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Abstract

Background: As Pandemic (H1N1) 2009 influenza spreads around the globe, it strikes school-age children more often than
adults. Although there is some evidence of pre-existing immunity among older adults, this alone may not explain the
significant gap in age-specific infection rates.

Methods and Findings: Based on a retrospective analysis of pandemic strains of influenza from the last century, we show
that school-age children typically experience the highest attack rates in primarily naive populations, with the burden
shifting to adults during the subsequent season. Using a parsimonious network-based mathematical model which
incorporates the changing distribution of contacts in the susceptible population, we demonstrate that new pandemic
strains of influenza are expected to shift the epidemiological landscape in exactly this way.

Conclusions: Our analysis provides a simple demographic explanation for the age bias observed for H1N1/09 attack rates,
and suggests that this bias may shift in coming months. These results have significant implications for the allocation of
public health resources for H1N1/09 and future influenza pandemics.
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Introduction

In March 2009, a new A/H1N1 influenza strain (Pandemic
(H1N1) 2009 Influenza or H1N1/09) emerged in humans in
Mexico and by early June 2009, the World Health Organization
(WHO) had raised the worldwide pandemic alert level to signal a
global pandemic of a novel influenza virus. Since the WHO
declaration of a pandemic, the new H1N1/09 virus spread across
the globe, causing epidemics in most countries [1]. The U.S.
Centers for Disease Control and Preventions (CDC) has estimated
that there were approximately 55 million infections, 246,000
hospitalizations, and over 11,000 deaths due to H1N1/09 by
December 2009 [2]. The 2008–2009 seasonal influenza vaccine was
determined to be ineffective against the new strain; however, older
individuals who were previously infected by another H1N1 strain
circulating prior to 1957 were less likely to develop clinical infection
[3,4,5]. Multiple manufacturers have successfully developed
monovalent vaccines for H1N1/09, but production delays meant

that widespread vaccination did not occur until late Fall 2009,
permitting the virus to spread widely in the Northern Hemisphere.
Influenza is a complex and continually changing disease that

infects individuals of all ages. In contrast to diseases like measles
and rubella, the dynamics of influenza are strongly influenced by
the evolution of immunological properties of the pathogen [6].
The epidemiological landscape of flu is dynamically shaped by
cycles of naturally-acquired immunity (through infection) and
immune escape (through viral evolution). Based on data from prior
influenza pandemics and a simple network-based mathematical
model, we argue that, for a newly introduced strain of influenza,
this process will cause a shift in the demographic burden of
influenza from children to adults. Our analysis also has important
implications for the decision making process that sets priorities for
both U.S. and global influenza vaccine allocation. We echo our
previous conclusions that high-risk groups should receive highest
priority and direct protection when vaccine supplies are limited
[7]. However, secondary efforts should focus on indirect protection
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of groups with greatest potential for infection, whose identities may
change over time.

Methods

Population Model
Influenza spreads during close contacts between susceptible and

infected individuals. The likelihood of a person becoming exposed
to disease will strongly depend on the number and intensity of his
or her interactions [8,9,10,11,12]. To study the combined impact
of complex interaction patterns and infection-induced immunity
on the demographic progression of pandemic influenza, we use
network models in which individuals are represented as nodes, and
edges connecting nodes represent disease-causing interactions, or
contacts, which may occur between individuals during an infectious
period. The number of edges for a given node is known as the
node’s degree, and the probability distribution of degrees over all
nodes is referred to as the degree distribution.
Our network model represents an urban area population and is

based on data for the city of Vancouver, British Columbia [9]. We
model the interaction patterns relevant for the spread of influenza
in the population via a data-driven, activity-based contact network
model. Each person is assigned an age based on census data from
the city of Vancouver, British Columbia, and age-appropriate
activities (e.g. school, work, nursing home, etc.) Contacts among
individuals reflect household size, employment, school and
hospital data also from Vancouver. (More details can be found
in [7,9].) School-age children are defined as 5–18 year olds and

adults are assumed to be between 19 and 64 years of age. The
emergent age-specific contact patterns of our model closely
resemble other empirical estimates (Figure 1), and parsimoniously
incorporate individual-level heterogeneity.

Modeling Immunity and Second Season Dynamics
We assume that an infected node will infect a susceptible

contact with a given probability (known as transmissibility) that
depends on both the infectiousness and susceptibility of the nodes.
Once infected, a node cannot be reinfected during the same
outbreak and will have resistance to infection during the
subsequent season (Figure 2). The cross-immunity in the second
season is assumed to be partial and we use a to represent the loss of
immunity from one season to the next (a~0 is full immunity
against future infection, a~1 is complete loss of immunity, and
intermediate values correspond to partial immunity). For influenza
A, natural immunity acquired in one epidemic tends to be
heterotypic for the second epidemic appearance of the virus,
though several studies have shown that individuals infected by
influenza A can be reinfected by antigenically similar strains
during the following seasons. An estimated 8% of individuals who
were infected in the 1918–1919 Spanish flu pandemic were
reinfected in January–February 1920 [13]; and the relative risk for
clinical illness during the second wave of the 1918 pandemic after
infection in the first wave was estimated to be as low as 6% in U.S.
Army personnel camps (but was found to be as high as 51% in one
of the camps) [14]. Similar rates of reinfection have been estimated
for the 1968 Hong Kong influenza pandemic [15,16]. Generally,

Figure 1. Estimated age-specific contact rates in an urban population. We compare six estimates for the mean degree by age of individuals
(left panel) and the mean degree across the population (right panel). Meyers et al. [9] and Eubank et al. [44] are model-based estimates in which
survey, census and other data were used to construct detailed computer simulations of contact patterns in Vancouver, BC and Portland, OR,
respectively. The remaining four sets of estimates [40,41,42,43] are inferred from responses to survey questions about the frequencies of (a) two-way
conversations lasting three or more words in the physical presence of another individual, and (b) a physical contacts which involve skin-to-skin
contact. The Wallinga study includes only conversational contacts, while the Mossong, Read and Beutels studies include both contact types. The Read
and Beutels studies only include adults. Our model (based on [9]) measures contacts during an average infectious period, while the remaining studies
measure daily contacts.
doi:10.1371/journal.pone.0009360.g001
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immunity loss for influenza A has been estimated at 5% per year
[17], and an estimated 7.4% of previously infected individuals
become fully susceptible within one year [18]. Should H1N1/09
produce a second wave of transmission, these studies of prior
pandemic strains suggest that a will likely lie somewhere between
0:05 and 0:10. Following infection, antibodies that recognize
influenza surface antigens, hemagglutinin and neuraminidase,
persist and are associated with resistance to reinfection [19]. There
is evidence that anti-hemagglutinin (HA) antibodies limit reinfec-
tion by antigenically similar strains of influenza [20,21] and anti-
neuriminidase (NA) antibodies significantly reduce virus replica-
tion and release if reinfected [22,23]. Thus, our model assumes
that cross-immunity reduces both susceptibility and infectiousness
by a factor a.
Most empirical studies measuring immunity to influenza

measure a reduction in infection rate at the population scale.
Thus, we model the spread of influenza in a partially immune
population assuming perfect partial immunity, using empirical
data for infection-acquired immunity to influenza described above.
Perfect partial immunity implies that for a level of loss of partial
immunity a, a proportion 1{að Þ of the previously infected
population is completely protected, while the remaining a are fully
susceptible. (If empirical data on leaky partial immunity for
influenza is available, the network-based model described in [24]
can be used instead.)
To consider disease dynamics beyond the initial pandemic

period, we have developed a mathematical approach based on
percolation methods. The standard bond percolation model [25]
assumes no pre-existing immunity, thus is an appropriate model
for the spread of a novel influenza strain. Using this method to
model the spread of influenza in a naive population, we can define
a residual network, which is the relevant contact network for a
subsequent outbreak caused by the same pathogen in the same
population. The residual network is made up of individuals who
were not infected in the initial epidemic, a proportion a of whom
were infected but have lost immunity since infection and the edges
joining them. We describe the residual network via its degree
distribution, pres(kr), or the probability that a (susceptible)
individual in the residual network has kr contacts with other
(susceptible) individuals in the residual network (which we derive
in Text S1) [24]. Given the transmissibility of the second season
pathogen, T2, (which may or may not be different than the
transmissibility of the first season pathogen), we use bond
percolation techniques to predict the consequences of a second
season spread of infection.The relationship between transmissibil-

ity T1ð Þ and the reproductive number in a naive population R0ð Þ
is described by:

R0~T1
Sk k{1ð ÞT

SkT
~T1

P
k k k{1ð Þp kð ÞP

k kp kð Þ

where p kð Þ is the degree distribution in the naive population.
Similarly, the effective reproductive number in the partially
immune population Reð Þ is described by

Re~T2
Skr kr{1ð ÞT

SkrT
~T2

P
k k k{1ð Þpres kð ÞP

k kpres kð Þ
:

An individual will be susceptible to infection in the second
season if they were not infected in the first season or if they were
infected and have lost immunity (with probability a). Thus, the
probability that a node of degree k is susceptible to infection in the
second season is equal to:

S kð Þ~ 1{T1zT1u1ð Þkza 1{ 1{T1zT1u1ð Þk
! "

where, T1 is the transmissibility of the first season influenza strain
and u1 is a quantity that can be calculated from bond percolation
techniques and depends on both the population’s contact structure
as well as the transmissibility of the pathogen [25]. Also, the
probability of infection in the second season to an individual of
residual degree kr (number of edges in the residual network)

can be computed as 1{ 1{T2zT2u2ð Þkr
! "

, where T2 is the

transmissibility of the second season influenza strain, and u2 is a
quantity that can be calculated from bond percolation techniques.
We can combine these two quantities to find the risk of infection to a
node of (original) degree k in the second season:

R kð Þ~S kð Þ
X

kr

pres krDkð Þ 1{ 1{T2zT2u2ð Þkr
! "

where, pres krDkð Þ is the probability that a node will have residual
degree kr, given that it has a degree of k before the first season
(and is derived in Text S1) [24]. The values for risk of infection for
the second season shown in Figure 3 were calculated using the
above formulation, and verified by comparison to stochastic
simulations (not shown). Stochastic simulations for this verification

Figure 2. Changing immunological structure of a population throughout an influenza pandemic. Lines in these network diagrams
indicate contacts through which influenza can spread. Prior to the introduction of a novel pandemic strain, most of the population is susceptible. The
pandemic initially sweeps through the most connected portions of the populations, including groups of school-age children, leaving a wake of
temporarily immunized individuals. The remaining susceptible population will consist of less connected portions of the population.
doi:10.1371/journal.pone.0009360.g002
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and Figure 3(A) assumed a simple percolation process with T1 and
T2 as described.

Vaccination Priorities
In contrast to studies assuming instantaneous pre-exposure

vaccination of target groups [26], we model vaccination priorities
by randomly selecting individuals within a given priority group
(e.g. school-age children) to be vaccinated prior to the start of a
second season of the novel strain. We assume a coverage rate of
15% for the entire population, which resembles current H1N1/09
pandemic vaccine uptake [27] and allows for straightforward
comparison across different vaccination strategies. We also model
cross-immunity from exposure to pre-1957 H1N1 strains of
influenza by ‘‘pre-immunizing’’ a randomly chosen subset of
adults (9%) and elderly (33%) [5]. Vaccine efficacy for the
remaining non-immune population is assumed to be 100% for all

age groups, based on high seasonal influenza vaccine efficacy rates
in the target groups of this study (school-age children and adults)
[28] and initial evidence for a robust immune response with the
monovalent 2009 H1N1 vaccine [29,3].

Results

Evidence for a Fluctuating Landscape
Pandemic influenza is feared for its severe excess mortality [30].

Mortality rates vary significantly, and depend on both viral strain
and the age of the person infected. For most seasonal and
pandemic flu, the elderly and very young are at highest risk for
severe disease; however, the 1918 Spanish flu pandemic is believed
to have been deadliest for 20–40 year olds [31]. Influenza
morbidity and attack rates also vary among strains and
demographic groups. Epidemiological studies and conventional

Figure 3. Attack rates among adults and children during influenza pandemics and subsequent seasons. Multiple bars for a single strain
represent data from different populations. Data are from a: [62], b: [61], c: [66], d: [67], e: [68], f: [69], g: [70], h: [71], i: [72], j: [73], k: [74], l: [38]. Numbers
above bars represent odds ratios. While there are consistent qualitative patterns, the estimates are based on diverse data and methodologies and
thus should not be compared quantitatively across studies. The 1968 Hong Kong H3N2 pandemic is the only one of the four strains that does not
appear to have an initial bias towards children, which may be influenced by cross immunity from prior H2N2 infections as the two viruses shared
nearly identical neuriminidase molecules [75]. Data for H1N1/09 is reported as number of confirmed cases as a proportion of age group size in the
respective country.
doi:10.1371/journal.pone.0009360.g003
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wisdom suggest that school children have the highest attack rates
and ultimately fuel transmission throughout the community
[32,33,34,35,36]. Data from the three known influenza emergence
events in the twentieth century initially show this bias towards
school-aged children (Figure 3). When we look beyond the initial
pandemic period, however, the age-specific attack rates reverse,
with the probability of infection in adults exceeding that of
children.
Data from H1N1/09 outbreaks thus far reveals a similar initial

discrepancy in attack rates (Figure 3, [37,38]). There is mounting
evidence that cross-immunity from exposure to prior strains may
be protecting older adults [5], as has been suggested for infection
with the 1918 influenza strain [39]. However, there is a simple and
complementary explanation for the differences in attack rates and
subsequent age shifts that is based on the heterogeneous contact
patterns underlying the spread of influenza.
Several diverse studies have estimated the distribution of contact

patterns among age groups, primarily in urban populations
[40,41,42,43,44]. Although the studies use different definitions of
contact and contact rate, all but one suggest that children have the
highest numbers of contacts followed by adults (Figure 1). Basic
epidemiological theory suggests that, in the absence of intervention
and cross-immunity, children should therefore have the highest
attack rates [45,46,9]. As infection-induced immunity accumulates
among the highly connected individuals, however, the infection
cascades into other parts of the population [47,48,24]. In fact,
stochastic simulations of disease transmission illustrate that even
within a single influenza outbreak, the burden of disease shifts

from children to adults as disease progresses from the most
connected to more moderately connected portions of the
population (Figure 4(A)).
Using our mathematical model, we calculate the expected age-

specific attack rates in the first and second seasons given the
contact structure of the network (its degree distribution), the
infectiousness of the strain, and the level of partial immunity from
one season to the next. We find that the attack rate shifts shown in
Figure 3 are a natural outcome of the contact patterns described in
Figure 1. Intuitively, the likelihood of becoming infected during
the initial phase of the pandemic increases with number of
contacts. However, if the strain makes a second appearance, then
the relationship between contact patterns and epidemiological risk
is altered by immunity acquired during the initial outbreak
(Figure 4(B)). When the population is fully susceptible, the highest-
degree nodes are most at risk for infection; and thus are likely to be
protected against reinfection. In a partially immune population,
while individuals with very few contacts maintain low levels of risk,
moderately connected individuals become the most vulnerable
subset of the population. This transition is expected to be more
pronounced if high levels of immunity are maintained by
individuals infected during the initial outbreak (Figure 4(B)), and
for strains with higher reproductive numbers (Text S1). These
patterns are also expected to occur in populations with different
contact and demographic structures (Text S1).
If the reproductive number in the first season is R0~1:6 (as has

been estimated for H1N1/09 [37,49]), our model suggests that the
returning strain will only invade if it is more transmissible (higher

Figure 4. Individual risk of influenza infection during two sequential outbreaks. (A) During the initial pandemic season, we notice a shift in
the attack rate (the number of new cases during a week in an age group divided by the size of the age group). The attack rate among children is
initially higher than the attack rate among adults, but this reverses after the epidemic peak. (B) During the initial pandemic, all individuals are
susceptible, and risk of infection (defined in Methods) increases with number of contacts (dashed brown line, and right y-axis). During a subsequent
outbreak the epidemiological risk landscape shifts towards moderately connected individuals, depending on the the level of immunity (green lines,
and left y-axis) for T1~0:09 R0~1:6ð Þ and T2~0:15 Re~1:05,1:16ð Þ. (C) The degree distributions for school-age children (mean degree of 21.5) and
adults (mean degree of 16.1) in our urban population network model. The bimodal adult degree distribution reflects heterogeneities in adult
employment status.
doi:10.1371/journal.pone.0009360.g004
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probability of transmission per contact) than the original strain;
however, because of a reduced number of contacts among
susceptible individuals, its effective reproductive number may be
considerably lower than the original strain (Text S1). Higher
transmissibility can occur if the pathogen evolves to be more
infectious [50,51] or if the social structure changes to enhance
transmission, for example, with the commencement of school or
relaxation of social distancing measures. Children tend to have
higher numbers of contacts than adults (Figure 4(C)) (who
combined make up more than 80% of the population in most
developed nations). Thus Figure 4 suggests that the burden of
disease is expected to shift from school-age children to adults both
during the initial pandemic and between the initial pandemic and
the subsequent season, which is consistent with the patterns
observed during the three influenza pandemics of the twentieth
century (Figure 3).

Implications for Vaccination
The vaccination of school-age children has been suggested as an

effective influenza control strategy [52,34,53,54]; and school-age
children are among the U.S. CDC’s H1N1/09 vaccination
priority groups [55]. Since school children are thought to be
critical transmitters of flu, immunizing them can break potential
chains of transmission before they reach the greater community.
This strategy, however, hinges on the primacy of school-age
children in influenza transmission and the general idea that the
likelihood of catching and spreading flu is proportional to one’s
number of contacts [56,57,58,7]. However, our study illustrates
that naturally-acquired immunity may restructure the population
so that the most highly connected individuals are no longer the
most vulnerable nor the most likely to transmit infection. Thus the
optimal vaccination strategy may depend on the recent epidemi-
ological history of the population. For example, we consider a
scenario of 15% overall pandemic vaccination coverage and
consider two allocation strategies: (i) vaccinate a random subset of
children (who are highly connected) or (ii) vaccinate a random
subset of adults (who are moderately connected) (Figure 5). This
analysis is meant to explore whether vaccination strategies to
minimize transmission should shift as the disease alters the
immunological structure the host population; and we do not

explicitly consider other outcome measures such as mortality,
years of life lost or economic costs [7,26,59].
Vaccination reduces the size of the epidemic through both

direct protection of 15% of the population and indirect protection
of others through partial herd immunity. Figure 5(A) shows that
during the initial phase of pandemic spread, when the population
is fully susceptible, it is more effective to vaccinate children than
adults. This prediction reverses for a second season, with adult
vaccination more effectively reducing total cases than school-age
vaccination. We find this reversal despite the smaller proportion of
adults that are covered by vaccination compared with school-age
children. We further consider the impact of resistance from
exposure to prior strains of the same subtype among older adults
(Figure 5(B)). In particular, there are estimates that 9% of adults
and 33% of elderly are resistant to H1N1/09 from H1N1
infections prior to 1957 [5]. Even with historical cross-immunity,
adult vaccination is expected to be more effective than school-aged
vaccination in the second season.

Discussion

Influenza transmission is constrained by contact patterns, which
are influenced by individual behavior and sociological events. For
example, the early transmission of H1N1/09 in Mexico City was
likely hampered by the closing of schools for the two-week Holy
Week period and the subsequent implementation of social
distancing interventions including school closures [49]. These
events prevented contacts that typically take place within schools
that are thought to be pivotal to spread of flu through communities
[54,53].
The reverse is also true: the dynamics of infectious diseases can

dramatically alter the structure of a host population. Outbreaks of
fully immunizing diseases like measles permanently remove cases
from the susceptible fraction of the population. Influenza, along
with many other partially immunizing diseases such as RSV,
pertussis and rotavirus, provides temporary incomplete immunity.
Individuals fade in and out of the epidemiological active portion of
the population as they become infected and slowly regain
susceptibility to future infection. When a novel influenza strain
emerges into a pandemic, it works its way through the population,
preferentially infecting and thus immunizing individuals with high

Figure 5. Comparison of vaccination policies. (A) The impact of school-aged and adult vaccination priorities at 15% vaccine coverage in a naive
(‘‘Season 1’’) and partially immune population (‘‘Season 2’’) population at a~0:05: (B) The impact of these policies assuming pre-existing resistance
among adults (9%) and elderly (33%) acquired through exposure to a strain of the same subtype prior to 1956. The first season pathogen has a
reproductive ratio of Ro~1:6 T1~0:09ð Þ and the second season pathogen has an effective reproductive ratio of Re~1:05 T2~0:15ð Þ.
doi:10.1371/journal.pone.0009360.g005
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numbers of contacts. It essentially prunes the underlying contact
network by removing highly connected individuals and all of their
connections. If the strain reemerges in the following season, it faces
much sparser chains of susceptible individuals, in which spread is
more limited and new groups are expected to bear the brunt of the
epidemic. Our simple network-based mathematical model eluci-
dates this phenomenon by both incorporating the heterogeneous
distribution of contacts among age groups and tracking the
changing immunological structure of the population from one
season to the next [12,24].
This model does not consider variability in contact patterns due

to seasonality, nor do we account for demographic processes such
as births, deaths, and aging. We have found, however, that
population aging has minimal impact on network structure or
disease dynamics across levels of immunity (Text S1). We also have
not addressed the dynamics beyond two seasons and believe that,
while the relative risks will continue to change, we cannot simply
extrapolate our results to future seasons.
When schools are in session, school children tend to have the

highest numbers of contacts among all age groups [40,60].
Consequently, they often form the leading edge of a pandemic
[61,62,37]. Adults tend to have lower numbers of contacts and
thus lower risk of infection, although they play an important role
in spatially dispersing infection [63]. Based on estimated contact
patterns, our network model suggests that attack rates for a novel
strain of influenza should initially be biased towards children and
then shift towards adults. This is consistent with estimated attack
rates for the three major pandemics of the 20th century (with the
exception of the initial 1968 pandemic season).
This analysis suggests that we might experience a shift in

H1N1/09 age-specific infection risks (and thus potential for
infecting others) over the next 12 to 24 months, and that the
optimal distribution of vaccines and other public health resources
may change throughout this period. Early data from the Fall wave
of the H1N1/09 outbreak in the United States already shows a
trend towards a decrease in cases in school-age children [64].
School-aged children were given the highest priority for the
earliest available H1N1/09 vaccines in the U.S. [55]. Although
the vaccines are now widely available to all age groups, adherence
is quite low [27]. Our results suggest that public health efforts to

increase vaccination rates should perhaps be directed towards
adults in the coming months.
Although our study does not explicitly consider the important

option of prioritizing groups at high risk for mortality, we echo our
previous claim ([7]) that high-risk groups and critical personnel
should receive highest priority when vaccine supplies are limited.
Secondary efforts should focus on groups with greatest potential
for becoming infected and infecting others in order to maximize
indirect protection. For seasonal influenza, the high risk age
groups (elderly and infants) are distinct from the high transmission
age group (school-age children). However, during the second
season following a pandemic these priorities may align. In prior
pandemics, the highest-risk age groups were young healthy adults
(1918) or elderly and infants (1957 and 1968) [65]. Thus, in a
partially immune population, prioritizing adults, elderly and
infants may not only provide indirect protection by achieving
the greatest herd immunity but also directly protect those at risk of
complications or death. Our study thus highlights the need for
dynamic public health policy– designing priorities that shift along
with the epidemiological structure of a population.

Supporting Information

Text S1 Supporting methods and analysis.
Found at: doi:10.1371/journal.pone.0009360.s001 (0.42 MB
PDF)
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