X) the set of bounded closed subsets of X.

Remark 2.1. We have

K(X) ⊆ B(X) ⊆ P(X).

Definition 2.3. For a metric space (X, d), we consider on P∗(X) the
generalized Hausdorff-Pompeiu pseudometric h : P∗(X) × P∗(X) → [0,+∞]
defined by

h(A,B) = max(d(A,B), d(B,A)),

where
d(A,B) = sup

x∈A
d(x,B) = sup

x∈A

(
inf
y∈B

d(x, y)
)
.

Concerning the Hausdorff-Pompeiu semidistance we have the important
properties below.
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Proposition 2.1 (see [1], [3] or [6]). Given two metric spaces (X, dX)
and (Y, dY ), the assertions below hold.

(1) If H and K are two nonempty subsets of X, then h(H,K) =
h(H,K).

(2) If (Hi)i∈I and (Ki)i∈I are two families of nonempty subsets of X,
then

h
(
∪

i∈I
Hi, ∪

i∈I
Ki

)
= h

(
∪

i∈I
Hi, ∪

i∈I
Ki

)
≤ sup

i∈I
h(Hi,Ki).

(3) If H and K are two nonempty subsets of X, then

h(f(K), f(H)) ≤ Lip(f)h(K, H),

where f is a function from X to X.

Theorem 2.1 (see [1], [3], [5] and [6]). For a metric space (X, d) let
h : P∗(X) × P∗(X) → [0,∞] be the Hausdorff-Pompeiu semidistance. The
assertions below hold.

(1) (B∗(X), h) and (K∗(X), h) are metric spaces and (K∗(X), h) is closed
in B∗(X).

(2) If (X, d) is complete, then (B∗(X), h) and (K∗(X), h) are complete
metric spaces.

(3) If (X, d) is compact, then (K∗(X), h) is compact and in this case
B∗(X) = K∗(X).

(4) If (X, d) is separable, then (K∗(X), h) is separable.

Definition 2.4. An infinite iterated function system (IIFS for short) on
X consists of a bounded family of contractions (fi)i∈I on X such that

sup
i∈I

Lip(fi) < 1.

It is denoted S = (X, (fi)i∈I). With an infinite iterated function system
S = (X, (fi)i∈I) one can associate the function FS : B∗(X) → B∗(X) defined as

FS(B) = ∪
i∈I

fi(B), B ∈ B∗(X).

Remark 2.2. We note that FS is a contraction and

Lip(FS) ≤ sup
i∈I

Lip(fi).

Using the Banach’s contraction theorem, one can prove the result below.

Theorem 2.2 (see [6]). Given a complete metric space (X, d) and an
IIFS S = (X, (fi)i∈I) such that c

def= sup
i∈I

Lip(fi) < 1, there exists a unique

A(S) ∈ B∗(X) such that FS(A(S)) = A(S).
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Moreover, for any H0 ∈ B∗(X) the sequence (Hn)n≥0 defined by Hn+1 =
FS(Hn), n ∈ N, is convergent to A(S). As for the speed of convergence,
we have

h(Hn, A(S)) ≤ cn

1− c
h(H0,H1), n ∈ N.

Definition 2.5. The set A(S) is called the attractor associated with S.

3. THE SHIFT SPACE FOR AN IIFS

In this section we introduce the shift (or the code space) of an IIFS,
which generalizes the notion of the shift space for an IFS (see [1] or [6]).

Terminology and notation. N denotes the natural numbers, N∗= N−{0},
and N∗n = {1, 2, . . . , n}, where n ∈ N∗. Given two sets A and B, by BA we
mean the set of functions from A to B. By Λ = Λ(B) we mean the set BN∗

while by Λn = Λn(B) we mean the set BN∗n . The elements of Λ = Λ(B) = BN∗

are written as words ω = ω1ω2 . . . ωmωm+1 . . . while the elements of Λn =
Λn(B) = BN∗n are written as words ω = ω1ω2 . . . ωn. Hence Λ(B) is the set of
infinite words with letters from the alphabet B and Λn(B) is the set of words of
length n with letters from the alphabet B. By Λ∗ = Λ∗(B) we denote the set of
all finite words Λ∗ = Λ∗(B) = ∪

n∈N∗
Λn(B)∪{λ}, where by λ we mean the empty

word. If ω = ω1ω2 . . . ωmωm+1 . . . ∈ Λ(B) or if ω = ω1ω2 . . . ωn ∈ Λn(B),
where m,n ∈ N∗, n ≥ m, then the word ω1ω2 . . . ωm is denoted by [ω]m. For
two words α ∈ Λn(B) and β ∈ Λm(B) or β ∈ Λ(B), by αβ we mean the
concatenation of the words α and β, i.e., αβ = α1α2 . . . αnβ1β2 . . . βm and
αβ = α1α2 . . . αnβ1β2 . . . βmβm+1 . . ., respectively.

For a nonvoid set I, on Λ = Λ(I) = (I)N∗ we consider the metric

dΛ(α, β) =
∞∑

k=1

1− δβk
αk

3k
,

where δy
x =

{
1 if x = y
0 if x 6= y

.

Definition 3.1. The metric space (Λ(I), dΛ) is called the shift space as-
sociated with the IIFS S = (X, (fi)i∈I).

Remark 3.1. (i) The convergence in the metric space (Λ(I), dΛ) is con-
vergence on components.

(ii) (Λ(I), dΛ) is a complete metric space.

More terminology and notation. For i ∈ I let us consider the function
Fi : Λ(I) → Λ(I) defined by Fi(ω) = iω for all ω ∈ Λ(I).
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The continuous functions Fi are called the right shift functions. Let us
note that

dΛ(Fi(α), Fi(β)) =
dΛ(α, β)

3
,

for all i ∈ I, α, β ∈ Λ(I).
For ω = ω1ω2 . . . ωm ∈ Λm(I), consider Fω = Fω1 ◦ Fω2 ◦ . . . ◦ Fωm and

Λω = Fω(Λ). We also consider Fλ = Id and Λλ = Λ.

Remark 3.2. (i) We have Λ(I) = ∪
i∈I

Fi(Λ(I)), so that Λ(I) is the attractor

of the IIFS S = (Λ(I), (Fi)i∈I).
(ii) For a given m ∈ N∗ we have

Λ = ∪
α∈Λm

Λα

and
Λω = ∪

α∈Λm

Λωα

for every ω ∈ Λ∗.

Notation 3.1. Let (X, d) be a metric space, S = (X, (fi)i∈I) an IIFS on
X and A = A(S) its attractor. For ω = ω1ω2 . . . ωm ∈ Λm(I), we consider
fω

not= fω1 ◦ fω2 ◦ . . . . ◦ fωm and, for a subset H of X, Hω
not= fω(H). In

particular Aω = fω(A).
We also consider

fλ = Id and Aλ = A.

Notation 3.2. For a contraction f : X → X we denote by ef the fixed
point of f . If f = fω, we denote by efω (or by eω) the fixed point of the
contraction f = fω.

Lemma 3.1. Let (X, d) be a complete metric space and m ∈ N∗. Let
f : X → X be a contraction and H be a closed set such that f(H) ⊆ H. If ef

is the fixed point of f , then ef ∈ H.

Proof. Let a0 ∈ H and let (an)n∈N be the sequence defined by an+1 =
f(an), for all n ∈ N. Then since an ∈ H for all n ∈ N and

lim
n→∞

an = ef

on account of the fact that H is a closed set, we have ef ∈ H. �

4. THE MAIN RESULT

The following result describes the relation between the attractor of an
IIFS and the shift space associated with it.
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Theorem 4.1. Let S = (X, (fi)i∈I) be an IIFS, where (X, d) is a com-
plete metric space, A

not= A(S) the attractor of S, and c
not= sup

i∈I
Lip(fi) < 1.

Then the assertions below hold.
(1) For m ∈ N we have A[ω]m+1

⊆ A[ω]m for all ω ∈ Λ = Λ(I) and

lim
m→∞

d(A[ω]m) = 0.

More precisely,
d(A[ω]m) = d(A[ω]m) ≤ cmd(A).

(2) If aω is defined by {aω} = ∩
m∈N∗

A[ω]m , then

lim
m→∞

d(e[ω]m , aω) = 0.

(3) For every a ∈ A and every ω ∈ Λ we have

lim
m→∞

f[ω]m(a) = aω.

(4) For every α ∈ Λ∗ we have

A = A(S) = ∪
ω∈Λ

{aω}

and
Aα = ∪

ω∈Λ
{aαω}.

If A = ∪
i∈I

fi(A), then

A = A(S) = ∪
ω∈Λ

{aω}.

(5) We have

{e[ω]m | ω ∈ Λ and m ∈ N∗} = A.

(6) The function π : Λ → A, defined by π(ω) = aω for every ω ∈ Λ, has
the following properties:

(i) it is continuous;
(ii) π(Λ) = A;
(iii) if A = ∪

i∈I
fi(A), then π is onto.

(7) π(Fi(α)) = fi(π(α)) for every i ∈ I and α ∈ Λ.

Proof. (1) We prove that A[ω]m+1
⊆ A[ω]m , for every m ∈ N. Indeed,

let us first note that A[ω]1 = fω1(A) ⊆ A. Moreover, for all m ∈ N, m ≥ 2,
we have

A[ω]m = f[ω]m(A) = f[ω]m−1
◦ fωm(A) ⊆ f[ω]m−1

(A) = A[ω]m−1
.

The fact that d(A[ω]m) ≤ cmd(A) for all m ∈ N, follows from Lemma 2.1.
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(2) The fact that ∩
m∈N∗

A[ω]m consists of one point follows from (1), since

X is a complete metric space. Let

∩
m∈N∗

A[ω]m = {aω}.

Since f[ω]m is continuous for every m ∈ N∗, we deduce that

f[ω]m(A[ω]m) ⊆ f[ω]m(A) = A[ω]m

and it follows from Lemma 3.1 that e[ω]m ∈ A[ω]m . Then

d(e[ω]m , aω ) ≤ d(A[ω]m) = d(A[ω]m) ≤ cmd(A)

for every m ∈ N∗ and, consequently,

lim
m→∞

d(e[ω]m , aω) = 0.

(3) Since

d(f[ω]m(a), aω) ≤ d(A[ω]m) = d(A[ω]m) ≤ cmd(A),

for every m ∈ N∗ and
lim

m→∞
cm = 0,

we deduce that for every a ∈ A and every ω ∈ Λ, we have

lim
m→∞

f[ω]m(a) = aω.

(4) On the one hand, it is obvious that

∪
ω∈Λ

{aω} ⊆ A = A(S).

On the other hand, let us first note that

∪
ω∈Λm

Aω = A,

for every m ∈ N∗. We prove this assertion by mathematical induction. For
m = 1 it holds by Theorem 2.2. Now, let us suppose that the assertion is true
for m, i.e.,

∪
ω∈Λm

Aω = A.

We will show that
∪

ω∈Λm+1

Aω = A.

Indeed, for a ∈ A there exists a sequence (ai)i of elements from Aωi , where ωi ∈
Λm, such that lim

i
ai = a. Since Aωi = fωi(A) = fωi

(
∪

j∈I
Aj

)
⊆ ∪

j∈I
fωi(Aj)

for a given i, there exist ji ∈ I and bi ∈ (Aji)ωi such that d(ai, bi) < 1
i . Then

lim
i

bi = a, and bi ∈ Λm+1, so a ∈ ∪
ω∈Λm+1

Aω.
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Now, we are able to prove that

A ⊆ ∪
ω∈Λ

{aω}.

Indeed, for a ∈ A, since A = ∪
ω∈Λm

Aω, there exist ωm ∈ Λm and

am ∈ Aωm such that d(am, a) < 1
m . For α ∈ Λ we have aωmα ∈ Aωm

and, consequently, d(am, aωmα) ≤ d(A[ω]m) = d(A[ω]m) ≤ cmd(A). Therefore,
lim
m

aωmα = a, so a ∈ ∪
ω∈Λ

{aω}.
In a similar manner, one can prove that

Aα = ∪
ω∈Λ

{aαω},

for every α ∈ Λ∗.
If A = ∪

i∈I
fi(A), then

Aα = fα(A) = fα

(
∪

i∈I
fi(A)

)
= ∪

i∈I
Aαi,

for every α ∈ Λ∗. Therefore, for a ∈ A there exists a sequence (ωm)m with
the following properties:

(i) ωm ∈ Λm;
(ii) [ωm+1]m = ωm, and
(iii) a ∈ Aωm , for all m.

If ω1 = ω1 and ωm is defined by ωm = ωm−1ωm, then a = aω, where ω =
ω1ω2 . . . ωmωm+1 . . . ∈ Λ, so a ∈ ∪

ω∈Λ
{aω}. Hence

A ⊆ ∪
ω∈Λ

{aω}.

Since
∪

ω∈Λ
{aω} ⊆ ∪

ω∈Λ
{aω} = A,

we deduce that
∪

ω∈Λ
{aω} = A.

(5) This follows from (4) and (2).
6) (i) Let ω be a fixed element of Λ and a

not= π(ω) = aω. For ε > 0, since
lim

m→∞
d(A[ω]m) = 0, there exists m ∈ N∗ such that

A[ω]m = π({α ∈ Λ | [ω]m = [α]m}) ⊆ BX(a, ε).

Since
BΛ(ω, 1/3m) ⊆ {α ∈ Λ | [ω]m = [α]m},

we deduce that

BΛ(ω, 1/3m) ⊆ Λ[ω]m = {α ∈ Λ | [ω]m = [α]m} ⊆ π−1(A[ω]m) ⊆ π−1(BX(a, ε)),
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i.e., π(BΛ(ω, 1/3m)) ⊆ BX(a, ε) and, consequently, π is continuous.
(ii) and (iii), i.e., the fact that π(Λ) = A and the fact that π is onto, in

the case when A = ∪
i∈I

fi(A), both follow from (3).

(7) Let us note that for α ∈ Λm and ω = Fi(α) = iα ∈ Λm+1, where
i ∈ I, we have

Aω = AFi(α) = fFi(α)(A) = fiα(A) = (fi ◦ fα)(A) = fi(Aα).

For α ∈ Λ and i ∈ I, (π ◦ Fi)(α) = aFi(α) is the unique element of the set
∩

m∈N∗
A[Fi(α)]m . Hence, in order to prove that (π ◦ Fi)(α) = (fi ◦ π)(α), it is

enough to check that fi(π(α)) ∈ A[Fi(α)]m , for every m ∈ N∗. We have

{aα} = {π(α)} = ∩
m∈N∗

A[α]m .

Therefore, for m = 1 we get π(α) ∈ A = A and, consequently,

fi(π(α)) ∈ fi(A) = Ai = A[Fi(α)]1 ⊆ A[Fi(α)]1 .

In general, from π(α) ∈ A[α]m−1
we get

fi(π(α)) ∈ fi(A[α]m−1
) ⊆ fi(A[α]m−1

) = AFi([α]m−1) = A[Fi(α)]m .

This completes the proof. �

Definition 4.1. The function π : Λ → A from Theorem 4.1 (6) is called
the canonical projection from the shift space on the attractor of the IIFS.

5. SUFFICIENT CONDITIONS FOR THE CANONICAL PROJECTION
FROM THE SHIFT SPACE ON THE ATTRACTOR

OF THE IIFS, TO BE ONTO

In this section we provide sufficient conditions for π to be onto.

Proposition 5.1. Let (X, d) be a complete metric space, S = (X, (fi)i∈I)
an IIFS and A = A(S) its attractor. Then A = ∪

i∈I
fi(A) if and only if the

canonical projection π : Λ → A is onto. In such a case

Aα = ∪
ω∈Λ

{aαω} = ∪
ω∈Λm

Aαω,

for every α ∈ Λ∗ and every m ∈ N∗.

Proof. It was proved in Theorem 4.1 that if A = ∪
i∈I

fi(A), then π is onto.

If π is onto then π(Λ) = A. Hence, by Theorem 4.1 (7), fi(A) = fi(π(Λ)) =
π(Fi(Λ)), so

∪
i∈I

fi(A) = ∪
i∈I

π(Fi(Λ)) = π
(
∪

i∈I
Fi(Λ)

)
= π(Λ) = A.
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For α ∈ Λ∗ we have

Aα = fα(A) = fα(π(Λ)) = π(Fα(Λ)) =

= π
(
Fα

(
∪

ω∈Λ
{ω}

))
= π

(
∪

ω∈Λ
{αω}

)
= ∪

ω∈Λ
{aαω}

and

Aα = π(Fα(Λ)) = π
(
Fα

(
∪

ω∈Λm

Λω

))
= π

(
∪

ω∈Λm

Fα(Λω)
)

=

= π
(

∪
ω∈Λm

Fαω(Λ)
)

= ∪
ω∈Λm

π(Fαω(Λ)) = ∪
ω∈Λm

fαω(π(Λ)) =

= ∪
ω∈Λm

fαω(A) = ∪
ω∈Λm

Aαω. �

Proposition 5.2. Let (X, d) be a complete metric space, S = (X, (fi)i∈I)
an IIFS and A = A(S) its attractor. If Aω = ∪

i∈I
fω(Ai) for every ω ∈ Λ∗,

then the canonical projection π : Λ → A is onto. In such a case

Aω = Aω = ∪
α∈Λ

{aωα} = ∪
α∈Λm

Aωα,

for every ω ∈ Λ∗.

Proof. For a ∈ A, since A = ∪
i∈I

Ai and Aω = ∪
i∈I

fω(Ai) = ∪
i∈I

Aωi, for

every ω ∈ Λ∗, there exists a sequence (ωm)m with the following properties:
(i) ωm ∈ Λm;
(ii) [ωm+1]m = ωm, and
(iii) a ∈ Aωm , for all m.

If ω1 = ω1 and ωm is defined by ωm = ωm−1ωm, then a = aω ∈ π(Λ), where
ω = ω1ω2 . . . ωmωm+1 . . . ∈ Λ. Hence A = π(Λ), i.e., π is onto.

In a similar manner, if a ∈ Aα, where α ∈ Λ∗, there exists a sequence
(ωm)m with the following properties:

(i) ωm ∈ Λm;
(ii) [ωm+1]m = ωm, and
(iii) a ∈ Aαωm , for all m.

If ω1 = ω1 and ωm is defined by ωm = ωm−1ωm, then a = aω ∈ π(Λα) = Aα,
where ω = αω1ω2 . . . ωmωm+1 . . . ∈ Λ. Hence Aω = Aω for every ω ∈ Λ∗. �

6. TWO RESULTS CONCERNING THE STRUCTURE OF Aω

We start with

Theorem 6.1. Let (X, d) be a complete metric space, S = (X, (fi)i∈I)
an IIFS and A = A(S) its attractor. Assume that for every ω ∈ Λ∗ there
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exist εω > 0 and nω ∈ N∗ such that for any different subscripts i1, i2, . . . , inω

and any x1 ∈ Aωi1 , x2 ∈ Aωi2 , . . . , xnω ∈ Aωinω
, we have

max{d(xi, xj) | i, j ∈ {1, 2, . . . , nω}} ≥ εω.

Hence Aω = ∪
i∈I

Aωi for every ω ∈ Λ∗.

Proof. Let us consider a fixed ω ∈ Λ∗. For a ∈ Aω, since Aω = fω(A) =

fω

(
∪

i∈I
fi(A)

)
= fω

(
∪

i∈I
fi(A)

)
= ∪

i∈I
Aωi, there exists a sequence (xn)n with

the following properties:
(i) for every n ∈ N∗ there exists in ∈ I such that xn ∈ Aωin , and
(ii) lim

n→∞
xn = a.

We can suppose that d(xn, a) < εω
2 , for every n ∈ N∗. Hence d(xn, xm) <

εω, for every n, m ∈ N∗. Since for any different subscripts i1, i2, . . . , inω and
any x1 ∈ Aωi1 , x2 ∈ Aωi2 , . . . , xnω ∈ Aωinω

, we have max{d(xi, xj) | i, j ∈
{1, 2, . . . , nω}} ≥ εω, the set {i1, i2, . . . , in, . . .} is finite. So, there exists i∗ ∈ I
such that a is the limit of a sequence whose elements are from Aωi∗ . Therefore,
a ∈ Aωi∗ ⊆ ∪

i∈I
Aωi. Consequently, Aω ⊆ ∪

i∈I
Aωi. Since it is obvious thatAωi ⊆

Aω for all i ∈ I, we deduce that

Aω = ∪
i∈I

Aωi. �

Definition 6.1. A function f : X → X, where is (X, d) a metric space, is
called bi-Lipschitz if there exist α, β ∈ (0,∞) such that α ≤ β and

αd(x, y) ≤ d(f(x), f(y)) ≤ βd(x, y)

for every x, y ∈ X. A family of functions (fi)i∈I , where fi : X → X, is called
bi-Lipschitz if there exist α, β ∈ (0,∞) such that α ≤ β and

αd(x, y) ≤ d(fi(x), fi(y)) ≤ βd(x, y)

for every x, y ∈ X and every i ∈ I.

Theorem 6.2. Let (X, d) be a complete metric space, S = (X, (fi)i∈I) an
IIFS such that the family (fi)i∈I is bi-Lipschitz and A = A(S) the attractor
of S. Assume that there exist ε > 0 and n ∈ N∗ such that for any different
subscripts i1, i2, . . . , in and any y1 ∈ Ai1 , y2 ∈ Ai2 , . . ., yn ∈ Ain, we have

max{d(yk, yl) | k, l ∈ {1, 2, . . . , n}} ≥ ε.

Then Aω = ∪
i∈I

Aωi for every ω ∈ Λ∗.

Proof. Let us consider α, β ∈ (0,∞) such that α ≤ β and

αd(x, y) ≤ d(fi(x), fi(y)) ≤ βd(x, y)
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for any x, y ∈ X and i ∈ I. Then for ω ∈ Λ∗ we have

α|ω|d(x, y) ≤ d(fω(x), fω(y)) ≤ β|ω|d(x, y),

for every x, y ∈ X and every i ∈ I.
Let us consider different subscripts i1, i2, . . . , in and x1 ∈ Aωi1 , x2 ∈

Aωi2 , . . . , xn ∈ Aωin. Then there exist y1 ∈ Ai1 , y2 ∈ Ai2 , . . ., yn ∈ Ain such
that x1 = fω(y1), x2 = fω(y2), . . ., xn = fω(yn), for which

max{d(xk, xl) | k, l∈{1, 2, . . . , n}}=max{d(fω(yk), fω(yl)) |k, l∈{1, 2, . . . , n}}≥

≥ α|ω|max{d(yk, yl) | k, l ∈ {1, 2, . . . , n}} ≥ α|ω|ε.

It now follows from Theorem 6.1 that

Aω = ∪
i∈I

Aωi,

for every ω ∈ Λ∗. �

Corollary 6.1. Let (X, d) be a complete metric space, S = (X, (fi)i∈I)
an IIFS such that the family (fi)i∈I is bi-Lipschitz and A = A(S) the attractor
of S. Assume that there exist ε > 0 and n ∈ N∗ such that for any different
subscripts i1, i2, . . . , in and any y1 ∈ Ai1 , y2 ∈ Ai2 , . . . , yn ∈ Ain we have

max{d(yk, yl) | k, l ∈ {1, 2, . . . , n}} ≥ ε.

Then A = ∪
i∈I

fi(A).

Proof. This follows from Theorem 6.2, Proposition 5.2 and Proposi-
tion 5.1. �
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