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ABSTRACT 

 

Boxplots are a useful and widely used graphical technique to explore data in order to better understand the 

information we are working with. Boxplots display the first, second and third quartile as well as the interquartile range and 

outliers of a data set. The information displayed by the boxplot, and most of its variations, is based on the data’s median. 

However, much of scientific applications analyse and report data using the mean. In this paper, we propose a variation of 

the classical boxplot that displays information around the mean. Some information about the median is displayed as well. 
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RESUMEN 

 

Los diagramas de caja son una técnica gráfica útil y ampliamente usada para explorar datos y así entender mejor la 

información con la que se está trabajando. Los diagramas de caja muestran el primer, segundo, y tercer cuartil como 

también la amplitud intercuartil y los valores extremos de un grupo de datos. La información mostrada en los diagramas de 

caja, y en varias de sus variaciones, está basada en la mediana de los datos. Sin embargo, la gran mayoría de las 

aplicaciones científicas analizan y reportan datos usando la media. En este artículo se propone una variación del diagrama 

de caja que presenta información alrededor de la media de los datos. La presente variación también presenta alguna 

información acerca de la mediana de los datos. 
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1. INTRODUCTION 

 

Most researchers in several sciences, including 

Psychology, rely on results of parametric tests, like 

ANOVA and t-test. Parametric tests depend on two major 

assumptions in order to give unbiased results: homogeneity 

of variance and normality of data. It has been demonstrated 

that even small violations of those assumptions can cause 

the tests to give biased results (Wilcox, 1998). Furthermore, 

not only the results of parametric tests but also those of 

non-parametric tests can be affected when assumptions are 

violated (Zimmerman, 1998). 

 

The homogeneity assumption requires that 

variances among batches of data are similar as indicated by 

homogeneity tests (e.g., Levene’s test for the mean and 

Brown-Forsythe test for the median). The normality 

assumption requires that batches of data have normal 

distributions as indicated by normality tests (e.g., 

D’Agostino normality test, Kolmogorov-Smirnov test, and 

Shapiro-Wilk test). The mean (  ) and the standard 

deviation (s) are intrinsic components in the computations 

sustaining parametric tests. That is so, because the mean 

and the standard deviation are the most efficient unbiased 

estimators of location and scale, respectively, for normally 

distributed data (see Rosenberg & Gasko, 1983). So, it is no 

wonder that those estimators are frequently used in 

analysing and reporting data submitted to parametric tests. 

 

A recommended approach to reporting data is via 

graphical methods. Graphs do not aim to convey numbers 

with decimal places, but rather to help the researcher find 

and report patterns in the data (Cleveland & McGill, 1984). 

Furthermore, research on graphical techniques suggests that 

graphs are more useful than tables at communicating 

comparisons among batches of data (Gelman, Pasarica, & 

Dodhia, 2002). One of the most popular graphical 

techniques mainly used to explore data is called the boxplot 

and it presents summary statistics around the median, not 

the mean.  

 

In this paper we present a variation of the boxplot 

which displays summary statistics based on the mean. The 

first section describes the traditional boxplot, some of the 

proposed variations, and its advantages and disadvantages. 

The second section presents a new variation, and the final 

section covers some conclusions and recommendations. 

The paper focuses more on the graphical performance of 

the present variation than on the technicalities of the 

computations supporting its construction. It is important to 

note that the featured boxplot is designed to report data 

which have homogeneous variances and follow a normal 

distribution. Nonetheless, it can be used to explore and 

report non-normal data so long as a robust estimator of 

central tendency is added to the display and the interest is 

on the data’s mean. 

 

2. THE BOXPLOT AS A GRAPHICAL METHOD 

TO EXPLORE DATA 

 

Graphical methods comprise any form of 

visualisation of quantitative data. Such methods are the 

basis for the exploration of data and have been used for the 

communication of results as well. Graphical methods assist 

in making statistical decisions, selecting methods to analyse 

data, and evaluating the limitations of typical null 

hypothesis tests (see Loftus, 1993; Marmolejo-Ramos & 

Matsunaga, 2009). One of the methods most commonly 

used in the visual inspection of data is the boxplot.  

 

The boxplot is a graphical technique that depicts, 

in its traditional form, five numeric summaries about a data 

set in order to visualise its dispersion and skewness 

(McGill, Tukey, & Larsen, 1978). Those summaries are 

based on the median and correspond to the smallest 

observation, the median of the first half of the data (first 

quartile, Q1), the median (second quartile, Q2), the median 

of the second half of the data (third quartile, Q3), and the 

largest observation. The area between the first and third 

quartile is known as the interquartile range and it gives an 

indication of spread in the data (IQR = Q3 – Q1). The IQR 

corresponds visually with the only box in the display and it 

covers approximately 50% of the observations closer to the 

median. The smallest and largest observations are those that 

fall outside the lines (or whiskers) that connect the IQR to 

the smallest or largest value that is not an outlier (e.g., 

within 1.5 × IQR). Additionally, sometimes the traditional 

boxplot can include an approximate 95% confidence 

interval around the median; also called the “notch” (see 

Figure 1).  

 

Variations of the boxplot exist and some of them 

can be found in Potter (2006) plus a short explanation of 

their roots. Nevertheless, more variations have recently 

been proposed. For example, Hubert and Vandervieren 

(2008) proposed an adjusted boxplot based on the 

medcouple measure of skewness to determine the length of 

the whiskers. This variation enables the whiskers to signal 

outliers without making any assumption about the data’s 

distribution. Similarly, Schwertman, Owens, and Adnah 

(2004) present a boxplot which modifies the computations 

of whiskers’ limits under the assumption of normality and 

large samples (see also Sim, Gan, & Chang, 2005). Another 

variation termed “letter-value boxplot” has been proposed 

to show more information when presenting large data sets 

(Hofmann, Kafadar, & Wickham, 2009) (see Figure 1). 

Also, there are variations specifically designed for other 

sciences (e.g., Graedel, 1977). 
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Figure 1. Six different boxplot variations. All the boxplots are representing an Ex-Gaussian distribution of size 500 and 

parameters    = 300, σ = 50, and τ = 300. Actual observations are represented by a rug on the left axis in each plot. 

Traditional numeric summaries are indicated by circled numbers: 1. smallest observations, 2. lower limit of whiskers, 3. 

first quartile, 4. median, 5. third quartile, 6. upper limit of whiskers, and 7. largest observation. The box-percentile plot is 

proposed by Esty and Banfield (2003; as cited in Potter, 2006). The violinplot is discussed later in this paper and elsewhere 

in more detail (see Marmolejo-Ramos & Matsunaga, 2009). 

 

 
 

 

Graphical demonstrations suggest that the 

advantage of the boxplot is that it can differentiate between 

the shapes of the normal and other distributions, but it fails 

to do so between the bimodal and uniform distributions. 

Another disadvantage of the boxplot is that it cannot inform 

about clusters of data (Hintze & Nelson, 1998). Thus, the 

variation presented in this paper carries by default both the 

advantages and the disadvantages of the traditional boxplot. 

However, in actual research, data sets tend not to present 

unimodal distributions, but rather positively skewed 

distributions (e.g., reaction times data). Also, normally 

distributed data can occur in research (e.g., Likert-type 

ratings).  

 

A graphical method to differentiate between 

bimodal and uniform distributions, if encountered in actual 

research, is to use instead of the boxplot, the violinplot. The 

violinplot presents a boxplot surrounded by the underlying 

distribution of the data (Hintze & Nelson, 1998). This 

graphical method stems from the traditional boxplot, 
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therefore it presents summary statistics around the median, 

but it can be customised to display the mean and a 95% 

confidence interval around it (see Marmolejo-Ramos & 

Matsunaga, 2009). A simple and efficient way to deal with 

the visualisation of clusters of data is to add a scatterplot to 

the boxplot display (see Figure 2). 

 

 

 

 

Figure 2. Boxplots and violinplots representing three different distributions. The first row represents a normal 

distribution of size 50 and parameters    = 300, σ = 50. The second row represents a uniform distribution of size 50 and 

parameters      = 200 and      = 400. The third row represents a bimodal distribution of size 50 and parameters    = 200 

and σ = 30 (n = 25) for the first normal distribution, and parameters    = 400 and σ = 30 (n = 25) for the second normal 

distribution. Actual observations are displayed as scatterplots.  
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All of the reviewed boxplot variations use the 

median as the basis for their summaries and just a few 

variations present summary statistics around the mean or a 

value close to it (see Frigge, Hoaglin, & Iglewicz, 1989). 

The reason why the median is used as the basis for the 

computations is because it gives a reliable approximation of 

central tendency in non-normal distributions and is resistant 

to outliers (Rosenberg & Gasko, 1983). Such characteristics 

render the boxplot a powerful technique for gaining insight 

into data prior to formal analyses, especially when no 

assumption of normality is made. At the same time, though, 

such characteristics might preclude using the boxplot in the 

communication of results since most data are analysed and 

reported using summary statistics around the mean.  

 

It was mentioned earlier that current variations of 

the boxplot use different computations for the length of the 

whiskers. That lack of agreement results in different 

statistical software displaying different boxplots for the 

same batch of data (see for example the difference in 

displays between the adjusted boxplot and the traditional 

boxplot shown in Figure 1). Another factor that adds to 

such divergence in displays is that the computation of the 

quartiles can be performed using different formulas (see 

Frigge et al., 1989). Moreover, other researchers 

recommend the use of quantiles instead of quartiles, but 

even so there are also different ways of computing them 

(see Hyndman & Fan, 1996). Therefore, it is advantageous 

to propose a boxplot which is based on commonly used 

summary statistics with computations which have great 

agreement among researchers.  

 

3. THE SHIFTING BOXPLOT. A BOXPLOT 

DESIGNED TO REPORT DATA SUITABLE FOR 

PARAMETRIC TESTS 

 

It is important to propose innovative graphical 

techniques, or create variations of classical ones, in order to 

promote newer ways of visual reasoning about data. Thus, a 

variation of a well-known graphical technique is practical 

so long it has broad applicability and is based on well-

founded computations. Furthermore, any graphical 

variation should aim to be an efficient means to present and 

analyse information in a scientific manner (see Best, Smith, 

& Stubbs, 2001). The present variation meets those 

requirements through a modification of the traditional 

boxplot in order to display information around the mean. 

 

The mean is selected as the core component of the 

present boxplot variation since it is part of most statistical 

tests and it is the most commonly reported estimator of 

location in research. In addition, it is also known that the 

mean and its associated estimator of scale (the standard 

deviation) are unbiased estimators for normal distributions 

(Rosenberg & Gasko, 1983). The normality assumption is 

one of the characteristics which parametric tests rely on, 

along with the homogeneity of variance assumption. When 

such assumptions are violated both parametric tests and 

non-parametric tests (in which no assumptions are made) 

give biased results (see Wilcox, 1998; Zimmerman, 1998). 

Therefore, if the mean is to be reported as the location 

estimator of a data set, it is desirable that groups fulfil 

parametric assumptions in order to obtain correct 

estimations. As these assumptions apply principally to 

parametric tests, the shifting boxplot (here SB) is aimed to 

report results obtained via such tests.  

 

The SB displays nine numeric summaries about a 

normally distributed batch of data: 

 

1. Smallest outlying observation. 

2. Minimum value within a ± 2 s range 

3. Mean of first half of the data (    ) 
4. Lower 95% CI limit for the mean  

5. Mean (    ) 
6. Upper 95% CI limit for the mean 

7. Mean of second half of the data (    ) 
8. Maximum value within a ± 2 s range 

9. Largest outlying observation. 

It is common among researchers to consider 

observations with less than 5% frequency as outlying 

observations (see Cowles & Davies, 1982), i.e., it is 

common to use a 2 standard deviations fence. In the SB, 

outlying observations are those that fall below -2 s (1) and 

above +2 s (9) and are represented by dashes.  

 

Observations which are equal to or above -2 s (2) 

and equal or below +2 s (8) are enclosed by the innermost 

box (the long thin box) in the display. This box covers 

approximately 95% of the data and might have a similar 

role to that performed by the whiskers in the traditional 

boxplot. Note, however, that the whiskers in the traditional 

boxplot cover approximately 99% of the data. 

 

Observations that fall between the mean of the 

first half of the data (3) and the mean of the second half of 

the data (7) are enclosed by the middle box. This box might 

cover approximately 50% of those observations closer to 

the mean. We use the notation      and      to indicate that 

the limits of this box are quartiles based on the mean. As 

with the traditional quartiles, the mean of the data is not 

included to compute the means of the halves. 

The thick horizontal line joining the borders of the 

outermost box represents the mean of the data set (5) and 

the horizontal limits of this box represent the lower (4) and 

upper (6) limits of the confidence interval (or CI). Thus, the 

SB is visually represented by 3 boxes and as many dashes 

as outlying observations exist (see Figure 3). It is worth 

noting that the information displayed in the present boxplot 

is in line with other graphical techniques used for 
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pedagogical and exploratory purposes (see Doane & Tracy, 

2000). Thus, the SB could also be used as a tool to teach 

statistics, foster understanding of the distribution of 

observations, and facilitate the comparison of distributions. 

 

 

Figure 3. The shifting boxplot representing two different types of distributions with three different sample sizes. 

The first row represents normal distributions of sizes 15, 30 and 100 with parameters    = 300, σ = 50. The second row 

represents Ex-Gaussian distributions of sizes 15, 30, and 100 with parameters    = 300, σ = 50, and τ = 300. Circled numbers 

indicate the nine numeric summaries that the boxplot displays (see text). The median and its 95% CIBCa are also displayed as 

a small square with whiskers. Actual observations are represented by a rug on the left axis in each plot. 

 

 
 

3.1. A note on confidence intervals and their 

interpretation in the shifting boxplot 

 

Researchers recommend reporting CIs, since they 

not only give an idea of an experiment’s power (see Loftus, 

1996), but also enable one to make inferences about the 

data (Levine, Weber, Park, & Hullett, 2008). One of the 

core advantages of using confidence intervals is that they 

are inferential statistics that allow researchers to draw 

theoretical conclusions based on data patterns (Loftus, 
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1993) without the need of typical null hypothesis statistical 

testing (or NHST) (see Cumming & Finch, 2005; Masson 

& Loftus, 2003; Tryon, 2001). Indeed, one of the major 

criticisms to NHST is that it can only reject the null or fail 

to reject it but never gives support to it (e.g., Gallistel, 

2009). Hence, CIs are perhaps the only available statistical 

estimator that would enable researchers not only to reject 

(or fail to reject) the null but also to propose inferences 

about why the null should be supported. 

 

Traditional 95% CIs around the mean are 

computed by adding and subtracting to the mean the result 

of the multiplication of the standard error times 1.96 (or z 

score) (        
 

  
). A more precise 95% CI can be 

obtained by multiplying the standard error times the t 

critical value for a two-tailed test with the respective 

degrees of freedom (           
 

  
). The computation of 

CIs for independent measures can be carried out for each 

data set in the manner presented above. However, it has 

been proposed that a correction for the computation of CIs 

should be performed when dealing with dependent 

measures. Such computation basically removes the 

between-groups variance since it is of no avail in the 

statistical analysis of dependent-measures designs 

(Cousineau, 2005; Jarmasz & Hollands, 2009; Loftus & 

Masson, 1994; Masson & Loftus, 2003; Morey, 2008). In 

other words, not taking into account the between-groups 

variance does not alter the results of a parametric test for 

dependent measures.  

 

In the case of independent measures a rule of 

thumb would indicate that when two groups have 

significantly different means there will be less than 50% of 

overlap between the CIs of the groups (see Marmolejo-

Ramos & Matsunaga, 2009). In graphical terms, there could 

be a significant difference between 2 independent groups 

when the edge of one of the data sets’ CIs would be less 

than half-way through from reaching the other data set’s 

mean. We assume that the correction applied to dependent-

measures designs will give CIs an approximately similar 

behaviour. Thus, the graphical advantage of the correction 

is that the degree of overlap between CIs of different 

groups will roughly correspond to the results of the p value 

given by the statistical test in the case of dependent 

measures. Thus, users of the SB should take into account 

these considerations not only when plotting and interpreting 

CIs in the boxplot, but also when employing CIs in general. 

 

3.1.2. Implementing more accurate confidence intervals 

 

Although traditional CIs are broadly used and 

well-known, it has been suggested that they are not very 

accurate. Simulation studies indicate that exact CIs are 

asymmetrical rather than symmetrical, particularly when 

some skewness is evident, so CIs should adapt to the actual 

distribution of the observations. To obtain more precise CIs 

it is recommended to use bootstrap confidence intervals 

(here CIboot). The advantage of CIboot is that they aim to 

produce CIs that are closer to those expected in the 

population and have better coverage than usual CIs (see 

Efron, 1987). The way to achieve that is by producing 

many theoretical sub-samples with replacement from the 

available sample, estimating the mean for each of them, and 

then computing CIs for the set of obtained re-sampled 

means. Note that the size and range parameters of the 

subsamples are those of the original sample. Production of 

CIboot is a computer-intensive method and accurate results 

depend ultimately on the quality of the available data set 

(see Efron, 1988; Wood, 2005) 

 

One of the existent CIboot is called bias-corrected 

and accelerated CI (here CIBCa) which incorporates a bias 

constant and an acceleration constant to produce accurate 

CIs. The constants enable CIs to adapt to the skewness of 

the sample while using some mathematical transformations 

to introduce normality and stabilise variance (technicalities 

can be found in Efron, 1987). The appeal of the CIBCa is 

that although it uses non-parametric re-sampling, it does 

perform well under parametric assumptions. Thus, the CIBCa 

can be estimated for practically any data set regardless of 

the type of distribution or the sample size. Given these 

reasons, the SB adopts the CIBCa in the representation of 

data using by default 2000 re-samples. 

 

3.1.3. Addition of a robust estimator of central tendency to 

explore non-normal data 

 

The addition of the median and its confidence 

interval renders the SB suitable to explore data that is 

suspected to distribute non-normally. As the median is a 

robust estimator of central tendency in non-normal 

distributions, it will tend to fall close to where the true 

central location falls (see Sartori, 2006). On the other hand, 

as the mean is inefficient in non-normal distributions, it will 

tend to be pulled towards where most of the extreme 

observations fall (see Rosenberg & Gasko, 1983). As a 

result, the gap created between the mean and the median 

will give a visual indication of the degree of skewness and 

spread of the data. In addition, the degree of asymmetry of 

the boxes in relation to the mean will also assist in 

visualising the data’s level of normality.  

 

These are important visual properties that a 

boxplot should have since they warn the user about 

potential lack of normality in the data that could be due to 

factors other than a small sample size (see Choonpradub & 

McNeil, 2005). 

 

The location estimator selected to explore non-

normal data is the median and it is accompanied by its 

CIBCa in the shifting boxplot. There are various estimators 
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of location robust to non-normal cases (e.g, Huber, Hampel, 

and Andrews), but the median is chosen because i) it is a 

well-known estimator of central tendency, ii) it is easy to 

compute, and iii) it performs well in several non-normal 

distributions (see Goodall, 1983). An interesting fact of 

adding a 95% CIBCa around the median is that a low degree 

of overlap between CIs would suggest that a test on 

medians could yield significant results when CIs around the 

mean might suggest otherwise.  

 

For this reason, it is recommended that the median 

and its CIs are used in the exploration of data prior to 

formal analysis. Additionally, it does not come amiss to 

display the median and the CIs when reporting data 

subjected to parametric tests since it would endorse the 

results or flag potential discrepancies at the median level. 

The SB displays the mean, the median, and their CIs by 

default and the median and its CIs can be suppressed if 

requested (see second row in Figure 3). 

 

CONCLUSIONS 

 

Although the graphical variation of the boxplot 

presented here has properties which make it useful both for 

exploring and reporting data (see Cox, 1978), we believe it 

is more appropriate to report data suitable for parametric 

tests. When non-normally distributed data need to be 

reported, it is appropriate to use the traditional boxplot. 

Nonetheless, the SB displaying the median and its CIs could 

be another reasonable approach to reporting non-normal 

data. 

 

The SB is a useful graphical tool in that it keeps 

the graphical simplicity of the traditional boxplot and 

displays summary statistics around a broadly used estimator 

of location. Thus, the SB displays more information about 

data sets than graphical methods that are limited to 

conveying only means and error bars (e.g., bar plots or 

dynamite plots) (see Lane & Sándor, 2009). Additionally, 

the SB features accurate CIs that assist in making solid 

statistical inferences about results in the population. Future 

modifications of the SB could aim to implement other types 

of bootstrap CIs and even traditional symmetrical CIs. 

 

Regarding the visual design of the present boxplot, 

like the traditional boxplot, the SB could be perceived as a 

single perceptual unit. In particular, the SB displays nine 

summary numbers around the mean that are visually bound 

by means of three boxes. More importantly, the perceptual 

junction of the boxes and the dashes representing outliers 

forms a compact visual enclosure that enhances the 

interpretability of data (see Carr, 1994). In this regard, 

behavioural experiments should be conducted to determine 

whether the present version facilitates data analysis and 

interpretation vis-à-vis other versions of the boxplot or even 

other graphical techniques. 

To conclude, it is important that the data reported 

using the SB, or any other graphical method, are 

accompanied by results of homogeneity and normality tests 

in order to corroborate visual displays and substantiate the 

use of parametric tests. Also, given that the computer code 

that generates the boxplot can be customised, it is advisable 

that any modification be reported along with the plot when 

presenting results. 
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