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T
he rapid spread of COVID-19 has become a global pub-
lic health crisis. In December 2019, an unknown disease, 
later named COVID-19, was detected in Wuhan, China1,2. 

Within five months, the disease had affected more than 210 coun-
tries, becoming a global pandemic and bringing devastating con-
sequences3,4. To contain the virus, many countries have adopted 
dramatic measures to reduce human interaction, including enforc-
ing strict quarantines, prohibiting large-scale private and public 
gatherings, restricting private and public transportation, encour-
aging social distancing, imposing a curfew and even locking down  
entire cities.

Although the costs of enforcing these preventive measures are 
undoubtedly enormous, these measures could unintentionally bring 
about substantial social benefits. Among them, locking down cities 
could considerably improve environmental quality, which would 
partially offset the costs of these counter-COVID-19 measures. For 
example, satellite images captured a sharp drop in air pollution in 
several countries that have taken aggressive measures to slow trans-
mission of the virus5–8.

In this study, we estimated how lockdown affected air quality 
across China’s cities. We focused on China for two reasons. First, 
it was the first country struck by the outbreak, and the Chinese 
government launched draconian countermeasures to prevent the 
escalation of infections9,10. Nearly one-third of Chinese cities were 
locked down in a top-down manner, and various types of economic 
activity were strictly prohibited. In these cities, individuals were 
required to stay at home; unnecessary commercial operations and 
private and public gatherings were suspended; all forms of transpor-
tation were largely banned (both within a city and across cities); and 
mandatory temperature checking was introduced in most public 
facilities. Second, China also suffers greatly from severe air pollu-
tion, with some estimates suggesting that air pollution is associated 
with an annual loss of nearly 25 million healthy life years11. If lock-

ing down cities substantially improved the air quality in China, the 
implied health benefits would be an order of magnitude larger than 
in countries with lower initial pollution levels.

Our empirical analysis used comprehensive data at a day-by-city 
level from January 1st to March 1st in 2020. We first collected air 
quality data from 1,600 monitoring stations covering all the pre-
fectural cities in China and aggregated the station-level data to the 
city-level data (see Methods and Supplementary Table 1). We then 
collected the local government’s lockdown policies city by city from 
news media and government announcements. Because the disease 
prevalence varied greatly across different regions, the terms and 
requirements of the lockdown also differed across provinces and 
cities. Thus, we defined a city as locked down when all three of the 
following preventive measures were enforced: (1) prohibition of 
unnecessary commercial activities in people’s daily lives; (2) prohi-
bition of any types of gathering by residents; (3) restrictions on pri-
vate (vehicle) and public transportation. Following our definition, 
95 out of 324 cities were locked down, as described in Figs. 1 and 2 
and Supplementary Table 2. We also provide the summary statistics 
of the key variables in Supplementary Table 3 and discuss the trends 
in air pollution in Supplementary Note 1 and Supplementary Fig. 1.

To quantify the impact of the city lockdown on air pollution, we 
employed two sets of difference-in-differences (DiD) models (see 
Methods). The DiD models allow us to control for various con-
founding factors that potentially affect the air pollution level, and to 
identify the plausible causal impact of virus containment measures. 
To assess the overall impact of city lockdowns relative to the previ-
ous year, we estimated two policy effects: (1) how city lockdown 
improves air quality relative to non-locked-down cities in 2020, and 
(2) how national-level disease preventive measures (for example, 
all cities extended the Spring Festival holiday, required social dis-
tancing and urged people to stay at home) affect air pollution in 
non-locked-down cities relative to trends in the previous years.
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Our comprehensive dataset and statistical methods have some 
notable advantages for inferring the causal relationship between city 
lockdowns and air quality. First, although there is much anecdotal 
evidence to suggest that air quality improved after the COVID-19 
outbreak, this often relies on comparing air pollution levels before 
and after the outbreak5–8. The before–after comparison can be prob-
lematic because it lacks a proper counterfactual. In the Chinese set-
ting, this becomes more of a concern: the air pollution levels have 
been declining in most cities over the last several years owing to the 
government’s environmental regulations. The spread of the virus 
also coincided with the Chinese Spring Festival. As a result, the 
before–after comparison could simply capture the declining trend 
in air pollution caused by the regulation or the national holiday. 
Our DiD strategy helps to address this issue because cities without 
lockdown policies can serve as the counterfactual, mimicking what 
would happen in lockdown cities in the absence of its implemen-
tation. Second, a key empirical challenge in many single-city and 
single-region studies is that pollution changes in a specific location 
could be caused by unobserved shocks specific to that location. Our 
large sample helps to address this challenge: it allows us to control 
for city-specific time-invariant characteristics and plausibly esti-
mate the average effect of city lockdowns in all Chinese cities.

The comprehensive dataset further helps us to examine whether 
the effects of lockdowns vary across different types of city, which 
sheds light on different sources of air pollution in China. For exam-
ple, we expected that more industrialized cities could be more sub-
stantially influenced by such treatments because industrial activities 
are largely suspended. Similarly, we also expected that colder cities 
(which have higher coal demand for winter heating), richer cities 
(which have higher electricity consumption) or cities with higher 
traffic volumes might experience a more substantial reduction in air 
pollution when the lockdown is implemented.

Finally, our findings provide an important perspective from 
which to understand the welfare implications of COVID-19 and 
offer insights on how to better design environmental policies.  
We will discuss these policy-relevant issues in the Discussion.

results
Impacts of city lockdowns on air pollution. We estimated the 
relative change in air pollution levels in the treatment group 
(locked-down cities) relative to the control group (non-locked-down 
cities) by fitting the DiD model (Table 1 and equation (1)). We find 
that the lockdown did improve air quality: compared with cities 

without formal lockdown policies, the daily AQI and PM2.5 declined 
respectively by 19.84 points (17%) and 14.07 µg m−3 (17%) when 
including weather controls and a set of fixed effects (in columns 
(2) and (4)). These estimates are remarkably robust to the inclusion 
of weather variables, indicating that the changes in air pollution 
caused by city lockdown are unlikely to be correlated with weather 
conditions. We also provide the results for other air pollutants in 
Supplementary Table A4 (CO, NO2, PM10, SO2, O3) and find that 
city lockdown reduces all pollutants but ozone (O3). This is proba-
bly because the reduction in NO (nitric oxide) slows down its inter-
action with O3 and consequently the O3 concentration increases12,13.

Even in a city that did not have a formal lockdown policy, air 
quality level may be affected by disease preventive measures such as 
the extension of the Spring Festival holiday, the stay at home order 
and the social distancing policy. Therefore, in columns (5) to (8), we 
estimate the changes in air pollution levels in the control cities before 
and after the start of the Spring Festival (25 January) relative to the 
previous year by fitting the second DiD model (see equation (3)).  
We find that air quality in 2020 improved relative to the previous 
year’s air quality after the start of the festival. The results show that 
the AQI decreases by 6.34 points (5%) and PM2.5 by 7.05 µg m−3 (7%) 
after controlling for weather variables (columns (6) and (8)), sug-
gesting that the disease preventive measures matter for air quality in 
cities even without formal lockdown.

Our first DiD measures how the city lockdown improves air 
quality relative to non-locked-down cities in 2020, and the sec-
ond DiD assesses how national-level disease preventive measures 
affect non-locked-down cities relative to the same season in previ-
ous years. Combining these two sets of results, we can estimate the 
overall effects of city lockdowns on air quality. We find that lock-
down improved air quality substantially: it reduced AQI by 26.18 
points (19.84 points from the first DiD and 6.34 points from the 
second DiD), which corresponds to a 22% reduction; PM2.5 was 
brought down by 21.12 µg m−3 (14.07 µg m−3 from the first DiD and 
7.05 µg m−3 from the second DiD), which corresponds to a 24% 
reduction.

Tests for pre-treatment parallel trends and additional analyses. 
We adopted the event study approach to investigate how the trends 
in air quality between the treatment and control groups evolve 
before and after the lockdown (see Methods)14. This approach allows 
us to examine whether the parallel trend assumption is reasonable 
in the DiD models. Figure 3 plots our findings. In Fig. 3a, we com-
pare the AQI between the treatment and control groups before and 
after lockdowns. We find that there is no systematic difference in 
the trends between the two groups before the city lockdown, that 
is, the estimated coefficients for the lead terms (k ≤ −2) are all sta-
tistically insignificant. That implies the parallel trend assumption 
would be reasonable in the absence of the lockdown. In contrast, 
we see that the trends break after the city lockdown, that is, the 
lagged terms (k ≥ 0) become negative and statistically significant.  
The AQI dropped by 20–30 points within two weeks after lock-
down, and this result remains statistically significant in subsequent 
periods. The corresponding regression results are reported in 
Supplementary Table 5.

In Fig. 3b, we repeat this exercise to investigate the air quality 
trend in cities in the control group in 2019 and 2020. The results 
suggest that the air quality in 2019 could be a reasonable counter-
factual for air quality in 2020 in the control group cities; we find that 
their trends in air quality before the beginning of the Chinese Spring 
Festival (25 January) in 2020 were also similar to those in 2019. The 
estimated coefficients after the festival show a slight reduction in air 
pollution, with the AQI reduced by 5 to 10 points. Supplementary 
Fig. 2 repeats the same exercise using log AQI, PM2.5 and log PM2.5 
as the outcomes, and we observe very similar patterns. The corre-
sponding regression results are reported in Supplementary Table 6.
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Fig. 1 | Map of the locked-down cities. The 95 cities that were locked down 

during the COVID-19 pandemic are shown, as are the rest of the 324 cities 

included as controls.
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To validate the robustness of our results, we conducted some 
additional analyses. We investigated whether air quality levels 
between the treatment and control groups differ before and after 
the 2019 Spring Festival. If we find that air quality in the treatment 
group also improves after the holiday in a typical year, our find-
ings may be driven by some unobserved differences between these 

two groups. The results show that the coefficient of the interaction 
term between the Spring Festival and the treatment group is statisti-
cally insignificant, suggesting that this is not likely to be the case 
(Supplementary Table 7). We also excluded cities in Hubei prov-
ince, where COVID-19 was first detected in China (Supplementary  
Table 8a). All of the findings are similar, suggesting that our results 
are not driven by a few cities that were most affected by the virus. To 
deal with spillover concern, we also dropped the neighbouring cities 
of locked-down cities (Supplementary Table 8b). This is because the 
reduction in air pollution in locked-down cities could affect air pol-
lution in neighbouring cities, which could lead to underestimation 
of the treatment effect. To deal with this issue, we cut such nearby 
cities from our analysis and compared the treatment cities with 
the control cities that were not affected by the policy change. We 
reached a similar conclusion, suggesting that the spillover effect is 
likely to be small.

As another way of checking the robustness of our findings, we 
used the sample before the Spring Festival to estimate the lockdown 
effect (Supplementary Table 9). Before the Spring Festival, only 
Wuhan and a few neighbouring cities enforced lockdown policies, 
and most other cities had not yet adopted any counter-virus mea-
sures. Using this restricted sample gives us a relatively ‘clean’ con-
trol group, but at the cost of a smaller sample size in the treatment 
group. We find that the results are again similar. We provide more 
discussion on these results in Supplementary Note 2.

Heterogeneity across cities. In Fig. 4, we investigate whether the effect 
of lockdown varies across different types of cities. Note that the het-
erogeneity analyses do not have causal interpretations but help us to 
understand the channels through which lockdowns affect air quality.

First, we compared colder cities with warmer cities and northern 
cities with southern cities. We expected the impacts of lockdown 
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Fig. 2 | Timing of lockdowns. The numbers of cities in lockdown from 

23 January to 1 march are shown, with yellow shading representing the 

Chinese Spring Festival holiday (25–30 January) and red shading showing 

the extended Spring Festival holiday (31 January to 10 February).

Table 1 | The effects of lockdown on air quality

Treatment and control group in 2020 Control group in 2019 and 2020

levels log levels log

(1) (2) (3) (4) (5) (6) (7) (8)

(a) AQI

Lockdown −18.27*** −19.84*** −0.14*** −0.17***

(3.21) (3.13) (0.03) (0.03)

Spring Festival in 2020 −6.93*** −6.34*** −0.06*** −0.05**

(2.14) (2.13) (0.02) (0.02)

R2 0.503 0.515 0.581 0.601 0.459 0.469 0.519 0.541

(b) Pm2.5 (μg m−3)

Lockdown −12.87*** −14.07*** −0.13*** −0.17***

(2.60) (2.53) (0.03) (0.03)

Spring Festival in 2020 −7.64*** −7.05*** −0.09*** −0.07**

(1.74) (1.77) (0.03) (0.03)

R2 0.534 0.541 0.627 0.641 0.472 0.479 0.553 0.570

Weather control Y Y Y Y

City fixed effects Y Y Y Y Y Y Y Y

Date fixed effects Y Y Y Y Y Y Y Y

Year fixed effects Y Y Y Y

Observations 19,764 19,764 19,764 19,764 27,938 27,938 27,938 27,938

Number of cities 324 324 324 324 229 229 229 229

Weather controls include daily temperature, its square, precipitation and snow depth. The fixed effects indicate a set of dummy variables (see methods). Each column in each panel represents one separate 

regression. In the regressions indicated in columns (1), (3), (5) and (7), we do not control for the weather conditions; in other columns, we control for the weather conditions. In columns (1), (2), (5) and 

(6), the outcomes of interest are the absolute values of the pollutants. In columns (3), (4), (7) and (8), we take the logarithms on the pollutants as the outcomes. Standard errors are clustered at the city 

level and reported below the coefficients. **P < 0.05; ***P < 0.01.
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to be greater in colder and northern cities because these cities rely 
more heavily on inefficient and inflexible coal-based centralized 
winter heating systems in both residential and workplace buildings. 
The centralized winter heating systems were established in 1950s to 
1980s following the model of the Soviet Union15–17: the government 
boils water in central facilities and delivers it to different buildings 
via networks of heating pipes. The hot water warms up the build-
ings and then flows back to the central facilities, where the water 
is boiled again. When the central heating system in a building is 
turned on, the entire building can be heated up. During the lock-
down periods, people no longer need to work or go to school, so 
the heating in the office/school buildings can be entirely shut off, 
which will reduce coal consumption. In contrast, residential use of 
winter heating will not change much because residential buildings 

have to keep their winter heating systems on during the entire win-
ter season. As a result, we expect the total demand for coal in north-
ern Chinese cities to decrease after lockdowns, which will improve 
air quality. In comparison, southern Chinese cities are generally 
warmer and do not consume much coal in the workplace, so we 
expect the impact of city lockdown to be smaller. The top section of 
Fig. 4 confirms our conjecture: the impact of lockdown is larger in 
both colder and northern cities. The estimated reduction in the AQI 
is around 25–30 points for those cities and 5–10 points in warmer 
or southern cities.

In the middle section of Fig. 4, we examine the impact hetero-
geneity with respect to gross domestic product (GDP), GDP per 
capita and population. We find that the effect is greater in cities with 
higher GDP, higher income and larger population size. This is con-
sistent with the fact that energy consumption is usually higher in 
more agglomerated economies, where more concentrated economic 
activities take place.

Finally, the bottom section of Fig. 4 shows that, in cities that rely 
more on industrial activities (measured by the manufacturing out-
put, the number of firms, the volume of traffic and the emissions of 
different types of pollutant), the effect is more substantial.

This finding implies that coal consumption, industrial activity 
and transportation all contribute substantially to air pollution in 
China. We repeated our heterogeneity analysis for PM2.5 and illus-
trate the results in Supplementary Fig. 3. Supplementary Table 10 
presents the full set of results on AQI and PM2.5.

Discussion
Our findings have important implications for several sets of 
policy-relevant questions. First, to understand the welfare impli-
cations of city lockdown, we need to quantify both the costs and 
benefits of the policy. Our result, that city lockdowns substantially 
improve air quality, is an essential component in assessing the bene-
fits of such lockdowns. According to the World Health Organization, 
seven million deaths around the world can be attributed to air pol-
lution each year, and the majority of them live in countries such as 
China and India, where air pollution levels are high18.

In the Chinese context, a large number of studies have shown that 
air pollution adversely affects health outcomes, such as life expec-
tancy15,17, mortality16,19,20 and morbidity21–23. It has also been found 
that air pollution affects mental health24, cognition25, productivity26 
and defensive expenditure27. Therefore, it is evident that air pollu-
tion has imposed a considerable burden, and the potential health 
benefits derived from the improvement in environmental quality 
following the COVID-19 pandemic could be substantial.

Second, while city lockdowns have substantially decreased 
air pollution levels, the high economic cost of doing so makes it a 
non-sustainable option for addressing the pollution issue. When 
compared with other environmental regulations implemented in 
China, we found that similar levels of air quality improvement can 
be achieved at a much lower cost. As summarized in Supplementary 
Table 11, for example, the restrictions on gasoline fuel standards alone 
could decrease AQI values by about 13% (ref. 28), the Two Control 
Zone Policy (an emission regulation that targets high SO2 regions) 
could reduce SO2 by around 15–20% (refs. 29,30) and the regulations 
during the Beijing Olympics were able to bring down PM10 concentra-
tions by around 30% in the host cities20,31. In other words, it is highly 
inefficient to use city lockdowns to reduce pollution, and many other, 
cheaper, ways to achieve the same environmental target exist.

Third, the heterogeneity analysis shows that the effects of city 
lockdowns on air pollution are greater in cities with a larger econ-
omy, greater industrial activity and traffic volumes, and higher 
demand for coal heating. Not surprisingly, these results confirm 
that such activities are important sources of air pollution and high-
light the necessity of controlling emissions from these sources when 
lockdown measures are eased.
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Fig. 3 | The effects of lockdown. a, The effects of lockdown on AQI. The air 

pollution levels between the treated cities are compared with the control 

cities, and the vertical line indicates the timing of lockdowns. b, The effects 

of general disease preventive measures on AQI in the control group (2019 

and 2020). Air pollution levels in the control cities are compared between 

2019 and 2020. The vertical line indicates the start of the Spring Festival 

holiday. We include leads and lags of the start of the city lockdown dummy 

in the regressions. In a, the dummy variable indicating one week before 

the lockdown is omitted from the regression; and in b, the dummy variable 

indicating one week before the 2020 Spring Festival is omitted from the 

regression. Thus, the difference in air quality one week before the treatment 

(lockdown in a or Spring Festival in b) is set to be zero and serves as the 

reference point (see methods). Each estimate shows the difference in air 

quality relative to the difference one week before the lockdown (a) or 2020 

Spring Festival (b). The estimated coefficients and their 95% confidence 

intervals (error bars) are plotted. 
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Finally, the finding that the air pollution levels during the lock-
down remained high is particularly alarming. The PM2.5 concen-
tration in locked-down cities was still more than four times higher 
than levels considered safe by the World Health Organization 
(WHO) (10 µg m−3 for the annual mean)32. This result suggests that 
other pollution sources continue to degrade local air quality dur-
ing the lockdown period. As almost all non-essential production 
and business activities were suspended, residential consumption of 
energy becomes the last key emission source. In particular, in north-
ern China, the government uses a coal-fired centralized system to 
provide winter heating to residents, and it has been found that this 
system can increase air pollution levels by 35–50% (refs. 15,16). Our 
result implies that, without further reducing pollution from its reli-
ance on coal for heating, it will be a real challenge for China to win 
its ‘war on pollution’33.

We conclude by pointing out three directions for future research. 
We only consider the short-term effects of city lockdowns, and it 
remains unknown whether the impacts are just a one-time shock or 
have changed people’s behaviours permanently. If the shock is tem-
porary, as people resume their normal activities, we would expect the 
improvement in air quality to be quickly offset in the longer term. 
Also, although improved air quality is beneficial to human health, 
the economic disruption caused by a lockdown can also have a nega-
tive impact on health outcomes. This points to the need to collect 
mortality and morbidity data to assess the overall health impact of 
this measure. Finally, if firm-level emission and output data become 
available in the future, the lockdown policy could be used to estimate 
the sector- and firm-specific abatement cost of pollution. Specifically, 
the emission data can tell us how much pollution abatement was 
achieved during the lockdown periods, while the production data 
can tell us how much output loss was associated with the pollution 
abatement. Combining these two, the cost of pollution abatement for 
different firms and industries can be determined. These analyses are 
beyond the scope of our paper, but future research on these issues 
is warranted to understand the full implications and draw valuable 
policy lessons from this unprecedented event.

Methods
Data. Air quality data. �e air quality data comprises a high-frequency dataset 
covering seven major sets of air pollutants. We obtained these data from the 
Ministry of Ecology and Environment34. �e original dataset includes hourly 
readings of the AQI, PM2.5, PM10, SO2, O3, NO2 and CO concentrations from 1,605 
air quality monitoring stations covering all of the prefectural cities in China. �e 
AQI is a comprehensive measure of air pollution: the index is constructed using 
PM2.5, PM10, SO2, CO, O3 and NO2 concentrations, with a lower AQI meaning 
better air quality. In China, the AQI is determined by the maximum concentration 
of di�erent air pollutants. We summarize the relationship between the AQI and 
each pollutant in Supplementary Table 1.

To create the city-level air quality data, we first calculated the distance from a 
city’s population centre to all monitoring stations within the corresponding city. 
We then aggregated station-level air pollution data to city-level data using the 
inverse distance weights. For this process, stations closer to the population centre 
are given higher weights so that city-level air pollution data can better represent the 
people dwelling in each city. The weights are inversely proportional to  
square distance.

Weather data. Weather data included temperature, precipitation and snow. These 
data were obtained from the Global Historical Climatology Network (GHCN) from 
the National Oceanic and Atmospheric Administration (NOAA)35. We collapsed 
these data to a daily city-level dataset using the same methods used for the air 
quality data.

Lockdown. We collected local governments’ lockdown information city by city 
from the ‘COVID-19 pandemic lockdown in Hubei’ Wikipedia page36 and various 
other news media and government announcements. Most of the cities’ lockdown 
policies were directly issued by the city-level governments, although a few were 
promulgated by the provincial governments. To ensure compliance, civil servants 
and volunteers were assigned to communities, firms, business centres and traffic 
checkpoints. Local governments also penalized offenders if the rules were violated. 
There were some variations in rules and degree of the lockdown. For example, in 
some cities, individuals were not allowed to go out (food and daily necessities were 
delivered to them), while in other cities, they could go out if they did not have a 
fever. In this paper, we designated a city as locked down when the following three 
measures were all enforced: (1) prohibition of unnecessary commercial activities 
for people’s daily lives, (2) prohibition of any type of gathering by residents, (3) 
restrictions on private (vehicles) and public transportation. Their geographical 
distributions and timings are presented in Figs. 1 and 2 and Supplementary Table 2.

Socio-economic status. To explore the heterogeneity, we assembled the cities’ 
socio-economic status from the 2017 China City Statistical Yearbook37. It contains 
city-level statistics such as GDP, population, industrial output, number of firms, 
amount of traffic and pollutant emissions.

Summary statistics. We report the summary statistics of air pollution and weather 
variables during this period in Supplementary Table 3. The average AQI was 74, 
with a standard deviation of 42. The average PM2.5 concentration was 52 µg m−3, 
five times higher than the WHO standard (10 µg m−3 for annual mean, and 
25 µg m−3 for a daily mean). Cities that were locked down were, on average, more 
polluted than the control cities before the lockdowns. This is probably because 
Wuhan and its neighbouring cities are generally more polluted than cities that  
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diamonds mark the estimated coefficients and the dashed black lines show 

95% confidence intervals. Each row corresponds to a separate regression 

using a corresponding subsample. We use the mean values to separate 

the high (H) group from the low (L) group for each pair of heterogeneity 

analyses. For example, if a city’s GDP is higher than the mean GDP, it falls 

into a high GDP group. For temperature (colder or warmer groups), we use 

data measured in the first week of our study period. North and South are 

divided by the Huai River. Other socio-economic data for the classification 

were measured in 2017. The dashed orange lines divide our heterogeneity 

analyses into four categories (from top to bottom): geographical and 

climatic conditions, socio-economic status, industrial activities, and 

emission level. Each regression implements the first model (equation (1)) 

and controls for the weather, city fixed effects, and date fixed effects.
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are far away. We also saw a sharp decline in AQI and PM2.5 concentrations after  
the lockdown.

Models. We used two sets of DiD models to identify the impact of 
counter-COVID-19 measures on air pollution. First, in our baseline regression, we 
estimated the relative change in air pollution levels between the treated and control 
cities using the following model:

Yit ¼ 1 city lockdown½ 
it
´ β þ Xit ´ αþ μ

i
þ πt þ εit ð1Þ

where Yit represents the level of air pollution in city i on date t. 1[city lockdown]it 
denotes whether a lockdown is enforced in city i on date t, and takes the value 1 
if the city is locked down and 0 otherwise. Xit are the control variables, including 
temperature, temperature squared, precipitation and snow depth. μi indicate city 
fixed effects and πt indicate date fixed effects.

The city fixed effects, μi, which are a set of city-specific dummy variables, can 
control for time-invariant confounders specific to each city. For example, the city’s 
geographical conditions, short-term industrial and economic structure, income 
and natural endowment can be controlled by introducing the city fixed effects. 
The date fixed effects, πt, are a set of dummy variables that account for shocks that 
are common to all cities in a given day, such as the nationwide holiday policies, 
macroeconomic conditions and the national air pollution trend over time.

As both location and time fixed effects are included in the regression, the 
coefficient β estimates the difference in air pollution between the treatment 
(locked down) cities and the control cities before and after the enforcement of the 
lockdown policy. We expected β to be negative, as industrial and business activities 
were restricted in the locked-down cities, and thus their air pollution levels should 
greatly decrease.

Because some of the treated cities and the control cities are closely located, the 
reduction in the air quality in the treatment cities could affect air quality in other 
cities, creating a potential spillover effect. In our research setting, accounting for 
this spillover effect is challenging because the spillover not only depends on the 
timings of lockdown policies and the geographical distribution of treatment and 
control cities, but also depends on wind directions in different cities. So, strictly 
speaking, β measures the relative effect of the city lockdown on air pollution 
between the two groups of cities, rather than the absolute impact. In an attempt 
to test for the size of the spillover effect, we compared the treatment cities with 
a set of ‘clean’ control cities, which are those cities (1) without lockdown policies 
and (2) not neighbouring any lockdown cities. The underlying assumption of this 
test is that cities neighbouring the lockdown cities are most likely to be affected 
by the spillover effect (so they should be excluded from the analysis). As reported 
in Supplementary Table 8b, we obtained quantitatively similar results using this 
subsample. We thus concluded that the spillover effect does not bias our estimates 
in any substantial way.

The underlying assumption for the DiD estimator is that lockdown and 
control cities would have parallel trends in air quality in the absence of the event. 
Even if the results show that air quality improves in the locked-down city after 
its enforcement, the results may not be driven by the lockdown policy, but by 
systematic differences in treatment and control cities. For example, if treatment 
cities have an improving trend in air quality, this could drive the results. This 
assumption is untestable because we cannot observe the counterfactual: what 
would happen to the air pollution levels in the locked-down cities if such policies 
were not enforced. Nevertheless, we can still examine the trends in air quality for 
both groups before lockdown implementation and investigate whether the two 
groups are indeed comparable. To do so, we conducted the event study and fitted 
the following equation12:

Yit ¼
PM

m¼k;m≠�1

1 city lockdown½ 
it;k

´ βk þ Xit ´ αþ μi þ πt þ εit ð2Þ

where 1[city lockdown]it,k are a set of dummy variables indicating the treatment 
status at different periods. Here, we put 7 days (one week) into one bin 
ðbinm 2 MÞ
I

, so that the trend test is not affected by the high volatility of the 
daily air pollution. The dummy for m = −1 is omitted in equation (2) so that the 
post-lockdown effects are relative to the period immediately before the launch 
of the policy. The parameter of interest βk estimates the effect of city lockdown m 
weeks after the implementation. We included leads of the treatment dummy in 
the equation, testing whether the treatment affects the air pollution levels before 
the launch of the policy. Intuitively, the coefficient βk measures the difference in 
air quality between cities under lockdown and otherwise in period k relative to 
the difference one week before the lockdown. We expected that lockdown would 
improve air quality with βk being negative when k ≥ 0. If the pre-treatment trends 
are parallel, βk would be close to zero when k ≤ −2.

Even in a city that did not have a formal lockdown policy, people’s daily lives 
could still have been affected by the counter-virus measures. In fact, in all Chinese 
cities, the Spring Festival holiday was extended, and people were advised to stay 
at home when possible, enforce social distancing and maintain good hygiene. 
We examined this possibility by comparing the air pollution changes between 
2019 and 2020 for the same period within the control group. As the explosion of 
the COVID-19 cases coincided with China’s Spring Festival (SF), we investigated 

whether the trend of air quality in 2020 differed from the trend in 2019 after the 
festival, by fitting the following model:

Yitj ¼ 1 SF ´ 1 year≥2020ð Þ½ itj ´ β þ Xitj ´ α þ μi þ πt þ γj þ εitj ð3Þ

where j represents year. 1 SF ´ 1 year≥2020ð Þ½ itj
I

 is our variable of interest, and it 
takes the value 1 if it is after the start of the Chinese Spring Festival in the year 
2020, and 0 otherwise. Because the national government announced that “the 
virus can transmit from people to people” on the 20 January, and the extension of 
the national holiday was announced on the 26 January, we think that the normal 
cities were affected by the virus and launched the containment actions from the 
beginning of the national holiday. The value of β would be 0 if the coronavirus and 
countermeasures do not affect control cities.

The identifying assumption for equation (3) is similar to equation (1). For 
the parallel trend assumption to be reasonable, the trends in air quality before the 
Spring Festival in 2019 are required to be similar to the trends in air quality in the 
corresponding period in 2020. We can investigate patterns in air pollution around 
the holiday analogously using equation (2). In all the regressions, we clustered the 
standard errors at the city level.

Combining the results from the two DiD models, we were able to evaluate the 
overall impact of city lockdowns. Our first DiD measures how the city lockdown 
improves air quality relative to non-locked down cities in 2020 (equation (1)), 
and the second DiD assesses how national-level disease preventive measures (for 
example, all cities extended the Spring Festival holiday, required social distancing 
and urged people to stay at home) affect non-locked-down cities relative to the 
same season in previous years (equation (3)). Therefore, summing up the two DiD 
estimates (equation (1) and equation (3)), we could infer the overall impacts of city 
lockdowns on air quality.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data necessary for replication will be available at the public repository (https://
github.com/yhyhpan/COVID19_LOCKDOWN) to reproduce the results presented 
in this paper upon publication.

Code availability
All code necessary for replication will be available at the public repository (https://
github.com/yhyhpan/COVID19_LOCKDOWN) to reproduce the results presented 
in this paper upon publication.
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