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Abstract. For general semilinear or quasilinear symmetric, hyperbolic
systems, the short-wave approximation is studied by constructing ap-
proximate solutions to the initial-value problem associated with the hy-
perbolic operator by means of a multiscale WKB expansion. In the
diffractive optics regime, the components of the leading-order terms of
the approximate solutions are shown to satisfy differential equations of
KP type. Whether these equations are scalar or not depends on the
polarization of the initial datum and on the asymptotic behavior of the
branches of the characteristic variety of the hyperbolic operator. The
asymptotic stability of the approximate solution is proved. Following
J.-L. Joly, G. Métivier, and J. Rauch, the cornerstone of this study is
the characteristic variety of the hyperbolic operator. It is examined here
in terms of perturbation theory, which yields new proofs of the so-called
algebraic lemmas of geometric optics.

1. Introduction

The propagation of short waves (highly oscillating approximate solutions)
in nonlinear dispersive systems has been studied by M.A. Manna et al. [18],
[27] under the assumption that the dispersion relation has an expansion in
the limit k → ∞ as

ω(k) ∼ ω0k +
ω1

k
+ · · · . (1.1)

In the context of two-dimensional water waves with a surface wind [26],
Manna derived a system which satisfies (1.1) and an equation for the velocity
u(t, x) of the short waves that reads

∂t ∂xu +
3g

c0h
u = −u ∂2

xu + (∂xu)2, (1.2)

where g is the acceleration of gravity, h is the unperturbed initial depth and
c0 is the velocity of the surface wind. Note that the nonlinear term cannot
be written in a conservative form (i.e., is not a derivative).
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It is shown in this paper that the propagation of short waves is a gen-
eral phenomenon occurring in the context of nonlinear, dispersive systems
governed by conservative, symmetric, hyperbolic operators. Moreover, it is
shown that short waves do generically not propagate in systems which do not
satisfy (1.1). The propagation is one-dimensional, transverse perturbative
effects are taken into account, and nonlinearities of semilinear nature as well
as nonlinearities of quasilinear nature are considered. A nonlinear equation
(3.2) similar to (1.2) is derived for the leading term of the approximation.
Three different regimes are distinguished; they have simple geometric char-
acterizations. In the case of a quasilinear system, one does not assume a
vanishing mean (equivalently, zero mass) condition for the initial datum in
order to solve the Cauchy problem associated with (3.2).

More precisely, the purpose of Section 3 is the description of approximate
solutions of the initial-value problem

{

L(∂)u = nonlinear (u)
u(0) = ε u0(x/ε, y),

(1.3)

where L is a differential operator in the space variables x and y which is
hyperbolic with respect to time, where the nonlinear term is quasilinear
(involving a derivative with respect to x only) or semilinear, and where ε is
a small parameter. Further details are given in the introduction of Section 3.
This study is carried out using the techniques of diffractive geometric optics
of J.-L. Joly, G. Métivier, and J. Rauch [12], [15]. The approximate solution
uε of (1.3), where ε is linked to the small wavelength of the wave, is sought
in the form of a WKB expansion

uε ∼ ε
∑

j

εjuj ,

where the uj are referred to as profiles, i.e., functions fitting the adequate
ansatz, which is here

u(t/ε, x/ε, t, y, εt).

A justification for this ansatz is given in Section 3.1. The algebraic part of
this analysis consists in the derivation of the equations satisfied by the pro-
files. To describe the differential operators arising in these equations is the
purpose of the so-called algebraic lemmas. The point we make in Section 2
is that there is a way to establish all these algebraic lemmas in a consider-
ably easier fashion than in earlier papers (among which are [12], [15], [19],
[6], [7], and [10]), namely by looking at the local study of the characteris-
tic variety of the hyperbolic operator in terms of perturbation theory. The
ideas in Section 2 have been known since T. Kato [17] and J.B. Butler [8]
at least. Kato noticed that continuous differentiability of the eigenvalues of
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a family of square matrices depending on a complex parameter was linked
to semisimplicity, and Butler stated a theorem dealing with the regularity
of the spectrum of a certain type of perturbation of square matrices. The
discussion of Section 2 is merely a matter of clarification: it shows that these
ideas contain the algebraic lemmas of geometric and diffractive optics.

The analytical part which aims at stability Theorems 3.18, 3.21, 3.26, and
3.27, in particular the derivation of a scalar equation, the treatment of the
nonlinearities, and the construction and control of the corrector terms of
the approximate solution, rely on averaging projectors [19], low-frequency
truncations [2], [3], [4], and estimates in a class of Banach spaces introduced
in [21] (see Definition 3.2). Further details are given in the introduction of
Section 3.

Equation (3.2) is similar to (but different from) the diffractive pulse equa-
tion of D. Alterman and J. Rauch describing ultra-short laser pulses [2], [3],
[4]. They were followed by K. Barrailh and D. Lannes [5], who derived a
nonlocal differential equation generalizing the diffractive pulse equation in
the dispersive case for continuous oscillating spectra.

2. The algebraic lemmas of diffractive geometric optics via

perturbation theory

Let (t, x) ∈ R × R
d, and consider

L(ε∂) = ε∂t +

d
∑

j=1

Aj ε∂xj
+ L0 = ε∂t + A(ε∂x) + L0, (2.1)

a hyperbolic differential operator with constant coefficients, the Aj ’s being
n × n, complex, Hermitian matrices for all j. We do not suppose that L0 is
skew-Hermitian. The formal derivation of the ansatz motivates the following
classical

Definition 2.1 (characteristic variety). Introduce Char L, the characteristic
variety of a hyperbolic operator L, as the set of all (τ, η) ∈ C×C

d solutions
of the characteristic equation

det (τ + A(η) + L0/i) = 0.

The polynomial defining the characteristic variety is called the character-
istic polynomial. The polynomial defined by the product of the irreducible
factors of the characteristic polynomial is called the reduced characteristic
polynomial.

The characteristic variety is the collection of the spectra of the matrices
−A(η) − L0/i for all η in C

d. Earlier papers (among which are [12], [15],
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and [19]) considered the characteristic variety restricted to real frequencies
η ∈ R

d :

Definition 2.2. Denote by CharR L the restriction of Char L to real η ∈ R
d.

CharR L is called the real characteristic variety.

When L0 is skew-Hermitian, CharR L is a real analytic variety.

Notation. For β = (τ, η) ∈ C × C
d, set L(β) = τ + A(η) + L0/i. For

β /∈ CharL, L(β)−1 is the inverse of L(β); for β ∈ CharL and such that 0 is
a semisimple eigenvalue of L(β), one denotes by π(β) the linear projection
onto the kernel of L(β) along its range and by L(β)−1 the partial inverse of
L(β) defined by π(β)L(β)−1 = 0, L(β)L(β)−1 = 1 − π(β).

It is a well-known fact that the characteristic variety cannot in general be
parametrized by smooth functions. In this respect, recall the usual

Definition 2.3 (regular and singular points). A point β on CharL is said
to be regular when CharL is a smooth manifold in a neighborhood of β. A
point which is not regular is called singular.

Similarly, a point β on CharR L is said to be regular when CharR L is a
smooth manifold in a real neighborhood of β, and singular otherwise.

Around a regular point, CharL is a graph. It is natural to ask whether the
frequency η can parametrize the variety at a regular point. In this respect,
consider the projection

p :

{

Char L → C
d

(τ, η) → η,

and set the

Definition 2.4 (critical and noncritical points). β = (τ, η) ∈ Char L is
called noncritical when p is a local homeomorphism around β. The points
around which p is not a local homeomorphism are called critical points.

One defines similarly the (non)critical points of CharR L using pR, the
projection over the space of frequencies η ∈ R

d.
A regular point may be critical, as shown by the example X = {(x, y) ∈

C
2, y2 − x = 0}. Note that any projection (x, y) �→ ax + by restricted to X

is injective around (0, 0) if b �= 0. In this example, the critical point (0, 0) is
thus critical only for the natural projection (x, y) �→ x.

The link between regularity and criticality is established for hyperbolic
polynomials (in our context, for skew-Hermitian L0): J. Rauch proved [32]
that the regular points of CharR L are the noncritical points of CharR L.

Let β = (τ, η) ∈ Char L be a zero of order s with respect to τ of the
reduced characteristic polynomial. Then Rouché’s theorem implies that for
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sufficiently small neighborhoods U of τ in C, there exists a neighborhood V
of η in C

d such that for all η′ ∈ V, there exist s eigenvalues (counted with
their multiplicities) of −A(η′)−L0/i in U, and the sum of these eigenvalues
is holomorphic. Rouché’s theorem therefore implies the following facts:

• At a noncritical point β the mapping η �→ τ(η) given by definition
2.4 is holomorphic. The projector η �→ π(τ(η), η) is holomorphic as
well.

• If (τ, η) is a zero of multiplicity s > 1 with respect to τ of the reduced
characteristic polynomial, then (τ, η) is critical.

Remark 2.5. 1. Algebraic lemmas such as Propositions 3.1 and 3.2 of
[12] are expressed at noncritical points of the real characteristic variety,
whereas Proposition 2.6 below concerns noncritical points of the complex
characteristic variety. For homogeneous hyperbolic polynomials, G. Métivier
and J. Rauch proved [29] that these notions are equivalent for the real points
of the variety. Precisely, [29] implies that when L0 is skew-Hermitian, a real
point (τ, η) ∈ R

1+d on Char L is noncritical in the real sense (that is, for
CharR L) if and only if it is noncritical in the complex sense (that is, for
Char L).

2. Regular points of the characteristic variety in the sense of Definition 2.3
are often called smooth points in the literature, and the adjective “regular”
is reserved for the points at which the gradient of the reduced characteristic
polynomial does not vanish. These two notions are equivalent for complex
algebraic varieties but not for real varieties [30]. It is a consequence of
[29] that these notions are equivalent for reduced homogeneous hyperbolic
polynomials as well.

3. In many physical examples—the Maxwell-Lorentz model, the anhar-
monic oscillator model, the Maxwell-Bloch equations, the equations of ferro-
magnetism—see Section 2.3—the critical points of the real characteristic
varieties are isolated and located above the zero frequency.

We now briefly recall the context of linear, diffractive, geometric optics for
one plane phase [12], [15]. The purpose is the description of high-frequency
solutions of the linear partial differential equation

{

L(ε ∂)u = 0,

u(t = 0) = a(x) ei(η·x)/ε,
(2.2)

where ε is a small parameter. The initial condition is supposed to oscillate
with a phase η. Set β = (τ, η) ∈ Char L and L1(∂t, ∂x) = ∂t + A(∂x).
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The solutions are sought in the form

uε =
∑

j

εj eiβ·(t,x)/ε [uj(t, x, T, X)]T=ε t, X=ε x, (2.3)

where the profiles uj depend on the variables t and x, and T = ε t and
X = ε x. The profile equations for the leading term u0 are

{

π(β)L1(∂t, ∂x)π(β)u0 = 0
π(β)L1(∂T , ∂X)π(β)u0 + i π(β)A(∂x)L(β)−1A(∂x)π(β)u0 = 0.

(2.4)

The first equation describes the leading term of the approximate solution
for times O(1) (geometric optics). The second equation describes its behav-
ior for long times O(1/ε) (diffractive optics). Lax [22] proved that in the
noncritical case (that is, for β a noncritical point of Char L) the geometric-
optics approximation of (2.2) is a transport equation; Donnat, Joly, Métivier,
and Rauch proved [12] that the diffractive-optics approximation of (2.2) is a
Schrödinger equation. The transport in the variable t, x occurs at the group

velocity, whence the denomination of tangent operator. Lannes proved in
[19] that such a denomination was still relevant in the critical case.

We propose here new proofs of these facts in Sections 2.1 and 2.2. Appli-
cations to physical systems follow in Section 2.3.

2.1. The noncritical case. Let β = (τ, η) be a noncritical point on Char L
such that 0 is a semisimple eigenvalue of L(β). There are holomorphic maps
η′ �→ τ(η′), η′ �→ N(τ(η′), η′), η′ �→ π(τ(η′), η′), and η′ �→ M(η′) defined on a
neighborhood of η so that the spectral representation of A(η′) + L0/i reads

A(η′) +
L0

i
= −(τ(η′) + N(τ(η′), η′)) π(τ(η′), η′) − M(η′)(1 − π(τ(η′), η′)),

(2.5)
where N(τ(η′), η′) is nilpotent with N(β) = 0, and where π(τ(η′), η′) is a
projector. One sets β′ = (τ(η′), η′) for η′ in a neighborhood of η.

Proposition 2.6 (Donnat-Joly-Métivier-Rauch [12], Propositions 3.1 and
3.2). Let β = (τ, η) be a noncritical point on CharL. Suppose that L(β) �=
0 and that 0 is a semisimple eigenvalue of L(β). Then the spectrum of

π(β)A(h)π(β) is {0,−τ ′(η) ·h}. If moreover −τ ′(η) ·h is a semisimple eigen-

value of π(β)A(h)π(β), then

π(β)L1(∂t, ∂x)π(β) = (∂t − τ ′(η) · ∂x)π(β), (2.6)

and the unique nonvanishing eigenvalue of

π(β)A(h)L(β)−1A(h)π(β)
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is τ ′′(η)(h, h)/2. If moreover this eigenvalue is semisimple, then

π(β)A(∂x)L(β)−1A(∂x)π(β) =
1

2
τ ′′(η)(∂x, ∂x) π(β). (2.7)

New Proof. This is a local study in a neighborhood of η ∈ C
d. The proof

consists in the computation by two different means of the integral

1

2iπ

∫

C
(z − τ) L(z, η′)−1dz,

where η′ is in a neighborhood of η and where C is a small circle around τ,
containing in its interior no other eigenvalue of −A(η)−L0/i than τ. In the
light of (2.5), the Laurent series for L(z, η′)−1 is

L(z, η′)−1 =
F (z, η′)

(z − τ(η′))2
+

N(β′)
(z − τ(η′))2

+
π(β′)

z − τ(η′)

+ L(β′)−1 − L(β′)−2 (z − τ(η′)) + O(|z − τ(η′)|2),
where for all η′ in a neighborhood of η, τ(η′) is a pole of the meromorphic
map F (·, η′). On the one hand, compute the residues to find

1

2iπ

∫

C(τ,r)
(z − τ) L(z, η + h)−1dz (2.8)

= (τ(η + h) − τ + N(τ(η + h), η + h)) π(τ(η + h), η + h).

On the other hand, for small h, expand L(z, η + h)−1 in powers of h:

L(z, η + h)−1 = L(z, η)−1 − L(z, η)−1 A(h) L(z, η)−1

+ L(z, η)−1A(h) L(z, η)−1A(h) L(z, η)−1 + O(|h|3).
Again, compute the residues to find

1

2iπ

∫

C
(z − τ) L(z, η)−1dz = N(β)π(β) = 0,

1

2iπ

∫

C
(z − τ) L(z, η)−1 A(h) L(z, η)−1dz = π(β)A(h)π(β),

and
1

2iπ

∫

C
(z − τ)L(z, η)−1A(h)L(z, η)−1A(h)L(z, η)−1dz

= π(β) A(h) L(β)−1 A(h) π(β) + π(β) A(h) π(β) A(h) L(β)−1

+ L(β)−1A(h) π(β) A(h) π(β).

Equate the expansions in powers of h in both sides of (2.8) to get at order
one:

(τ ′(η) · h + N ′(β) · h)π(β) = π(β)A(h)π(β).
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The semisimplicity assumption at order 1 implies N ′(β) = 0, and (2.6) is
proved. At order two,

1

2
(τ ′′(η)(h, h) + N ′′(β)(h, h))π(β) + (τ ′(η) · h)π′(β) · h

= π(β)A(h)L(β)−1A(h)π(β) + π(β)A(h)π(β)A(h)L(β)−1

+ L(β)−1A(h)π(β)A(h)π(β). (2.9)

π being a projector, π(β)π′(β)π(β) vanishes identically. Multiply then both
sides of the previous equality by π(β) (an operation that will be referred to
hereafter as a polarization) to get, under the semisimplicity assumption at
order 2,

1

2
τ ′′(η)(h, h)π(β) = π(β)A(h)L−1(β)A(h)π(β).

Remark 2.7. a) This proof also yields the expression of the derivative of π
at η. With (2.6), (2.7), and (2.9), one sees indeed that

π′(β) h = −L−1(β)A(h)π(β) − π(β)A(h)L−1(β).

This could have been found by writing the Cauchy integral representation
for the projector alone,

π(τ(η + h), η + h) =
1

2iπ

∫

C
L(z, η + h)−1dz, (2.10)

and by computing the right-hand side in the same fashion.
b) In the above proof, the expansion of both sides of (2.8) can be carried

to arbitrary order. Keeping only polarized terms, the expansion at order 3
reads, for a conservative system (i.e., such that L0 is skew-Hermitian),

1

6
τ ′′′(η)π(β) +

1

2
τ ′(η)π(β)π′′(β)π(β) = −π(β)AL−1(β)AL−1(β)Aπ(β)

+ π(β)Aπ(β)AL−2(β)Aπ(β) + π(β)AL−2(β)Aπ(β)Aπ(β). (2.11)

Computing the second derivative of the projector by (2.10), one finds

1

2
π(β)π′′(β)π(β) = −π(β)AL−2(β)Aπ(β), (2.12)

and (2.11) becomes

1

6
τ ′′′(η)π(β) − 1

2
τ ′(η)π(β)π′′(β)π(β) = −π(β)AL−1(β)AL−1(β)Aπ(β).

In the study of long waves, the derivations of the Korteweg-de Vries and
Kadomtsev-Petviashvili equations involve profile equations with third-order
terms at the critical point (0, 0). The above computations combined with
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the next proposition contains the algebraic lemmas that lead to the KdV
and KP equations [6], [7].

2.2. The critical case. The study of critical points naturally occurs in the
context of nonlinear dispersive optics [19]. The harmonics nβ, n ∈ Z, of the
fundamental phase β have to be taken into account due to the nonlinearity.
For dispersive systems only a finite number of these harmonics are charac-
teristic. Among them, the origin (0, 0) is a critical point. It is not restrictive
to suppose that (0, 0) is the unique point of Char L above η = 0.

We study directional derivatives of the eigenvalues: this is a one-dimen-
sional study. Fix a direction η ∈ C

d, and consider the algebraic curve

X(η) = {(x, z) ∈ C
2, det (z + A(xη) + L0/i) = 0}, (2.13)

describing the spectrum of a perturbation of L0/i along the complex line
directed by η. For all (x, z) ∈ X(η), one has (xη, z) ∈ Char L. The critical
points of X(η) are isolated. Let then D be a sufficiently small disc of cen-
ter 0 in the complex plane such every point of the punctured disc D∗ is a
noncritical value. The projection

p−1(D) ∩ X(η) → D

(x, z)
p�→ x,

is a finite (ramified) covering of D [31]. For all x, the fiber is p−1(x) =
{z1(x), . . . , zs(x)}. The zi are precisely the eigenvalues of −A(xη) − L0/i
that vanish at x = 0; they are defined as multivalued functions around 0.
Following Kato [17], call them the 0-group. They are single-valued and
holomorphic in a neighborhood of every point of D∗; by the monodromy
theorem, for all i, for all simply connected, open subsets Di of C−{0}, zi is
single-valued and holomorphic on Di.

Now consider the restriction of p to p−1(D∗)∩X(η). It is a standard fact in
the theory of covering spaces ([28], Theorem 6.6) that the number of sheets
determines a connected covering of D∗ up to isomorphism. Let then U be a
connected component of p−1(D∗) ∩X(η), and let {z1, . . . , zq}, q ≤ s, be the
elements of the 0-group with values in U. Let pq be the q-sheeted covering of
D∗ defined by pq(x) = xq. There exists ψU a holomorphic homeomorphism
such that the following diagram is commutative:

U
ψU←− p−1

q (D∗)
ցp ւ pq

D∗

The elements of the 0-group are sections of p : p ◦ zi(x) ≡ x on Di. Conse-
quently, for all 1 ≤ i ≤ q, ψU ◦ zi is a section of pq. This means that for all
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i, Di is a domain of determinacy of a complex n-th root, so that one can set
Di = (C − R−) ∩ D∗, and for all x ∈ Di,

(x, zi(x)) = ψU (ωix1/q), (2.14)

where ω is a given primitive q-th root of 1. (2.14) is the standard Puiseux
expansion. Via the lifting of paths, π1(D∗, x) acts transitively for all x on the
fiber {z1(x), . . . , zq(x)}; hence, for all indices 1 ≤ i, j ≤ q and for all x ∈ Di

there is a closed path γ(x) based at x such that analytic continuation of zi

along γ(x) leads to zj .

Proposition 2.8 (Lannes [19], Proposition 2). Suppose that (0, 0) is a crit-

ical point of Char L and that 0 is a semisimple eigenvalue of L0. Denote by

τ1(η
′), . . . , τs(η

′) the eigenvalues of −A(η′)−L0/i that vanish at 0. The τj’s

admit directional derivatives dτj(0) · η at 0 in all directions η ∈ C
d, and the

following equality holds:

Charπ(0)L1(∂t, ∂x)π(0) = {(dτj(0) · η, η) ∈ C × C
d, 1 ≤ j ≤ s}.

New Proof. Fix a vector η in C
d. With the notation of the above discus-

sion, zj(x) = τj(xη), for all x ∈ Dj , 1 ≤ j ≤ s. Let πj be the associated
eigenprojector. The residue theorem gives

∫

C
z (z − A(x η) − L0/i)−1dz =

s
∑

1

(τj(xη) + Nj(xη)) πj(xη). (2.15)

The left-hand side of (2.15) is the same as in (2.8), whence the expansion

−x π(0)A(η)π(0) + o(|x|) =

s
∑

1

(τj(xη) + Nj(xη)) πj(xη).

Note that the constant term in the left-hand side, namely the nilpotent
relative to 0 in the spectral decomposition of L0, vanishes thanks to the
semisimplicity hypothesis. Dividing by x and equating spectra, one finds

sp (−π(0)A(η)π(0) + o(1)) =
{τj(x η)

x
, 1 ≤ j ≤ s

}

. (2.16)

By (2.16), the application x �→ τi(x η)/x is bounded in Di; hence, by (2.14),
it converges as x → 0, x ∈ Di, towards the q-th coefficient of the power series
expansion of the second component of ψU at 0. This gives the existence
of the directional derivative. Finally, (2.16) yields both inclusions of the
proposition.

Remark 2.9. When p−1({0}) is composed of several phases 0, β1, . . . , βm,
one may have to change D∗ to a smaller disc so that any connected compo-
nent V of p−1(D)∩X(η) contains a unique point β of p−1({0}). The closure
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Ū in p−1(D)∩X(η) of a connected component U of p−1(D∗)∩X(η) included
in V is simply U ∪ {β} and is called a local irreducible component of X(η).
By the multiplicity of Ū at β, one means the degree of the first nonvanishing
homogeneous term in the Taylor expansion of its parametrization ψU at 0.
The above proof shows that in the semisimple case, the multiplicity m of a
local irreducible component equals the number of sheets q of the projection
restricted to this component. (2.14) shows that one has q ≥ m in general,
and the inequality can be strict.

We now turn to the case of a normal perturbation, in the one-dimensional
case. Consider the differential operator

L(ε∂) = ε∂t + A ε∂x + E,

where E is skew-Hermitian: E + E∗ = 0. Under these hypotheses, the fol-
lowing theorem holds:

Theorem 2.10 (Butler [8]). The eigenvalues and the eigenprojectors are

holomorphic at 0.

Proof. We formulate Butler’s proof in terms of the above discussion. Con-
sider an orbit of the 0-group {z1, . . . , zq} and {π1, . . . , πq} the associated
eigenprojectors, and suppose q > 1. The projectors of the 0-group are de-
fined on Char L; hence, for all x ∈ D∗, π1(D

∗, x) operates on {π1(x), . . . ,
πs(x)}, and {π1(x), . . . , πq(x)} is an orbit. The πi’s are meromorphic, as
shown by their expressions as Lagrange interpolation polynomials,

πi(x) =

∏

j �=i(A(x) + E/i − zj(x))
∏

j �=i(zi(x) − zj(x))
Pi(x), (2.17)

a matrix-valued application defined in Di, for all i, where Pi involves the
eigenvalues of A(x) + E/i outside the 0-group and is holomorphic around
0. For real x, the projectors are Hermitian by the assumption on E, hence
bounded. It follows that 0 is not a pole and that one can define πi at 0 so
that it is continuous in Di ∪ {0}. For 1 ≤ i, j ≤ q and i �= j, let x ∈ Dj

and let γ be a class path in π1(D∗, x) such that πi(x) · γ = πj(x). At x = 0,
with (2.17), it yields πi(0) = πj(0). One also has πi(x) πj(x) = 0 in Dj , and
by continuity πi(0)πj(0) = 0. Hence πi(0)2 = πi(0) = 0. But by continuity,
for small x, 0 < dim Ran πi(x) = dim Ran πi(0) ([13], Lemma VII.6.7),
a contradiction. Hence, q = 1 and by (2.14), the eigenvalues are single-
valued and holomorphic. By (2.17), the projectors are single-valued and
holomorphic as well.
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2.3. Applications: Maxwell equations. For the model system of Max-
well-Lorentz and for the equations of ferromagnetism, one considers the
Cauchy problems (2.2), and using the results of this section one describes
their geometric and diffractive approximations (2.4).

Maxwell-Lorentz equations. The propagation of light in dense ma-
terial can be modeled by dispersive symmetric hyperbolic systems. The
Lorentz model for linear dispersion is (see [11] for instance) in dimensionless
units







∂tB + curl E = 0
∂tE − curl B = ∂tP
ε2∂2

t PL + PL = γE
(2.18)

together with the divergence equations div (E+PL) = 0 and div B = 0 which
are propagated by (2.18). The unknowns are the electric and magnetic fields
E and B and the polarization per unit volume P, which is supposed to be lin-
ear here P = PL. γ is a constant of size O(1) with respect to the small param-
eter ε whose size is about one wavelength. Set u = (E ,B, 1√

γPL, ε√
γ ∂tPL). u

satisfies

∂tu +









0 −curl 0 0
curl 0 0 0

0 0 0 0
0 0 0 0









u +
1

ε









0 0 0
√

γ
0 0 0 0
0 0 0 −1

−√
γ 0 1 0









u = 0. (2.19)

Examine the Cauchy problem (2.2) for the system of Maxwell-Lorentz in the
form (2.19). The approximate solution u0 follows the ansatz (2.3). Denote
by T = ε t and X = ε x the diffractive variables. The equation defining the
characteristic variety is

τ2(τ2 − 1 − γ)((τ2 − 1)(τ2 − |η|2) − γτ2)2 = 0.

The critical points are located above the 0 frequency. We call unbounded
branches the branches of the variety parametrized by a map ω which is
unbounded in the limit ξ → ∞. By Proposition 2.8, the branches of the
characteristic variety (Fig. 1) admit directional derivatives at (0, 0). By The-
orem 2.10, in one space dimension the characteristic variety is smooth. At
β = (τ, η), a noncritical point of the characteristic variety, equations (2.4)
take the form

{

(∂t + η(τ2−1)
τ(τ2−1)+γ

· ∂x)π(τ, η)u0 = 0

(∂T + η(τ2−1)
τ(τ2−1)+γ

· ∂X)π(τ, η)u0 + 1
2 i τ ′′(η)(∂x, ∂x)π(τ, η)u0 = 0
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τ

η

Figure 1. The characteristic variety for the Maxwell-
Lorentz model.

by Proposition 2.8. In one space dimension, the derivatives at 0 of the
unbounded branches vanish, so that the components π(±√

1 + γ, 0)u0 are
standing waves, whereas π(0, 0)u0 travels in t, x at the velocity 1√

1+γ
.

Ferromagnetism. The Maxwell equations in a ferromagnetic medium
read

{

∂tE − curl H = 0
∂tH + curl E + ∂tM = 0,

(2.20)

where E and H are the electric and magnetic fields. The magnetization
vector M follows the Landau-Lifschitz equation

∂tM = −(M×H) − g

|M|(M× (M×H)), (2.21)

where g is a dimensionless damping coefficient. One can describe small per-
turbations of an equilibrium state (E0, αM0,M0) with the results of this
section, with M0 = (cos θ, sin θ, 0), considering for simplicity waves travel-
ling in one space dimension x only.

If we neglect in (2.21) the damping term, the system satisfied by the

perturbation u = (u1, u2, α
1/2u3) where (E ,H,M) = (E0, αM0,M0) + ε

(u1, u2, u3)(t̃ = εt, x̃ = εx) is (see [24]), dropping the tildes for convenience,

∂tu +





0 −k× 0
k× 0 0
0 0 0



 ∂xu +
1

ε





0 0 0

0 M0× −α1/2M0×
0 −α1/2M0× αM0×



 u = f(u),

(2.22)
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where k = (1, 0, 0) and f(u) := (0,−α−1/2u2 × u3, u2 × u3) is quadratic. At
the noncritical point (1 + α, 0, 0, 0) of the characteristic variety (Figure 2),
the tangent operator vanishes. System (2.4) becomes

{

∂t π(1 + α, 0)u0 = 0

(∂T − i 1+cos2 θ
2(1+α)2

∂2
X) π(1 + α, 0)u0 = 0,

where the diffractive variables are T = εt and X = εx. Consider now the only
critical point (0, 0, 0) of the characteristic variety (Figure 2). If sin θ �= 0, the
tangent operator has four distinct, simple, nonvanishing eigenvalues v1,± =

±
√

α+sin2 θ
α+1 , v2,± = ±

√

α
α+1 . The spectral decomposition of the tangent

operator takes the form

π(0)Aπ(0) = 0 · π1
0 + v1,+(π1,+ − π1,−) + v2,+(π2,+ − π2,−). (2.23)

The transport equations in t and x (geometric optics approximation) are

(∂t − vj,±∂x)πj,± u0 = 0. (2.24)

In a spectral basis for the tangent operator over its range, the Schrödinger
equation for the linear system is

(

∂T +









v1,+ 0 0 0
0 v1,− 0 0
0 0 v2,+ 0
0 0 0 v2,−









∂X

− i cos θ

2(1 + α)2









0 0 i i
0 0 −i −i

−i i 0 0
−i i 0 0









∂2
x

)

π(0)u0 = 0. (2.25)

The component of u0 polarized along Ker π(0)Aπ(0) (the standing-wave
component) does not interact with the other components.

If sin θ = 0, then the origin is a critical point for the characteristic variety

of the tangent operator. The velocities are ±v = ±
√

α
α+1 . The spectral

decomposition of the tangent operator takes the form

π(0)Aπ(0) = 0 · π1
0 + v(π+ − π−),

where ±v have multiplicity two. The matrices π±AL(0)−1Aπ± are therefore
not scalar. In a spectral basis for the tangent operator over its range, the
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τ

η

Figure 2. The characteristic variety for the equations of ferromagnetism.

Schrödinger equation for the linear system is

(

∂T +









v 0 0 0
0 v 0 0
0 0 −v 0
0 0 0 −v









∂X

− i
1

2(1 + α)2









0 −i −i 0
i 0 0 i
i 0 0 i
0 −i −i 0









∂2
x

)

π(0)u0 = 0. (2.26)

Asymptotic expansions of system (2.20), (2.21) with the damping term
are carried out in [23] and [9]. In the variables T = ε2t, t̃ = εt, and x̃ = εx,
the system is, dropping the tildes,

ε∂T u + ∂tu +





0 −k× 0
k× 0 0
0 0 0



 ∂xu +
1

ε
L0u = F (u) + εG(u), (2.27)

where F is quadratic and G cubic and

L0 =





0 0 0

0 M0× −α1/2M0×
0 −α1/2M0× αM0×





+ g





0 0 0

0 M0 × (M0×) −α1/2M0 × (M0×)

0 −α1/2M0 × (M0×) αM0 × (M0×)



 .
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The factor |M|−1 in the damping term is supposed to be constant, |M|−1 =
|M0|−1. One wants to describe the geometric and diffractive optics approx-
imations of (2.27) with the nonlinearity [9].

The dispersion matrix in (2.27) is not skew-symmetric, so that theorem
2.10 does not hold. The equation for the leading term u0 of the approxima-
tion is

(∂t + π(0)Aπ(0)∂x) π(0)u0 = 0. (2.28)

The semisimplicity of 0 in the spectrum of L0 implies that the projector π(0)
onto the Kernel of L0 is Hermitian, so that the tangent operator π(0)Aπ(0)
is Hermitian, too. Actually, the projector onto Ker L0 is the same as when
g = 0; hence, (2.23) still holds. Consequently, the profile equations at first
order are scalar transport equations, the same equations as for the simplified
model (2.24). π(0)Aπ(0) being Hermitian, all its eigenvalues are semisimple.
Therefore ±τ1 and ±τ2 are twice continuously differentiable.

If sin θ �= 0, in the spectrum of the tangent operator only 0 has alge-
braic multiplicity > 1. Therefore, for an index j corresponding to a branch
±τj such that τ ′

j(0) �= 0, the matrix πj,±AL−1
0 Aπj,± is scalar, and one has

πj,±AL(0)−1Aπj,± = 1
2τ ′′

j,±(0)πj . The use of averaging projectors (see [19])
as in Section 3 shows that the equations governing the components πj,±u0

for diffractive times is

∂T πj,±u0 +
1

2
i τ ′′

j,±(0) ∂2
x πj,±u0 = nonlinear (πj,±u0). (2.29)

The point is that τ ′′
j,±(0) ∈ iR, so that (2.29) are scalar heat equations. Two

different nonvanishing diffusion coefficients are found; the equations are

∂T π1,±u0 −
g cos2 θ

2(1 + α)2(1 + g2)
∂2

x π1,±u0 = nonlinear (π1,±u0), (2.30)

and

∂T π2,±u0 −
g

2(1 + α)2(1 + g2)
∂2

x π2,±u0 = nonlinear (π2,±u0). (2.31)

The diffusion matrix for π1
0u0 vanishes.

If sin θ = 0, the equations for diffractive times are no longer scalar, as in
the previous case. In an orthonormal basis over the range of π+ (respectively
π−) the spectral projector of π(0)Aπ(0) related to the positive (respectively
negative) eigenvalue,

∂T π±u0 −
1

2(1 + α)2(1 + g2)

(

g i
−i g

)

∂2
xπ±u0 = nonlinear (π±u0).

(2.32)
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Remark 2.11. The use of average operators [19] in nonlinear diffractive
optics induces a decoupling of the components of the main profile. This
explains why (2.30) and (2.31) are scalar and not (2.25). At a critical point
on the characteristic variety the profile equations are not scalar, as seen in
(2.26) and (2.32).

3. The short-wave limit

In this section, the short-waves approximation for general symmetric hy-
perbolic systems is studied. Short waves stands here for short-wavelength
approximate solutions, or equivalently approximate solutions with initial
data whose oscillatory frequencies are large compared to the parameters of
the system. The space variable will be denoted by (x, y) ∈ R × R, while the
time variable will still be denoted by t ∈ R+.

Precisely, one considers initial data of the form
{

R × R → R
n

(x, y) → u0(x
ε , y)

and a hyperbolic operator

L(∂) = ∂t + A∂x + B∂y + E.

A and B are assumed to be real, symmetric, n × n matrices. One assumes
that the spectrum of A consists of three different eigenvalues: c, −c, and 0,
with dim Ker A > 1. Such an assumption is satisfied by physical systems
based on the Maxwell equations. Dissipative effects are taken into account as
the dispersion matrix E is supposed to satisfy E+E∗ ≥ 0. E is also supposed
to have real entries. It will be shown that short waves do generically not
propagate for strictly dissipative systems (i.e., E + E∗ > 0).

We are interested in the description of approximate solutions of the quasi-
linear (respectively semilinear) initial-value problem

L(∂)u = F̃ (u)∂xu (respectively f̃(u)), u(0) = ε u0(x/ε, y). (3.1)

This is a one-dimensional asymptotic study (x ∈ R). The perturbative term
B∂y is also chosen to be one-dimensional (y ∈ R). Setting y ∈ R

d−1, d > 2,
would induce changes in the notation only in Sections 3.4 and 3.5, and only
minor changes in Section 3.6—see Remark 3.25.

Nonlinearities of quasilinear nature and of semilinear nature are handled
without a vanishing mean condition for the initial datum, thanks to a tech-
nique of low-frequency truncation built up by D. Alterman and J. Rauch [2],
[3], [4].
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Following [15], the approximate solution is sought in the form of a WKB
expansion:

uε = εp
∑

j

εjuj ,

where uj are profiles depending on a certain set of variables to be defined (see
Section 3.1). p is chosen in order that nonlinear effects occur at a diffractive
time scale. It depends on the size of the nonlinear terms, for which we make
the following hypothesis, as in [12].

Assumption 3.1 (orders of the nonlinearities). The quasilinear term is

F̃ (u)∂Xu, where F̃ is smooth and is of order 2; that is,

∂αF̃ (0) = 0, for all |α| ≤ 1.

The semilinear term f̃ is supposed to be smooth and of order 2:

∂αf̃(0) = 0, for all |α| ≤ 1.

With this assumption and Taylor’s theorem, one has, for all u ∈ C
n,

F̃ (εu) = ε2F (u)+ε3F1(ε, u), where F is a homogeneous polynomial of order

2 and where F1 is smooth, and similarly f̃(εu) = ε2f(u) + ε3f1(ε, u), where
f is a homogeneous polynomial of order 2 and where f1 is smooth. It follows
([12] and [15]) that the scaling for which diffractive and nonlinear effects
occur at the same time scale is p = 1.

One could more generally describe quasilinear (respectively semilinear)
terms of order K ≥ 1 (respectively J ≥ 2), changing the amplitude εp of
the solution accordingly (precisely, one would set p = 2

K−1 (respectively

p = 1
J−1) as in [12]).

Three different regimes have to be distinguished. The components of
u0 polarized along noncritical asymptotic branches of Char L (defined in
Section 3.2) give rise to a dynamics described as the noncritical case (Sec-
tions 3.4 and 3.5). The components of u0 polarized along critical asymptotic
branches of Char L correspond to the critical dynamics (Section 3.6). There
are two different critical dynamics: one for the bounded branches, and one
for the unbounded branches. In order to study these regimes separately, one
is led to make additional assumptions on Char L and on the polarization of
the initial datum u0.

The features of the critical dynamics related to the unbounded branches
of the characteristic variety are quite close to those of the noncritical and of
the first critical dynamics. It will therefore not be studied here.

For technical reasons, we will make use in the semilinear case of the class
of Banach spaces introduced by Lannes in [21]:
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Definition 3.2. For all σ, s, p ∈ R, p ≥ 1, one defines

Eσ,s,p(R2) = {f ∈ S ′(R2), (1 + η2)σ/2||(1 + |ξ|2)s/2f̂(·, η)||Lp(R) ∈ L2(R)}.

Equipped with the norm

‖f‖Eσ,s,p(R2) = ‖(1 + |η|2)σ/2‖(1 + |ξ|2)s/2f̂(ξ, η)‖Lp(Rξ)‖L2(Rη),

Eσ,s,p is a Banach space. Note that Eσ,s,p(R2) →֒ L∞(R2), if σ, s > 1/2 and
sp

p−1 > 1. Under these conditions for σ, s, and p, Eσ,s,p is also an algebra,

and nonlinear estimates hold. For more details, see [21].
One denotes by ∂XHs the vector space

∂XHs = {u ∈ Hs(R2), ∃ v ∈ Hs(R2), u = ∂Xv}.
The following set of assumptions is valid throughout this study.

Assumption 3.3 (characteristic variety). The critical points of CharR L
are isolated and located on Cτ × {0}

R
2
ξ,η

. Char L is locally parametrized by

functions depending on ξ2 + η2, where ξ is the Fourier variable of x and η
the Fourier variable of y.

The hypothesis regarding the critical locus of the real characteristic variety
is satisfied by the physical examples, among which those given in Section 2.3.
[29] implies that under assumption 3.3 and when E is skew-symmetric, a
point β = (τ, η) ∈ R × R

d with η �= 0 is noncritical for Char L as well. The
axisymmetry hypothesis in assumption 3.3 is generally not satisfied by the
equations of ferromagnetism. It is shown in the example in Section 3.7 how
the equations are modified in this case.

Assumption 3.4 (quasilinear systems).

• E + E∗ ≥ 0.
• F̃ satisfies assumption 3.1, and for all u ∈ C

n, F̃ (u) and F (u) are

Hermitian, n × n matrices.

• The initial datum u0 satisfies u0(x, y) = [u0(X, y)]X=x/ε, where the

profile u0 lies in Hs(R2) with s > 5.

Assumption 3.5 (semilinear systems).

• E + E∗ ≥ 0.
• f̃ satisfies Assumption 3.1.
• The initial datum u0 satisfies u0(x, y) = [u0(X, y)]X=x/ε, where the

profile u0 lies in Eσ,s,p(R2) ∩ Eσ,s,pr(R2) for some σ > 5, s >
max( p

p−1 , pr
pr−1), 1 < p, r < ∞, and pr

r−1 < 2.



20 Benjamin Texier

The condition s > 5 (respectively σ > 5) is here to ensure that the bounds
in Hs (respectively Eσ,s,p) in the profile variables give bounds in L∞ in the
physical variables.

Under Assumptions 3.3 and 3.4 (respectively Assumptions 3.3 and 3.5),
one undertakes the description of approximate solutions of the initial-value
problem (3.1).

The derivation of profile equations follows the classical scheme [15]. The
computations for the profile equations are spelled out as in the previous
section. The nonlinearities are simplified by the techniques of averaging from
[19]. The control of the corrector terms of the ansatz is the major difficulty
of this study. This is true first, because, in the noncritical case at least, the
ansatz involves three different time scales that differ by a factor O(1/ε2),
so that errors in the rapid time scale T may accumulate dramatically in
the slow time scale; and second, because the corrector terms of the ansatz
satisfy transport equations with source terms that are expressed in terms of
integro-differential operators of the main profile. Three different arguments
are used to overcome these difficulties:

• Low-frequency truncations (see Definition 3.15) as in [2], [3], and [4],
whose effect is a smoothing with respect to ∂−1

X and whose speed of
convergence can be estimated in Eσ,s,p.

• Secular bounds as in [6], i.e., estimates of the time growth of a profile
solution of a transport operator, depending on the source term.

• Sharper secular bounds in Eσ,s,p, as in [21].

Let us briefly state the results of this section. For different polarizations
of the initial datum u0, related to the geometry of the hyperbolic opera-
tor, a family of maps uε

0(t, x, y) = ε
∑

k[uk,0(T, X, y, t, εt)]T=t/ε,X=x/ε,τ=εt is
constructed, such that

• uε
0(0) = εu0.

• uk,0 satisfies transport equations in T, X and t, y.
• uk,0 satisfies a differential equation in τ of the form

∂τ∂Xuk,0 + Mk(Dy)uk,0 = nonlinear (uk,0). (3.2)

Under a polarization condition for u0, one has Mk(Dy) = αk + βk ∂2
y with

αk, βk ∈ R. It is shown that for diffractive times O(1/ε), uε
0 is asymptotically

close, as ε → 0, to the exact solution vε of (3.1). The rate of convergence
depends on the assumption on u0 and on the nature of the nonlinearity. In
the quasilinear case, the need to use Hilbert spaces techniques to solve the
profile equations prevents us from using the Banach spaces Eσ,s,p, and it
follows that the rate of convergence is o(1) only.
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3.1. The ansatz. One goes through a rapid formal computation using a
spatial Fourier transform to motivate the choice of the ansatz (3.5) and
(3.6). Transverse effects are not taken into account in the following lines
and E is supposed to be skew-symmetric. Let

A = 0 π0 + c (π+ − π−), Aξ + E/i =
∑

j

ωj(ξ)πj(ξ),

be the spectral representation of A and Aξ + E/i respectively. A spatial
Fourier transform applied to (3.1) with a null nonlinearity leads to

(∂t + i(Aξ + E/i))û(t, ξ) = 0,

with û(0) = ε2û0(ε ξ), and so

u(t, x) = ε

∫

R

eixξe−it(Aξ+E/i)εû0(εξ)dξ = ε

∫

R

∑

j

ei(xξ−tω(ξ)πj(ξ)εû
0(εξ)dξ.

The change of variables ξ′ = εξ leads to

u(t, x) = ε
∑

j

∫

R

ei(xξ/ε−tωj(ξ/ε))πj(ξ/ε) û0(ξ)dξ.

If we now suppose that ωj has an expansion in a neighborhood of ∞ as

ωj(ξ) = cj,1 ξ + cj,0 +
cj,−1

ξ
+ o(

1

ξ
), (3.3)

we get

u(t, x) ≃ ε
∑

j

∫

R

eiξ(x−cj,1 t)/ε e−i cj,0 t e−itε cj,−1/ξπj(ξ/ε)û0(ξ)dξ. (3.4)

This suggests looking for approximate solutions in the variables T = t
ε ,

X = x
ε , t, y, τ = εt if cj,1 �= 0, and in the variables X = x

ε , t, y, τ = εt if
cj,1 = 0. The approximate solutions will be sought in the form

uε(t, x, y) = ε (u0 + εu1 + ε2u2)(
t

ε
,
x

ε
, t, y, ε t) (3.5)

in the first case, and in the form

uε(t, x, y) = ε (u0 + εu1 + ε2 u2)(
x

ε
, t, y, ε t) (3.6)

in the second case.
There is no slow x in (3.4), nor in the initial datum u0. This is why there

is no slow x in the ansatz. There is no fast y in the initial datum either, and
this is why there is no fast y in the ansatz.

Notation. The following notation will be used throughout this paper.



22 Benjamin Texier

• Profiles (that is, functions fitting the ansatz) are written in a bold-
face font; for a profile a, one denotes by aε or by (a)ε the function
aε(t, x, y) = (a)ε(t, x, y) = a(t/ε, x/ε, t, y, εt). For example, the func-
tion associated with the profile ∂τa will be written (∂τa)ε.

• The Fourier transform of a function u is written F(u), or û anytime
when there cannot be any confusion regarding the space variable
with respect to which the transform is performed.

• Constants are often denoted by C.

3.2. The long-wave operator associated with the short-wave limit.
Introduce the family of matrices

M(τ, ξ, η) := τ + (E/i + B η)ξ + A, (τ, ξ, η) ∈ C
3.

One has the identity, for ξ �= 0,

det M(τ, ξ, η) = 0 ⇔ det L(τ/ξ, 1/ξ, η) = 0.

In this paper, M is called the long-wave operator associated with L.
Each (local) noncritical branch of Char L parametrized by ω is associ-

ated with a (local) noncritical branch of Char M parametrized by τ via the
identity

τ(ξ, η) = ξω(
1

ξ
, η), ξ �= 0. (3.7)

An asymptotic branch ω of CharR L is called (non)critical when the cor-
responding point (τ(0, η), 0, η) ∈ C × R

2 given by (3.7) is (non)critical on
CharR M.

In a neighborhood of a noncritical point (τ, 0, 0)∈CharR M, the parametri-
zation τ has the expansion for ξ in a neighborhood of 0

τ(ξ, 0) = τ0 + τ1ξ + O(|ξ|2).
The corresponding noncritical branch of CharR L has the asymptotic expan-
sion for ξ in a neighborhood of ∞

ω(ξ, 0) = τ0ξ + τ1 + O(
1

|ξ|).

This justifies (3.3).
By Rouché’s theorem, for all (τ0, 0, η) ∈ Char M, τ0 ∈ sp A. For ω an

asymptotic branch of CharR L, two cases arise:

• ω is unbounded (τ0 = ±c). Then ω ∼ ±c ξ. These eigenvalues cor-
respond to nonpolarized initial values (1− π0)u

0. When c (or −c) is
a simple eigenvalue of A, the asymptotic branch is generically non-
critical; it is generically critical when the multiplicity of c (or −c) in
the spectrum of A is > 1.
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• ω is bounded (τ0 = 0). These eigenvalues correspond to polarized
initial values π0u

0. These branches are generically critical branches,
for 0 is supposed to be an eigenvalue of A of multiplicity > 1.

We now derive useful identities for the parametrizations of Char M.
First, under Assumption 3.3, in a neighborhood of a noncritical point

(τ, ξ, η) on Char M, ξ being far from 0, there is a smooth function Ω such
that (3.7) takes the form τ(ξ, η) = ξΩ(1/ξ2 + η2). At (τ, ξ, 0) a noncritical
point on Char M, such that ξ �= 0, one has therefore ∂ητ(ξ, 0) = 0, and by
continuity, ∂ητ(0, 0) = 0.

Second, suppose for a moment that the system is conservative: E+E∗ = 0.
Let then (τ, ξ, η) ∈ CharR M. The conservativity implies that τ ∈ R. Then, E
being real, conjugating and multiplying the matrices by −1 in the definition
of Char M yields the equivalence

(τ, ξ, η) ∈ CharR M ⇔ (τ,−ξ,−η) ∈ CharR M, for ξ �= 0.

In a neighborhood of a noncritical point (τ0, 0, 0) it is thus possible in the
conservative case to parametrize CharR M by an even function.

Remark 3.6. For conservative systems, the evenness of the noncritical
branches of CharR M implies that an unbounded asymptotic branch of
CharRL parametrized by a smooth function ω satisfies in the section plane
η = 0

ω(ξ, 0) = λξ + O(
1

ξ
), (3.8)

where λ ∈ sp A − {0}. This particular form of asymptotic expansion for
the frequency was taken as an assumption in [27] in order to study the
propagation of short waves. It is shown below that generically, short waves
do propagate only for conservative systems, so that (3.8) appears here as a
necessary condition, under Assumptions 3.3 and 3.4 (or 3.3 and 3.5).

3.3. The asymptotic branches: a look at the examples. Let us have
a look at the examples which (3.1) aims at describing.

Maxwell-Lorentz equations. The equation defining the characteristic
variety associated with system (2.19) is in one space dimension, with the
notation of Section 3.1,

ω2 (ω2 − γ) ( (ω2 − 1) (ω2 − ξ2) − γ ω2)2 = 0.

There is one double eigenvalue ω+ such that ω+ = ξ + o(ξ). Thus (1, 0) ∈
Char M is noncritical. Similarly, (−1, 0) is noncritical. The origin (0, 0) is
critical. See Figures 1 and 3.
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ω

ξ

Figure 3. The characteristic variety for the long-wave operator
associated with the Maxwell-Lorentz model.

ω

ξ

Figure 4. The characteristic variety for the long-wave operator
associated with the equations of ferromagnetism.

Ferromagnetism. The equation defining the characteristic variety asso-
ciated with system (2.22) is in one space dimension

ω3(−ω6+(2ξ2+(1+α)2)ω4−(ξ4+(1+α)(2α+sin2 θ)ξ2)ω2+(α+sin2 θ)ξ4)=0.

There are two single eigenvalues ω+
1 and ω+

2 tending to ∞, and such that
ω+

i ∼ ξ. The point (1, 0) ∈ Char M is therefore critical. (0, 0) ∈ Char M is
also critical. See Figures 2 and 4.

These examples and the previous section suggest that we focus on three
cases
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• (τ0, 0, 0), τ0 ∈ sp(A) − {0}, a noncritical point of Char M.
• (0, 0, η), η �= 0, a critical point of Char M.
• (τ0, 0, η), τ0 ∈ sp(A) − {0}, η �= 0, a critical point of Char M.

The first case is examined in Sections 3.4 and 3.5, the second case in
Section 3.6. The third case follows from the two previous ones.

3.4. The noncritical case for a quasilinear system. Assumptions 3.3
and 3.4 are made throughout this section. Moreover, one considers polarized
initial conditions (1−π0)u

0, and to put in evidence the noncritical dynamics,
one makes the additional assumption,

Assumption 3.7. (c, 0, 0) and (−c, 0, 0) are noncritical points of CharRM.

Figure 4 shows that this assumption is not satisfied by the equations of
ferromagnetism. One can easily adapt the profile equations to this case. See
Section 3.7.

3.4.1. Profile equations. The approximate solution of (3.1) is here sought in
the form (3.5). Compute

L(∂)uε − F̃ (uε)∂xuε =
[

∑

εkrk(T, X, y, τ)
]

T= t
ε
,X=x

ε
,τ=εt

(3.9)

= [(∂T + A∂X) + ε(E + B∂y) + ε2∂τ )(u0 + εu1 + ε2u2)

× (X, y, t, τ))]T= t
ε
,X=x

ε
,τ=εt −

1

ε
[F̃ (ε(u0 + εu1 + ε2u2))

× ∂X(ε(u0 + εu1 + ε2u2)))(X, y, t, τ))]T= t
ε
,X=x

ε
,τ=εt.

Following [12], the strategy is to choose profiles that annihilate the first terms
of the right-hand side, called the residual. The conditions r1 = 0, r2 = 0,
and r3 = 0 read

(∂T + A∂X)u0 = 0 (3.10)

(∂T + A∂X)u1 + (∂t + E + B∂y)u0 = 0 (3.11)

(∂T + A∂X)u2 + (∂t + E + B∂y)u1 + ∂τu0 = F (u0)∂Xu0). (3.12)

With (3.10), (3.11), and (3.12), the residual rε becomes

rε =
1

ε
F̃ (uε)∂Xuε − ε2F (u0)∂Xu0 + ε3((∂t + E + B∂y)u2 + ∂τu1) + ε4∂τu2.

Note that with the chosen ansatz, dispersive and transverse effects occur at
the same time, as seen in (3.11). Projecting the profile equations over the
eigendirections of A leads to

(∂T + cj∂X)πju0 = 0 (3.13)
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(∂T + cj∂X)πju1 + πj(∂t + E + B∂y)u0 = 0 (3.14)

(∂T + cj∂X)πju2 + πj(∂t + E + B∂y)u1 + ∂τπju0 = πjF (u0)∂Xu0 (3.15)

with j = +,−. The component of u0 polarized along Ker A is identically
zero by the polarization condition on u0. We see on (3.13) that different
components of u0 propagate at different speeds. To sort out the components
of the profiles and of the nonlinearities in (3.14) and in (3.15), we will make
use of another tool of the paraphernalia of geometric optics, the average

projectors. They were initially introduced in [19]. We cite below the results
of [19] that this study requires.

A smooth, real function λ being given, denote by T the pseudo-differential
operator T (∂) = ∂t + iλ(DX).

Definition 3.8 (average projectors [19]). For all h > 0 and w ∈ C0([0, τ0]×
RT , L2(R2)), let

Gh
T (w)(t, x) =

1

h

∫ h

0
(

∫

ei(xξ+sλ(ξ)) ŵ(t + s, ξ) dξ) ds.

Introduce also

GT w = lim
h→∞

Gh
T w,

when this limit exists in C0([0, τ0]×RT , L2(R2)). Call GT the average oper-
ator related to the transport operator T .

The following proposition states the properties of the average projectors
in C0([0, τ0] × RT , L2(R2)):

Proposition 3.9 (properties of the average projectors [19]).

a) If w satisfies T (∂)w = 0, then GT w is well defined and satisfies

GT w = w.
b) If w satisfies (∂t + iλ1(Dy))w = 0, with λ1 �= λ almost everywhere in

R
2, then GT w = 0.

c) w has a sublinear growth; i.e., limT→∞
1
T ‖w(T )‖L∞([0,τ0],L2(R2)) = 0,

if and only if GT Tw = 0.
d) Let {Ti}1≤i≤m be m (not necessarily distinct) scalar operators (m ∈

N
∗). Let {wi}1≤i≤m be m functions annihilating these operators:

Ti(∂)wi = 0. Then if T is another transport operator and if T =
T1 = · · · = Tm,

GT (w1w2 · · ·wm) = w1w2 · · ·wm.

In every other case, GT (w1w2 · · ·wm) = 0.
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Proof. See [19].
Let us now define Tj as the transport operator ∂T + cj∂X , and apply GTj

to equations (3.13), (3.14), and (3.15), j ∈ {+,−}. We obtain

GTj
πju0 = πju0, (3.16)

(∂t + πj(E + B∂y))πju0 = 0, (3.17)

(cj′ − cj)∂XGTj
πj′u1 + πj′(E + B∂y)πju0 = 0, for all j′ �= j, (3.18)

∑

j′

πj(∂t + E + B∂y)GTj
πj′u1 + ∂τπju0 = GTj

πjF (u0)∂Xu0. (3.19)

By the last point of Proposition 3.9, the nonlinear term in (3.19) involves
only πju0. The following lemma investigates the nature of the first-order
operator occurring in the profile equations. As seen in Section 2, algebraic
lemmas reduce to residue computations. The proofs are similar to the ones
of the previous section; therefore, we omit the details.

Lemma 3.10 (the noncritical case: first-order operators). If the system is

conservative (i.e., if E + E∗ = 0), then the following relations hold for all

j ∈ {+,−} :

πjEπj = −i ∂ξτj(0, 0)πj = 0, πjBπj = −i ∂ητj(0, 0)πj = 0.

Proof. With [29], the conservativity implies that the point (τj(0, 0), 0, 0),
which by assumption is noncritical for CharR M, is noncritical for Char M
as well. Then the first relation plainly follows from a residues computation
at first-order in ξ at the point (τj(0, 0), 0, 0). As discussed in Section 3.2,
if the system is conservative, then τj is even, so that ∂ξτj(0, 0) = 0. This
justifies the first relation. At (τj(ξ, 0), ξ, 0), the expansion at first order in η
is

∂ητj(ξ, 0)πj(ξ, 0) = ξπj(ξ, 0)Bπj(ξ, 0). (3.20)

As explained in Section 3.2, it follows from Assumption 3.4 that τj(ξ, η) =
Ωj(1/ξ2 + η2), for ξ �= 0; hence, ∂ητj(ξ, 0) = 0 for ξ �= 0, and also for
ξ = 0 by the noncriticality assumption on (cj , 0, 0). The right-hand side of
(3.20) therefore vanishes identically. The projector being smooth at (cj , 0, 0),
deriving the right-hand side at (cj , 0, 0) yields the lemma. �

In the case of a strictly dissipative system: E +E∗ > 0, the point (τj , 0, 0)
might be critical for Char L. Thus one expects (3.17) not to be scalar.
What’s more, −iπjEπj generically has eigenvalues with nonvanishing imag-
inary parts.
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Example. For the nonconservative equations of ferromagnetism, with the
notation of Section 2.3,

sp π1(L0+gL1)π1 =
{

0,−1

4
g(1+cos2 θ)∓1

2

√

cos2 θ − g2 sin4 θ
}

, π1Bπ1 = 0.

If g �= 0, then the waves that are not polarized along the Kernel of π1(L0 +
gL1) are exponentially damped in t.

To observe short waves over long times O(1/ε) without any further polar-
ization condition, it is thus natural to make the following assumption:

Assumption 3.11. The system is conservative: E + E∗ = 0.

With Assumption 3.11 and Lemma 3.10, equation (3.17) becomes

∂tπju0 = 0, for all j.

In the following, one pulls the variable t out of the ansatz.
Plugging (3.18) into (3.19) and applying ∂X leads to

∂τ∂Xπju0 +πj(E +B∂y)(cj −A)−1(E +B∂y)πju0 = ∂XGTj
πj(F (u0)∂Xu0).

(3.21)
The following lemma investigates the nature of the second-order operators
present in equation (3.21).

Lemma 3.12 (the noncritical case: second-order operators). The following

relations hold:

−∂2
ξ τj(0, 0) πj = 2 πjE(cj − A)−1Eπj ,

0 = πjE(cj − A)−1Bπj + πjB(cj − A)−1Eπj ,

∂2
ξ ∂2

η τj(0, 0) πj = 4πjB(cj − A)−1Bπj .

Proof. The residue formula at second order in ξ at the noncritical point
(τj(0, η), 0, η) gives, writing only the polarized terms,

1

2
∂2

ξ τj(0, η) πj(0, η) = πj(0, η)(E/i + Bη)(cj − A)−1(E/i + Bη)πj(0, η).

(3.22)
In the above equation, η = 0 leads to the first relation. To derive the other
two equations, one could carry the residues computations to third and fourth
order. It is more convenient to remark that with (2.10), the first derivative
of πj is seen to be

∂η πj(ξ, η) = −ξ
(

πj(ξ, η)BL(ξ, η)−1 + L(ξ, η)−1Bπj(ξ, η)
)

.
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Hence, ∂ηπj(0, η) = 0. By Assumption 3.3, ∂2
ξ ∂ητj(ξ, 0) = 0 for ξ �= 0, and

also for ξ = 0 by continuity (everything is smooth by Assumption 3.7).
Differentiate now (3.22) with respect to η and set η = 0:

0 = πjE(cj − A)−1Bπj + πjB(cj − A)−1Eπj .

This is the second relation. Differentiating (3.22) twice with respect to η
and letting η = 0 yields

1

2
∂2

ξ ∂2
η τj(0, 0) πj = 2 πjB(cj − A)−1Bπj ,

keeping again only the polarized terms. This is the third relation. �

With Lemma 3.12 and the last point of Proposition 3.9, the component
πju0 of the main profile satisfies

∂τ∂Xu + (−1

2
∂2

ξ τj(0, 0) +
1

4
∂2

ξ ∂2
ητj(0, 0) ∂2

y)u = ∂XGTj
πj(F (u)∂Xu). (3.23)

One sets αj := −1
2∂2

ξ τj(0, 0), βj := 1
4∂2

ξ ∂2
ητj(0, 0), and Fj := GTj

πjF in the
following. αj and βj are real numbers.

3.4.2. Solving the equation for the main profile. In (3.23), the point is that

∂−1
X (αj + βj∂

2
y) generates a unitary group e−τ∂−1

X
(αj+βj∂2

y) on Hs(R2
X,y). For

a given ϕ in Hs(R2
X,y), the equation

∂τv =
(

eτ∂−1
X

(αj+βj∂2
y)Fj(e

−τ∂−1
X

(αj+βj∂2
y)v)e−τ∂−1

X
(αj+βj∂2

y)
)

∂Xv

with initial datum v(0) = ϕ is proved by a classical iteration scheme to have
a unique solution v defined on a time interval [0, τ∗), with v ∈ C0([0, τ0],
Hs(R2)), for all 0 ≤ τ0 < τ∗. Note that v is not regular with respect to τ
and that regularity in τ is not used in the iteration scheme. Then

u := e−τ∂−1
X

(αj+βj∂2
y)v

solves (3.23), with u(0) = ϕ and u ∈ C0([0, τ0], H
s(R2)). Again, u is only

continuous with respect to τ.
We now state a regularity result for the solutions of (3.23) with initial data

satisfying the vanishing-mean condition and under the additional assumption
that the quasilinear term is conservative. This is done by smoothing the
operator ∂−1

X and by using compactness in time. The index j is dropped for
convenience. We use the regularization of [14] and [10]:

Definition 3.13. For µ > 0, define ∂−1
µ as the operator given by the symbol

−iξ

ξ2 + µ2
.
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Consider (3.23) in a conservation form, that is, where Fj = G′ with a
smooth G such that G(0) = 0. Then a regular solution of (3.23) with initial
datum ϕ ∈ ∂XHs(R2

X,y) is defined as a triple (τ∗, u, v), with τ∗ > 0, a

map u ∈ C0([0, τ0], H
s(R2

X,y)) ∩ C1([0, τ0], H
s−2(R2

X,y)) and a map v ∈
C0([0, τ0], H

s−2(R2
X,y)), for all 0 < τ0 < τ∗, such that u(0) = ϕ and

{

∂τu + v = ∂XG(u)
(αj + βj∂

2
y)u = ∂Xv.

(3.24)

Theorem 3.14. Suppose that the quasilinear term is conservative: Fj = G′,
with a smooth G such that G(0) = 0. Then for s > 2 and for all ϕ ∈
∂X Hs(R2), there exists a unique regular solution to (3.23) with initial con-

dition ϕ.

Proof. First step: solving the regularized equation. Look first at the quasi-
linear regularized equation

∂τu + ∂−1
µ (α + β ∂2

y)u − G′(u)∂Xu = 0. (3.25)

To solve (3.25) by a classical iterative scheme, an energy estimate for the
linearized equation is needed. The Hermitian scalar product in L2(R2

X,y)

will be denoted by (·, ·). The symbol of ∂−1
µ being purely imaginary, for all

v ∈ L2(R2
X,y), one has

Re (∂−1
µ v, v) = 0.

The energy estimate for the linearized operator of (3.25) follows: for w ∈
C0([0, τ0], L

2(R2)) such that w and ∇w are in L∞([0, τ0] × R
2),

‖u(τ)‖L2(R2)

≤ ‖u0‖L2(R2 + C

∫ τ

0
‖∂τu + ∂−1

µ (α + β ∂2
y)u − G′(w)∂Xu(τ ′)‖L2(R2) dτ ′,

where the constant C depends on ‖w,∇w‖L∞ but does not depend on µ. The
proof now goes the same as for a standard quasilinear differential operator,
and the following result holds (see for instance [1], Theorem III.B.1.2):

For s > 2 and for all ϕ ∈ ∂XHs, there exist τ∗ > 0 such that for all µ > 0
there exists a unique solution uµ to (3.25), satisfying uµ ∈ C0([0, τ0], H

s(R2))
∩C1([0, τ0], H

s−2(R2)) for all 0 ≤ τ0 < τ∗, and satisfying the initial condition

uµ(τ = 0) = ϕ.
Moreover, the proof of the convergence of the iteration scheme yields the

uniform estimate

||uµ||L∞([0,τ0],Hs(R2)) ≤ C(τ0), for all µ > 0. (3.26)
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Second step: the limit µ → 0. Let ψ ∈ Hs(R2
X,y) be such that ∂Xψ =

ϕ, and denote by {eτ∂−1
µ (α+β∂2

y)}τ the group of operators associated with
∂−1

µ (α+β∂2
y). It operates in Hs, and its norm is 1. With (3.26) and nonlinear

estimates in Hs (s > 1), G(uµ) is bounded in Hs, uniformly in µ. uµ satisfies

∂−1
µ (α + β∂2

y)uµ(τ) = e−τ∂−1
µ (α+β∂2

y)∂−1
µ (α + β∂2

y)ϕ

+

∫ τ

0
e−(τ−s)∂−1

µ (α+β∂2
y)∂−1

µ ∂X(α + β∂2
y)G(uµ) ds. (3.27)

Since ∂−1
µ ∂X operates in Hs (and its norm is less than 1), the second term of

the right-hand side of (3.27) is bounded in Hs−2 with respect to µ. Thanks
to the hypothesis ϕ ∈ ∂XHs, the first term of the right-hand side is seen to
be bounded as well:

||e−t∂−1
µ (α+β∂2

y)(α + β∂2
y)∂−1

µ ϕ||Hs−2(RX) ≤ C||∂−1
µ ϕ||Hs(RX) ≤ C||ψ||Hs(RX).

Going back to (3.25), we now see that ∂τu
µ is bounded in L∞(Hs−2), uni-

formly in µ. By (3.26), changing uµ into one of its subsequences if necessary,
there exists u such that uµ ⇀ u in L∞([0, τ0], H

s(R2)) ∗ and ∂Xuµ ⇀ ∂Xu
in L∞([0, τ0], H

s−1(R2)) ∗ . By Aubin’s lemma ([25], Lemma 1.5.2, for in-
stance), the convergence uµ → u also stands in L∞([0, τ0], H

s−1
loc (R2)), and

nonlinear estimates show that G′(uµ) → G′(u) in L∞([0, τ0], H
s−1
loc (R2)). It

follows that G′(uµ)∂Xuµ → G′(u)∂Xu in D′([0, τ∗[×R
2). Besides, by the

dominated convergence theorem,

∂X∂−1
µ (α + β∂2

y)uµ → (α + β∂2
y)u in L2.

Summing up, the existence of v ∈ C0([0, τ0], H
s−2(R2)), for all 0 < τ0 < τ∗,

satisfying (3.24) for the above u is proved, and u has the requested regularity.

3.4.3. The approximate solution. In Section 3.4.1, a certain number of nec-
essary conditions were derived in order that uε be an approximate solution
of problem (3.1). In this section, these equations are solved and it is proved
that the function thus obtained actually is an approximate solution.

The component πju0 of the main profile must satisfy the transport equa-
tion in T and X (3.13) and the equation in τ (3.21) together with the initial
condition πju0 = πju

0 at T = τ = 0. Such a system is generally overdeter-
mined. The average operators have removed the terms that would prevent
us from solving it. First, there is a unique aj solution of (3.23) with ini-
tial condition πju

0. Let τ∗ be its maximal existence time. Then for all
0 ≤ τ0 < τ∗, aj ∈ C0([0, τ0], H

s(R2)). Second, with (3.13), the main profile
is chosen to be

πju0 = aj(τ, X − cjT, y). (3.28)
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It satisfies both the transport equation (3.13) and the slow-time scale equa-
tion (3.21). With equation (3.28) and with the condition s > 1, u0 is
bounded with respect to T : u0 ∈ L∞([0, τ0] × RT , Hs(R2)). Returning to
the initial variables, set uε

0 = u0(t/ε, x/ε, y, εt). Provided that s > 1, uε
0 is

bounded with respect to ε in L∞([0, τ0/ε] × R
2
x,y).

We now prove that one can determine the following terms in the expansion
of uε so that they are effectively correctors. This is not obvious because this
study was led over two time scales that differ by a factor ε2, so that errors of
size O(1) in the short time scale T may accumulate like O(1/ε2) in the long
time scale τ. In view of the stability Theorem 3.18, one also has to control
the growth of the correctors and of their derivatives with respect to the slow
time scale. This is done by a technique of low-frequency cut-offs as in [2].

Definition 3.15 (low-frequency truncation). Let χ be a smooth function in
RX , such that |χ| ≤ 1, χ = 0 for |X| < 1, and χ = 1 for |X| ≥ 2. Define the
Fourier multiplier χδ(DX) as the operator acting on Hs(R2) by

χδ(DX) : f → F−1
ξ,η→X,y (χ(

ξ

δ
) f̂(ξ, η)).

The dominated convergence theorem shows that

χδf − f → 0 in Hs. (3.29)

Note that there is no rate of convergence in Hs. This will be done in the
semilinear case in another class of Banach spaces (Section 3.5).

The action of χδ(DX) is a low-frequency truncation: for all f ∈ Hs(R2),
χδf lies in ∂XHs(R2), and one has the straightforward estimate

||∂−1
X χδf ||Hs(R2) ≤

1

δ
||f |||Hs(R2). (3.30)

Set now uδ
0 = χδu0. uδ

0 satisfies the equation

∂τπju
δ
0 + ∂−1

X (α + β∂2
y)πju

δ
0 = GTj

πjχ
δ(F (u0)∂Xu0). (3.31)

Define the first corrector uδ
1 by

πju
δ
1 := −∂−1

X πj(E + B∂y)(cj − A)−1uδ
0. (3.32)

uδ
1 lies in C0([0, τ0]×RT , Hs−1(R2))∩L∞([0, τ0]×RT , Hs−1(R2)), equation

(3.14) is solved exactly, and for s− 1 > 1, one has the uniform bounds in ε:

||uδ
1||L∞([0,τ0]×RT ,Hs−1(R2)) ≤ C/δ and ||(uδ

1)
ε||L∞([0,τ0/ε]×R2) ≤ C/δ, (3.33)

where C is independent of ε and δ. The key is that with (3.32), uδ
1 is

smooth with respect to τ. With estimate (3.30) and equation (3.31), one
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has ||∂−1
X ∂τu

δ
0|| = O(||∂−2

X u0||) = O(1/δ2) in L∞([0, τ0] × RT , Hs−3(R2)):

||∂τu
δ
1||L∞([0,τ0]×RT ,Hs−2(R2)) ≤ C/δ2, (3.34)

where C does not depend on δ.
The second corrector is set to be the solution of

(∂T + cj∂X)πju
δ
2 = (3.35)

(1−GTj
)πj

(

χδ(F (u0)∂Xu0)−∂−1
X

∑

k �=j

(E+B∂y)(ck − A)−1(E+B∂y)πku
δ
0

)

,

together with null initial conditions. As uδ
0 does not solve (3.23) but solves

(3.31), the profile uδ
0 + εuδ

1 + ε2uδ
2 is not a WKB solution; i.e., r2 �= 0 for

this profile. However, r2 will be seen to be o(δ).
(3.35) is a linear transport equation with a nonlinear source term. To

estimate the time growth of uδ
2, we will make use of the following proposition

([6], Propositions 3.2 and 3.3):

Proposition 3.16. i) Let a, b ∈ R, a �= b, and let f(T, X) and g(T, X) be

sufficiently smooth functions such that

(∂T + a ∂X)f = ∂Xg, and (∂T + b ∂X)g = 0.

Then

||f ||L∞(RT ,Hs(RX)) ≤ 2 ||g||L∞(RT ,Hs(RX)).

ii) Let a, b ∈ R, a �= b, and let f(T, X), g(T, X), and h(T, X) be sufficiently

smooth functions such that g, h ∈ L∞(RT , Hs(RX)) and

(∂T + a ∂X)f = gh, (∂T + a ∂X)g = 0 and (∂T + b ∂X)h = 0.

Then

lim
T→∞

1√
T
||f ||Hs(R) = 0.

Proof. See [6]. �

The linear source term in (3.35) is estimated with point i) of the proposi-
tion. The nonlinear source term in (3.35) is, with j = +,

(1 − G+)χδ(F (u0)∂Xu0) = χδ
(

F (π−u0)∂Xπ−u0 + F+−(π+uδ
0, π−uδ

0)∂Xu0

)

,
(3.36)

where F+− is polynomial. The point is that the first term in the right-hand
side of (3.36) involves only π−u0. With the truncation and point i) of the
previous proposition, its contribution to the secular growth of uδ

2 is thus
O(1/δ). The contribution of the second term in the right-hand side of (3.36)
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is estimated by point ii) of the previous proposition. The key hypothesis here
is that there are only two traveling components π+u0 and π−u0. It yields

||uδ
2||Hs−2(R2) ≤ C(lδ1(T ) +

1

δ
), (3.37)

uniformly in τ, where for all δ > 0, limT→∞
1√
T

lδ1(T ) = 0.

Differentiating (3.35) with respect to τ, one gets similarly

||∂τu
δ
2||Hs−4(R2) ≤ C(lδ2(T ) +

1

δ2
),

uniformly in τ, where for all δ, limT→∞
1√
T

lδ2(T ) = 0. In the original set of

variables, the bounds are in L∞([0, τ0/ε] × R
2):

||(uδ
2)

ε|| ≤ C
(

sup
T≤ τ0

ε2

lδ1(T ) +
1

δ

)

, and ||(∂τu
δ
2)

ε|| ≤ C
(

sup
T≤ τ0

ε2

lδ2(T ) +
1

δ2

)

,

where C is independent of ε and δ. Setting

uε,δ = ε(uδ
0 + εuδ

1 + ε2uδ
2), (3.38)

one now proves that uε,δ is an approximate solution by estimating the resid-
ual as defined by equation (3.9). First, for all δ, uδ

1 and uδ
2 deserve to be

called “corrector terms of the ansatz,” as shown by the above bounds. Sec-
ond, the residual rε,δ associated with uε,δ is

rε,δ =(
1

ε
F̃ (uε,δ)∂Xuε,δ−ε2F (uδ

0)∂Xuδ
0)+ε2

(

F (uδ
0)∂Xuδ

0 − χδ(F (u0)∂Xu0)
)

+ ε3((E + B(∂y))u
δ
2 + ∂τu

δ
1) + ε4∂τu

δ
2. (3.39)

With Assumption 3.1 and the bounds (3.33) and (3.37), the first nonlinear
term in the residual is of size O(ε2)o(δ) in L∞([0, τ0] × RT , Hs−3(R2)). The
second nonlinear term stems from (3.35). By (3.29) and the dominated con-
vergence theorem, it is of size O(ε2)o(δ) in L∞([0, τ0]×RT , Hs−1(R2)). The
last two terms are estimated via the above bounds. It yields the following
proposition.

Proposition 3.17. The corrector terms of the ansatz uε,δ
1 = (uδ

1)
ε and

uε,δ
2 = (uδ

2)
ε, as defined by equations (3.32) and (3.35) respectively, satisfy,

for all 0 ≤ τ0 < τ∗,

||εuε,δ
1 + ε2uε,δ

2 ||L∞([0,τ0/ε]×R2
x,y) ≤ O(ε)l(δ) + ε2 sup

T≤ τ0
ε2

lδ1(T ),
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where l(δ) → ∞ as δ → 0 and limT→∞
1√
T

lδ1(T ) = 0. The residual rε,δ

satisfies, for all 0 ≤ τ0 < τ∗,
1

ε2
||rε,δ||L∞([0,τ0/ε]×R2

x,y) ≤ o(δ) + ε sup
T≤ τ0

ε2

(lδ1 + εlδ2)(T ) + O(ε)l̃(δ),

where l̃(δ) → ∞ as δ → 0 and limT→∞
1√
T

lδ2(T ) = 0.

3.4.4. Asymptotic stability. The following theorem asserts that there exists
an exact solution vε valid for diffractive times O(1/ε) which is asymptotically
close to uε

0, as ε → 0.

Theorem 3.18. Under Assumptions 3.3, 3.4, 3.7, and 3.11, there exists τ∗ >
0 and a unique uε

0 = [u0(T, X, y, τ)]T=t/ε,X=x/ε,τ=εt, with u0 ∈ C0([0, τ0] ×
RT , Hs(R2)), for all 0 < τ0 < τ∗, such that u0 =

∑

j πju0, and for all j,

(∂T + cj∂X)πju0 = 0,

∂τ∂Xπju0 + (αj + βj ∂2
y)πju0 = πj∂XGTj

(F (u0)∂Xu0),

u0(T = τ = 0) = (1 − π0)u
0.

Set uε
0 = u0(t/ε, x/ε, y, εt). (3.1) with initial datum vε = ε ((1 − π0)u

0 +
v0(ε)), with v0(ε) → 0 in Hs(R2), has a unique solution vε defined and

smooth on [0, τ∗/ε) × R
2 for sufficiently small ε. For all 0 < τ0 < τ∗ and

sufficiently small ε, the asymptotic estimate holds,

1

ε
||vε − εuε

0||L∞([0,τ0/ε]×R2
x,y) = o(1), (3.40)

as ε → 0.

Proof. The exact solution vε is sought as a perturbation of the family of ap-
proximate solutions uε,δ defined in (3.38). Set uε,δ =ε[uε,δ(X, y, τ)]X=x/ε,τ=εt

with a “semi-profile” uε,δ and similarly rε,δ = ε2rε,δ. Look for vε in the form
vε = ε(uε,δ + wε,δ), where wε,δ depends on X, y, τ. Define

Lε(u + z, ∂)z = (∂τ +
1

ε2
A ∂X +

1

ε
(B∂y + E))z − 1

ε2
F̃ (ε(u + z))∂Xz.

The equations for wε,δ to satisfy in order that vε be an exact solution to
(3.1) with initial condition ε((1 − π0)u

0 + v0(ε)) are
{

Lε(uε,δ+wε,δ∂)wε,δ = 1
ε2 (F̃ (ε(uε,δ+wε,δ))−F̃ (εuε,δ))∂Xuε,δ−rε,δ

wε,δ(0) = (1 − π0)(1 − χδ)u0 + v0(ε) − εuε,δ
1 (0).

(3.41)

Local existence for the solution wε,δ of (3.41) over a time τ∗(ε, δ) follows
from the standard local existence theory for quasilinear symmetric hyper-
bolic systems, thanks to the symmetry property stated in Assumption 3.4.
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Set then

τ(ε, δ) := sup {0 ≤ τ ≤ min (τ∗(ε, δ), τ0), sup
0≤τ ′≤τ

‖wε,δ(τ ′)‖Hs ≤ 1}.

There exist δ1 > 0 and ε1 > 0 such that for 0 < δ < δ1 and 0 < ε < ε1,
‖wε,δ(0)‖Hs−4 ≤ 1; hence, the definition of τ(ε, δ) makes sense for these
choices of δ and ε. Nonlinear and commutator estimates yield the Hs−4

estimate for the quasilinear operator Lε (see [15], Lemma 6.3): for 0 ≤ τ <
τ(ε, δ),

||wε,δ(τ)||Hs−4(R2)

≤ C(||wε,δ(0)||Hs−4(R2) +

∫ τ

0
||Lε(uε,δ + wε,δ, ∂)wε,δ(τ ′)||Hs−4(R2)dτ ′).

The nonlinear term in (3.41) can be estimated in Hs−4, and one has, for
0 ≤ τ < τ(ε, δ),

||wε,δ(τ)||Hs−4(R2)

≤ C(||wε,δ(0)||Hs−4(R2) + ||rε,δ||L∞([0,τ0]×R2) + C

∫ τ

0
||wε,δ(τ ′)||Hs−4(R2) dτ ′).

Gronwall’s inequality yields finally

||wε,δ(τ)||Hs−4(R2) ≤ eCτ ( ||wε,δ(0)||Hs−4(R2) + || rε,δ||L∞([0,τ0]×R2) ).

Let now µ > 0. By Proposition 3.17 and by (3.29), there exists δ2 > 0 such
that for fixed δ0, 0 < δ0 < min (δ1, δ2), there exists ε2 > 0 such that for all
0 < ε < min (ε1, ε2),











eCτ0(||wε,δ0(0)||Hs−4(R2) + || rε,δ0 ||L∞([0,τ0]×R2)) ≤ µ/3,

‖εuε,δ0
1 + ε2uε,δ0

2 ‖L∞([0,τ0/ε]×R2
x,y) ≤ µ/3,

‖uε
0 − uε,δ0

0 ‖L∞([0,τ0/ε]×R2
x,y) ≤ µ/3.

Hence, for all 0 ≤ τ ≤ τ(ε, δ0) and for all 0 < ε < min (ε2, ε1),

||wε,δ0(τ)||Hs−4(R2) ≤ µ/3.

For µ < 1 and for these choices of ε, by continuity of τ �→ ‖wε,δ0(τ)‖Hs−4(R2)

and by definition of τ(ε, δ0) and τ∗(ε, δ0), one has thus τ(ε, δ0) = τ0. Besides,

sup
0≤τ≤τ0

||wε,δ0(τ)||Hs−4(R2) ≤ µ/3.

Finally, for 0 ≤ τ ≤ τ0 and 0 < ε < min (ε2, ε1),

1

ε
||vε − εuε

0|| ≤ ||wε,δ0 ||L∞([0,τ0]×R2) +
1

ε
||uε,δ0 − εuε,δ0

0 || + ||uε,δ0
0 − uε

0|| ≤ µ,

in L∞([0, τ0/ε] × R
2
x,y).
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3.5. The noncritical case for a semilinear system. It is shown in this
section that under Assumption 3.5, that is for semilinear systems, an ap-
proximate solution can be constructed which is asymptotically close to the
exact solution with a close initial datum. What’s more, a rate of convergence
can be obtained.

Eσ,s,p is well designed for estimating the rate of convergence in (3.29). Let
indeed u0 satisfy the condition stated in Assumption 3.5, and let r′ be such
that 1

r + 1
r′ = 1. Then

||χδu0 − u0||Eσ,s,p(R2)

=
(

∫

R

(1 + η2)σ
(

∫

R

|χ(
ξ

δ
) − 1|p(1 + ξ2)sp/2|û0|p(ξ, η) dξ

)2/p
dη

)1/2

≤ C
(

∫

R

(1 + η2)σ
(

∫

ξ≤δ
(1 + ξ2)sp/2|û0|p(ξ, η) dξ

)2/p
dη

)1/2

≤ C
(

∫

R

(1 + η2)σ
(

∫

ξ≤δ
1r′dξ

)2/pr′(
∫

ξ≤δ
(1 + ξ2)spr/2|û0|pr dξ

)2/pr
dη

)1/2

≤ Cδ
1

pr′ ||u0||Eσ,s,pr(R2).

The growth of a function transported by a linear operator with a linear
source term can also be estimated in Eσ,s,p. Let indeed c �= c′ be two real
numbers, let u0 be as in Assumption 3.5, and let u and v satisfy

(∂T + c ∂X)u = v and (∂T + c′ ∂X)v = 0,

together with the initial conditions u(0) = 0, v(0) = u0. Then û(T, ξ) =

e−icT ξ
∫ t
0 eic′sξû0(ξ)ds, and

||(1 + ξ2)s/2û(T )||Lp(R) ≤
(

∫

R

(1 + ξ2)sp/2|e
i(c′−c)Tξ − 1

i(c − c′)ξ
|p|û0(ξ)|pdξ

)1/p

≤
(

∫

R

|e
i(c′−c)Tξ − 1

i(c − c′)ξ
|pr′dξ

)1/pr′

||(1 + ξ2)s/2û0||Lpr(R) (3.42)

by Hölder’s inequality, where r′ is such that 1/r′ + 1/r = 1. In the integral
present in the last inequality, only low frequencies contribute to unbounded
terms in T :

(

∫

R

|e
i(c′−c)Tξ − 1

i(c − c′)ξ
|pr′dξ

)1/pr′

≤ C
(

1 +

∫

|ξ|≤1
|sin Tξ

ξ
|pr′dξ

)1/pr′

≤ C(1 + T
1− 1

pr′ );

hence,

||u(T )||Eσ,s,p(R2) ≤ C(1 + T
1− 1

pr′ )||u0||Eσ,s,pr(R2). (3.43)
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This estimate is a special case of a result of [21]. Low frequencies come into
play here because they correspond to critical points of the characteristic
variety of

∂T +

(

c 0
0 c′

)

∂X .

In the case of a nonlinear source term, the resonances in the characteris-
tic variety create small divisors in the integral. This is the context of the
following:

Proposition 3.19 ([21], Proposition 3.3). Let u0, v0
1, v

0
2 ∈Eσ,s,p∩Eσ,s,pr(R2),

with σ, s, p, and r as in Assumption 3.5, (pr)′ such that 1/pr + 1/(pr)′ = 1,
and c, c1, and c2 three distinct real numbers. Then the unique solution in

Eσ,s,p(R2) of
{

(∂T + c ∂X)u = v1v2

u(0) = u0,
with

{

(∂T + ci ∂X)vi = 0
vi(0) = v0

i ,
(3.44)

satisfies the estimate

||u(T )||Eσ,s,p ≤ C(1 + T
1− 1

(pr)′ )||v0
1||Eσ,s,pr ||v0

2||Eσ,s,pr .

Proof. See [21]. �

Note that (pr)′ ≤ pr′: as expected, the estimate in the nonlinear case is
better than the estimate in the linear case.

The equations for the profiles are those of Section 3.4.1, changing the
nonlinearity into a semilinear nonlinearity satisfying Assumption 3.5. The
equation (3.23) becomes in this context

∂τ∂Xu + (αj + βj∂
2
y)u = ∂XGTj

πjf(u). (3.45)

Eσ,s,p is defined by growth and integrability conditions on the Fourier side,

so that the groups of operators {eτ∂−1
X

(αj+βj∂2
y)}τ acts on Eσ,s,p(R2), for all j.

Under Assumption 3.5, equations (3.13) and (3.45) can thus be solved with
an initial condition u0 ∈ Eσ,s,p(R2)∩Eσ,s,pr(R2). Let u0 ∈ C0 ∩L∞([0, τ0]×
RT , Eσ,s,p∩Eσ,s,pr(R2)) be the solution. One sets uδ

0 = χδu0 in the following.

The components of u1 are defined by equation (3.14). By (3.13), there
exists aj solution of (3.45) such that πjû

δ
0(T, ξ, η, τ) = e−icjTξâδ

j(ξ, η, τ).

Thus uδ
1 is estimated as in (3.43):

||uδ
1(T )||Eσ−1,s,p(R2) ≤ C(1 + T

1− 1
pr′ )||aδ

j ||Eσ,s,pr(R2) ≤ C(1 + T
1− 1

pr′ ),

where C is independent of δ.
Deriving (3.14) with respect to τ, one gets a similar bound for ∂τu

δ
1:

||∂τu
δ
1||Eσ−2,s,p(R2) ≤ CT

1− 1
pr′ ||∂τa

δ
j ||Eσ−2,s,pr(R2)
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≤ CT
1− 1

pr′ (||∂−1
X aδ

j ||Eσ,s,pr′ (R2) + ||aδ
j ||Eσ−2,s,pr(R2)) ≤

C

δ
T

1− 1
pr′ .

Set for the second corrector

(∂T + cj∂X)πju
δ
2 (3.46)

= (1 − GTj
)πj(f(uδ

0) + ∂−1
X

∑

k �=j

(E + B∂y)(ck − A)−1(E + B∂y)πku
δ
0),

together with null initial conditions. Again, the term GTj
πj(f(uδ

0)−χδf(u0))
was dropped. The contribution of the linear source term in (3.46) to the
growth of uδ

2 is estimated by (3.43), and the contribution of the nonlinear
term is estimated by Proposition 3.19:

||uδ
2(T )||Eσ−2,s,p(R2)

≤ C(1 + T
1− 1

pr′ )||∂−1
X uδ

0||Eσ,s,pr(R2) + C(1 + T
1− 1

(pr)′ )||u0||2Eσ−2,s,pr

≤ C

δ
(1 + T

1− 1
pr′ ).

The estimate for ∂τu
δ
2 follows:

||∂τu
δ
2(T )||Eσ−4,s,p(R2) ≤

C

δ2
(1 + T

1− 1
pr′ ).

Set δ = εα and the approximate solution

uε = ε(uεα

0 + εuεα

1 + ε2 uεα

2 ). (3.47)

The residual is

rε =
(

f(uε) − ε2f(uεα

0 )
)

+ ε2
∑

j

πjGTj

(

f(uεα

0 ) − χεα

f(u0)
)

+ ε3
(

(E + B(∂y))u
εα

2 + ∂τu
εα

1

)

+ ε4∂τu
εα

2 .

One wishes to estimate rε in L∞([0, τ0/ε], Eσ−4,s,p(R2)). With Assumption
3.1 and the bounds for the correctors, the first semilinear term is of size
O(ε3−2(1−1/pr′)) + O(ε4−α−2(1−1/pr′)). The second semilinear term is of size

O(ε2+α/pr′) with the bound for uεα

0 and the estimate for the rate of con-
vergence of the low-frequency truncation in Eσ,s,p. With the bounds for the
correctors, the second term is of size O(ε3−α−2(1−1/pr′)). The last term is of

size O(ε4−2α−2(1−1/pr′)). Besides, by (3.43), the error on the initial condition

is of size O(ε1+α/pr′). In view of the stability theorem, the residual must be
of size o(ε2) and the error on the initial datum must be of size o(ε).
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The best α is α = 2−pr′

1+pr′ > 0. Set γ = 2−pr′

pr′(1+pr′) . It yields a residual of size

O(ε2+γ) and an error on the initial condition of size O(ε1+γ). The results of
this section are summed up in the following:

Proposition 3.20. Set δ = ε
2−pr′

1+pr′ and γ = 2−pr′

pr′(1+pr′) < 1/2. Then the

corrector terms of the ansatz uε
1 and uε

2 as defined by equations (3.32) and

(3.46) respectively, satisfy

||εuε
1 + ε2uε

2||L∞([0,τ0/ε]×Rt×R2
x,y) = O(ε

2
pr′

−1
),

and the residual rε of the approximate solution uε defined in (3.47) satisfies

1

ε2
||rε||L∞([0,τ0]×RT ,Hs−4(R2)) = O(εγ), and

1

ε2
||rε||L∞([0,τ0/ε]×Rd

x,y) = O(εγ).

As in the quasilinear case, the above proposition is the main step of the
proof of the following:

Theorem 3.21. Under Assumptions 3.3, 3.5, 3.7, and 3.11, there exists

τ∗ > 0 and a unique profile u0 ∈ C0([0, τ0]×RT , Eσ,s,p ∩Eσ,s,pr(R2)), for all

0 < τ0 < τ∗, such that u0 =
∑

j πju0, and for all j,

(∂T + cj∂X)πju0 = 0,

∂τ∂Xπju0 + (αj + βj ∂2
y)πju0 = πj∂XGTj

f(u0),

u0(T = τ = 0) = (1 − π0)u
0.

Set uε
0 = u0(t/ε, x/ε, y, εt). (3.1) with initial datum vε = ε ((1 − π0)u

0 +
v0(ε)), with ||v0(ε)|| = O(εγ) in Eσ,s,p, has a unique solution vε defined and

smooth on [0, τ∗/ε) × R
2 for sufficiently small ε. For all 0 < τ0 < τ∗ and

sufficiently small ε, the asymptotic estimate holds:

1

ε
||vε − εuε

0||L∞([0,τ0/ε]×R2
x,y) = O(εγ).

3.6. The critical case. The initial data are now supposed to be polarized
along the kernel of A : uε(t = 0) = ε π0u

0, and one makes the following
assumption, which is satisfied by the physical examples:

Assumption 3.22. For all η, (0, 0, η) is a critical point of CharRM.

3.6.1. Profile equations. Throughout this section, the notation is that of a
quasilinear system. It is easily adapted to the case of a semilinear system,
considered in Section 3.6.3. Let uε satisfy (3.6). Compute

L(∂)uε − F̃ (uε)∂xu
ε =

∑

k

εkrk(X, y, t, τ). (3.48)
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Again, the strategy is to annihilate the first three terms of the residual,
which yields

A∂Xu0 = 0 (3.49)

A∂Xu1 + (∂t + E + B∂y)u0 = 0 (3.50)

A∂Xu2 + (∂t + E + B∂y)u1 + ∂τu0 = F (u0)∂Xu0. (3.51)

A being hermitian, (Ker A)⊥ = Im A, and denoting by π0 the projector onto
Ker A, the following equivalence holds:

A x = b ⇔ ( π0b = 0, and (1 − π0)x = A−1b ),

where A−1 is the partial inverse of A naturally defined on Ker A ⊕ Ran A.
Therefore, the above set of equations is equivalent to

π0u0 = u0 (3.52)

π0 (∂t + E + B∂y) π0 u0 = 0 (3.53)

(1 − π0)∂Xu1 = −A−1(∂t + E + B∂y)π0u0 (3.54)

π0 (∂t + E + B∂y) π0 u1 = −π0(∂t + E + B∂y)A
−1(∂t + E + B∂y)π0u0

− ∂τπ0u0 + π0F (u0)∂Xu0 (3.55)

(1 − π0)∂Xu2 = −A−1((∂t + E + B∂y)u1 + ∂τu0 − F (u0)∂Xu0). (3.56)

The first relation expresses the polarization of the main profile u0. The
second one is a differential equation for u0 in the variables (t, y). (3.55) is a
compatibility condition on π0u1.

Remark 3.23. The presence in (3.1) of a dispersion term forces one to
consider different components of the main profile, each one oscillating with
respect to t with a possibly different frequency, as is shown below. Setting
π0u1 = 0, one would be left with incompatible equations for the components
of u0. The necessity of the presence of a polarized corrector at first order
thus stems from the dispersive and nonlinear nature of the system.

Denote by τ1, . . . , τs the 0-group at (0, 0, η) and by π1, . . . , πs the associ-
ated eigenprojectors. By assumption, 0 is a semisimple eigenvalue of A, so
that by Proposition 2.8, the spectrum of π0(E/i + B η)π0 is the collection
of derivatives {∂ξτj(0, η), 1 ≤ j ≤ s}. If E + E∗ > 0, then these deriva-
tives generically have nonvanishing imaginary parts. Writing the spectral
representation of the tangent operator

π0(E/i + B η)π0 =
∑

j

(∂ξτj(0, η) + Nj)π̃j ,
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one sees with equation (3.53) that the component of u0 polarized along a πj

such that ∂ξτj(0, η) /∈ R behaves exponentially in t.

Example. For the nonconservative equations of ferromagnetism, with the
notation of Section 2.3,

sp π0(L0 + gL1)π0

=
{

0,−g(α +
1

2
sin2 θ) ± 1

2

√

−4α(α + sin2 θ) + g2 sin4 θ
}

, π0Bπ0 = 0.

If g �= 0, then the waves that are not polarized along the Kernel of π0(L0 +
gL1)π0 are exponentially damped in t.

To ensure that short waves with initial data ε π0u
0 do propagate for long

times O(1/ε) without any further polarization condition, one is thus led to
make Assumption 3.11, that is, to suppose that the system is conservative,
just as in the noncritical case.

Under Assumption 3.11, Butler’s Theorem 2.10 applies for the symbol
of the long-wave operator. In particular, the projectors of the 0-group are
holomorphic in all section planes η = η0. What is more, Butler’s theorem
applies to the tangent operator as well, so that for all j, η �→ ∂ξτj(0, η) is
holomorphic. Denote by πi(0, η0) the limit of πi in the section plane η = η0

as ξ → 0. One has

π0 =
s

∑

1

πi(0, η) (3.57)

for all η, and similarly, denoting by πj(0, Dy) the operator whose symbol is
πj(0, η),

u0 = π0u0 =

s
∑

1

πi(0, Dy)u0.

We now describe the nature of the differential operators present in the profile
equations. Again, this is done by residue computations.

Lemma 3.24 (the critical case: first-order operators). The following rela-

tions hold:

πi(0, η)(E/i + B η)πi(0, η) = −∂ξτi(0, η) πi(0, η), for all i,

and

πi(0, η)(E/i + B η)πj(0, η) = 0, for all i �= j.

Proof. The residue formula at (0, 0, η) at first order in ξ gives
s

∑

1

∂ξτj(0, η) πj(0, η) = −π0(E/i + B η)π0,



short-wave limit for nonlinear, symmetric, hyperbolic systems 43

and with (3.57), the lemma follows. �

Consequently, (3.53) becomes for all j

(∂t − i∂ξτj(0, Dy))πj(0, Dy)u0 = 0. (3.58)

There is no coupling in the variable t for the different components of u0.
Note that at (0, 0, 0), the components πi(0, 0)u0 = π0

i u0 of the main profiles
are coupled in general, for they satisfy

(∂t − iπ0
i Eπ0

i )π
0
i u0 +

∑

j

π0
i Bπ0

ju0 = 0

and the terms π0
i Bπ0

j do not vanish in general.
To obtain decoupled equations in τ as well, one sets for all j

Ij := {k = 1, . . . s, ∂ξτk(0, η) = ∂ξτj(0, η)}, and Πj(0, η) :=
∑

k∈Ij

πk(0, η).

Remark 3.25. The symmetry properties of L and the fact that the trans-
verse perturbation is one-dimensional (y ∈ R) allowed us to apply Butler’s
theorem to the tangent operator, yielding smoothness for the symbol of
∂ξτj(0, Dy). If y ∈ R

d−1 with d > 2, the critical points of the characteristic
variety of the tangent operator might well not be isolated, so that the func-
tions η �→ ∂ξτj(0, η) might be multivalued. However, the solution of (3.53)
could still be decomposed in a sum of simpler waves as in (3.58), by studying
the structure of the set of critical points of Char R(π0(E/i + B(η))π0), as
done in [15], Proposition 3.2.

Projecting (3.55) in the direction Πj(0, Dy) and applying ∂X , one obtains

(∂t − i∂ξτj(0, Dy))∂XΠj(0, Dy)u1 (3.59)

= −∂τ∂XΠj(0, Dy)u0 + Πj(0, Dy)∂X(F (u0)∂Xu0)

− Πj(0, Dy)(E + B∂y)A
−1(E + B∂y)u0.

To sort out the different components of u0 in this latter equation, averag-
ing projectors are again used. With Proposition 3.9, averaging (3.59) with
respect to Tj(∂) = ∂t − i∂ξτj(0, Dy) leads to

∂τ∂XΠj(0, Dy)u0 − Πj(0, Dy)(E + B∂y)A
−1(E + B∂y)Πj(0, Dy)u0

= ∂XGTj
Πj(0, Dy)F (u0)∂Xu0. (3.60)

With the last point of Proposition 3.9, it follows that the equations for the
components Πj(0, η)u0 are decoupled.
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The residue formula at second order for the 0-group at (0, 0, η) gives
∑

j

(
1

2
∂2

ξ τj(0, η)πj(0, η) + ∂ξτj(0, η)∂ξπj(0, η))

= π0(E/i + Bη)A−1(E/i + Bη)π0 + π0(E/i + B η)π0(E/i + B η)A−1

+ A−1(E/i + Bη)π0(E/i + Bη)π0,

and projecting along Πj(0, η), one gets
∑

k∈Ij

(
1

2
∂2

ξ τk πk + ∂ξτk∂ξπk)(0, η)

= Πj(0, η)(E/i + B η)A−1(E/i + B η)Πj(0, η) =: Mj(η).

Mj(η) is an |Ij | × |Ij | block matrix whose block of indices j0, k0 has size
rank πj0(0, η) × rank πk0(0, η). The diagonal blocks are the scalar matrices
1
2∂2

ξ τj0(0, η)Idj0 , where Idj0 is the identity matrix over Ran πj0(0, η).
The slow-time evolution equations are

∂τ∂XΠj(0, Dy)u0 − Mj(Dy)Πj(0, Dy)u0 = ∂XGTj
Πj(0, Dy)F (u0)∂Xu0.

(3.61)

3.6.2. The approximate solution and its asymptotic stability for a quasilinear

system. With u0 ∈ Hs, equations (3.58) and (3.61) can be solved simulta-
neously, and the components of the main profile have the same regularity as
in the noncritical case: there exists τ∗ > 0 such that for all 0 < τ0 < τ∗,
Πj(0, Dy)u0 lie in C0([0, τ0] × Rt, H

s(R2)) ∩ L∞([0, τ0] × Rt, H
s(R2)). The

need for smoothness in τ for the correctors again leads us to truncate the
main profile. Set uδ

0 = χδu0, with the same notation as in the noncritical
case. The equation satisfied by uδ

0 for long times is

∂τΠj(0, Dy)u
δ
0 − ∂−1

X Mj(Dy)Πj(0, Dy)u
δ
0 = Πj(0, Dy)GTj

χδ
(

F (u0)∂Xu0

)

.
(3.62)

Equation (3.54) is solved exactly with a main profile uδ
0: one sets

(1 − π0)u
δ
1 := −A−1∂−1

X (E + B∂y)u
δ
0, (3.63)

which with (3.30) yields the bounds in L∞([0, τ0/ε] × R
2):

||(1−π0)(u
δ
1)

ε|| = O(1/δ), and ||(1−π0)(∂τu
δ
1)

ε||L∞([0,τ0/ε]×R2) = O(1/δ2).

Contrary to the noncritical case, the growth of the polarized components of
uδ

1 are estimated by a classical sublinear growth condition. From equations
(3.59) and (3.60), one sets

(∂t − i∂ξτj(0, Dy))Πj(0, Dy)u
δ
1 = (1 − GTj

)Πj(0, Dy)∂
−1
X

(

χδ(F (u0)∂Xu0)
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+ (E + B∂y)A
−1(E + B∂y)(1 − Πj(0, Dy))u

δ
0

)

. (3.64)

At this stage, the same approximation as in the noncritical case was made—
namely, to drop the term Πj(0, Dy)(F (uδ

0)∂Xuδ
0 − χδ(F (u0)∂Xu0)) that

would appear in the right-hand side of (3.64) according to the profile equa-
tions of the previous section. This latter term will be present in the residual.
With Proposition 3.9, uδ

1 satisfies the sublinear growth condition

||(Πj(0, Dy)u
δ
1)

ε||L∞([0,τ0/ε]×R2) ≤ sup
0≤t≤τ0/ε

lδ3(t),

where for all δ > 0, limt→∞ 1
t l

δ
3(t) = 0. The sublinear growth condition

applied to the derivative of (3.64) with respect to τ yields

||(∂τΠj(0, Dy)u
δ
1)

ε||L∞([0,τ0/ε]×R2) ≤ sup
0≤t≤τ0/ε

lδ4(t),

where for all δ > 0, limt→∞ 1
t l

δ
4(t) = 0. The functions lδ3 and lδ4 are un-

bounded in the limit δ → 0, but as in Section 3.4.3, one will consider the
limit limε→0 sup0≤t≤τ0/ε εlδ0i (t) for a fixed, carefully chosen δ0.

According to (3.56), one sets

uδ
2 := (1−π0)u

δ
2 := −A−1∂−1

X ((∂t+E+B∂y)u
δ
1+∂τu

δ
0+F (uδ

0)∂Xuδ
0). (3.65)

As before, one gets the bounds

||(uδ
2)

ε||L∞([0,τ0]×R2) ≤ L(δ) +
1

δ
sup

0≤t≤τ0/ε
lδ3(t),

and

||(∂τu
δ
2)

ε||L∞([0,τ0]×Rt,Hs−4(R2)) ≤ L̃(δ) +
1

δ
sup

0≤t≤τ0/ε
lδ4(t),

where L(δ) → ∞ and L̃(δ) → ∞ as δ → 0.
Define the approximate solution by

uε = ε(uδ
0 + εuδ

1 + ε2(1 − π0)u
δ
2). (3.66)

Set uε,δ
1 = (uδ

1)
ε and uε,δ

2 = (uδ
2)

ε. Consider now the residual rε,δ of the
approximate solution uε defined in (3.66). The two new terms in the residual
resulting from the above approximations of the profile equations for π0u

δ
1 and

uδ
2 are O(ε2)o(δ). Then the above bounds show that given µ > 0, one can

choose δ0 small enough such that

||εuε,δ0
1 + ε2uε,δ0

2 ||L∞([0,τ0/ε]×R2
x,y) ≤ µ,

and
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1

ε2
||rε,δ0 ||L∞([0,τ0/ε]×Rd

x,y) ≤ µ,

for ε small enough. As in the noncritical case, these estimates yield the
following:

Theorem 3.26. Under assumptions 3.3, 3.4, 3.22, and 3.11, there exists

τ∗ > 0 and a unique profile u0 ∈ C0([0, τ0] × RT , ∂XHs(R2)) ∩ C1([0, τ0],
Hs−2(R2)) for all 0 < τ0 < τ∗, satisfying u0 =

∑

j Πj(0, Dy)u0 and

(∂t − i∂ξτj(0, Dy))Πj(0, Dy)u0 = 0,

∂τ∂XΠj(0, Dy)u0 − Mj(Dy)Πj(0, Dy)u0 = ∂XΠj(0, Dy)GTj
(F (u0)∂Xu0),

u0(T = τ = 0) = π0u
0.

Set uε
0 = u0(x/ε, y, t, εt). (3.1) with initial condition vε = ε(π0u

0 + v0(ε)),
with v0(ε) → 0 in Hs, has a unique solution vε defined and smooth on

[0, τ∗/ε) × R
2 for sufficiently small ε. For all 0 < τ0 < τ∗, the asymptotic

estimate holds:
1

ε
||vε − εuε

0||L∞([0,τ0/ε]×R2
x,y) = o(1).

To improve this convergence rate, one needs for the correctors a better
estimate than the sublinear growth condition. This is achieved in the semi-
linear case for a certain class of systems.

3.6.3. The approximate solution and its asymptotic stability for a semilinear

system of Maxwell type. This section addresses the semilinear critical case for
a certain class of hyperbolic operators which exhibit symmetry and geometric
properties. Among such systems, one finds the Maxwell equations, (2.18)
and (2.20)–(2.21). A stability theorem with an explicit convergence rate is
stated.

The system (2.18) takes the form (2.1) via (2.19). For γ �= 0, the bounded
branches of its characteristic variety (Figure 1) have different limits for
ξ → ∞. System (2.22) has the same property. This is a property of non-
asymptoticity for the bounded branches. Via the definition of the long-wave
operator in Section 3.2, it implies ∂ξτj(0, 0) �= ∂ξτk(0, 0) for j �= k, with the
notation of the previous section for the 0-group. Rouché’s theorem yields
continuity for the spectrum of the tangent operator, so that for η in a neigh-
borhood of 0 and j �= k, ∂ξτj(0, η) �= ∂ξτk(0, η). This means that there are
no critical points around η = 0 for the tangent operator—see Remark 3.25.
What’s more, this nonasymptoticity property implies some regularity for
the projectors of the 0-group. For η close to 0, compute with (2.10) the
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transverse derivative of a projector of the 0-group at the noncritical point
(τi(ξ, η), ξ, η) ∈ Char M :

∂ηπi(ξ, η) = −
∑

j �=i

πi(ξ, η)Bξπj(ξ, η) + πj(ξ, η)Bξπi(ξ, η)

τi(ξ, η) − τj(ξ, η)

− πj(ξ, η)B ξL−1(ξ, η) − L−1(ξ, η)B ξπj(ξ, η),

where the sum is carried over indices of the 0-group and where L−1(0, η) =
A−1. In the limit ξ → 0, one obtains

∂ηπi(0, η) = −
∑

j �=i

πi(0, η)Bπj(0, η) + πj(0, η)Bπi(0, η)

∂ξτi(0, η) − ∂ξτj(0, η)
. (3.67)

Similarly, at order two,

1

2
πi(0, η) ∂2

ηπi(0, η) πi(0, η) =
∑

j �=i

πi(0, η)Bπj(0, η)Bπi(0, η)

(∂ξτi(0, η) − ∂ξτj(0, η))2
. (3.68)

Note that such a nonasymptoticity condition provides sharper secular bounds
for the correctors in [21]; it yields regularity in our setting.

Another feature of Maxwell equations of great interest regarding the as-
ymptotic stability is the relation π0Bπ0 = 0. It follows that the algebraic
lemmas may be written at the critical point (0, 0, 0) ∈ Char M without
inducing any coupling between the components of the main profile. The
algebraic lemma at first order is

π0Eπ0 = −i
∑

j

∂ξτj(0, 0)πj(0, 0).

With (3.67) and (3.68), the relation π0Bπ0 = 0 also implies for all j,

∂ηπj(0, 0) = 0 and πj(0, 0) ∂2
ηπj(0, 0) πj(0, 0) = 0.

Hence the algebraic lemma at second order is the same as in the noncritical
case, for all j:

πj(0, 0)EA−1Eπj(0, 0) = −1

2
∂2

ξ τj(0, 0)πj(0, 0),

πj(0, 0)BA−1Bπj(0, 0) =
1

4
∂2

ξ ∂2
ητj(0, 0)πj(0, 0),

and
πj(0, 0)EA−1Bπj(0, 0) + πj(0, 0)BA−1Eπj(0, 0) = 0.

The first profile satisfies

u0 =
∑

j

πj(0, 0)u0. (3.69)
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With the algebraic lemma at first order, the πj(0, 0)u0’s satisfy a system of
linear, uncoupled ordinary differential equations in t:

(∂t − i∂ξτj(0, 0))πj(0, 0)u0 = 0. (3.70)

The nonlinear term in the slow-time evolution equation is πj(0, 0)∂XGTj

×f(u0), where GTj
stands for the averaging projector with respect to the

frequency −i∂ξτj(0, 0). The average with respect to GTj
of the product of

two terms oscillating with frequencies ∂ξτk(0, 0) and ∂ξτk′(0, 0), vanishes; f
being a homogeneous polynomial of degree two, the nonlinear term vanishes.
Changing the degree of f and changing the amplitude of the solutions ac-
cordingly, the nonlinear term would not vanish because of the resonances
between the ∂ξτj(0, 0)’s. With the algebraic lemma at second order, the
equation becomes

∂τ∂Xπj(0, 0)u0 + (−1

2
∂2

ξ τj(0, 0) +
1

4
∂2

ξ ∂2
ητj(0, 0)∂2

y)πj(0, 0)u0

= πj(0, 0)GTj
∂Xf(u0,u0). (3.71)

These equations together with the initial datum u0 = π0u
0 can be solved

in C0 ∩ L∞([0, τ0], E
σ,s,p(R2)). Let τ∗ be the maximal existence time of the

solution u0, and let uδ
0 = χδu0.

The equations for the polarized components of the first corrector are linear
ordinary differential equations:

(∂t − i∂ξτj(0, 0))πj(0, 0)uδ
1 = πj(0, 0)(1 − GTj

)
(

χδf(u0) + (E + B∂y)

× A−1(E + B∂y)(1 − πj(0, 0))uδ
0

)

.

The right-hand side is a product of terms oscillating with frequency different
from ∂ξτj(0, 0), because of 1 − GTj

. It follows that π0u
δ
1 is bounded. The

sublinear growth condition that hampered the estimates in the previous
section is replaced by a bound in O(1), and one has for all 0 < τ0 < τ∗

||(π0u
δ
1)

ε|| = O(1), and ||(π0∂τu
δ
1)

ε|| = O(1/δ) in L∞([0, τ0/ε] × R
2
x,y).

The equations for the nonpolarized component of the first corrector is
(3.63), whence follow the estimates

||(1 − π0)(u
δ
1)

ε|| = O(1/δ), and ||(1 − π0)(∂τu
δ
1)

ε|| = O(1/δ2)

in L∞([0, τ0/ε] × R
2
x,y).

The second corrector, defined by

uδ
2 = −A−1∂−1

X

(

(E+B∂y)π0u
δ
1+∂−1

X (E+B∂y)A
−1(E+B∂y)π0u

δ
0+χδf(u0)

)

,

satisfies by (3.30)

||(uδ
2)

ε|| = O(1/δ2), and ||(∂τu
δ
2)

ε|| = O(1/δ3) in L∞([0, τ0/ε] × R
2
x,y).
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Set again δ = εα, with 0 < α < 1 and uε = ε (uεα

0 + εuεα

1 + ε2uεα

2 ). The
corrector terms of the ansatz are O(ε1−α) in L∞([0, τ0] × Rt, E

σ−2,s,p(R2)).
The terms created by the definitions of the correctors are like ε2(f(uεα

0 ) −
χεα

f(u0)), a term of size O(ε2+α/pr′) in L∞([0, τ0] × Rt, E
σ,s,p(R2)). The

worst estimate for the other terms of the residual is of size O(ε3−2α). The

best α is α = pr′

1+pr′ . It yields the estimate

1

ε2
||rε||L∞([0,τ0]×Rt,Eσ−4,s,p(R2)) = O(ε1/(1+pr′)).

The stability theorem follows:

Theorem 3.27. Under Assumptions 3.3, 3.5, 3.22, and 3.11, assume more-

over that the elements of the 0-group of Char M satisfy ∂ξτj(0, 0) �= ∂ξτk(0, 0)
for j �= k, and that π0Bπ0 = 0—these assumptions are satisfied by sys-

tems (2.19) and (2.22). Then there exists τ∗ > 0 and a unique profile

u0 ∈ C0 ∩ L∞([0, τ0], E
σ,s,p ∩ Eσ,s,pr(R2)), for all 0 < τ0 < τ∗, satisfying

equations (3.69), (3.70), and (3.71), and the initial condition u0(0) = π0u
0.

Set uε
0 = u0(x/ε, y, t, εt). (3.1) with initial datum vε = ε(π0u

0 + v0(ε)),

with ||v0(ε)|| = O(ε1/(1+pr′)) in Eσ,s,p has a unique solution vε defined and

smooth on [0, τ∗/ε)×R
2 for all sufficiently small ε. For all 0 < τ0 < τ∗ and

sufficiently small ε, the asymptotic estimate holds:

1

ε
||vε − εuε

0||L∞([0,τ0/ε]×R2
x,y) = O(ε1/(1+pr′)).

3.7. Examples. For the systems (2.19) and (2.22), the equations for the
leading term of the approximate solution can be made explicit by simple
matrix computations.

Maxwell-Lorentz equations. Consider system (2.18), adding to P a
nonlinear polarization PNL = nonlinear (E). In transverse magnetic mode,

E =





0
0
E



 (t, x, y), B =





Bx

By

0



 (t, x, y).

Set








0 −curl 0 0
curl 0 0 0

0 0 0 0
0 0 0 0









= A∂x + B∂y.

Consider first an initial datum polarized along π1, the projector onto Ker (A−
1). In normalized units Bx(0) = 0 and E(0) = −By(0). Only the electric field
and the transverse component of the magnetic field are turned on. The first-
order tangent operator at (1, 0, 0) vanishes by Lemma 3.10—see Figure 3.
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Computing the second-order operators, one finds that the leading term u of
the approximate solution satisfies

{

(∂T + ∂X)π1u = 0,
(∂τ∂X + 1

2(−γ + ∂2
y))π1u = nonlinear (π1u),

where π1u = (0, 0, 1
2(E − By), 0,−1

2(E − By), 0, 0R3 , 0R3).
Consider now an initial datum polarized along the Kernel of A. One has

E(0) = 0 and By(0) = 0. All the components of u are turned on except
the electric field and the transverse component of the magnetic field. The
equations in t reduce to a system of uncoupled ordinary differential equations
whose frequencies are the limits of the bounded branches of the characteristic
variety for the Lorentz model (Figure 1). The second-order operators vanish.
Therefore, the only nontrivial equations are

(∂t − ivj)πj(0, 0)u = 0,

where vj ∈ {0,±1,±√
1 + γ}, and π0 =

∑

j πj(0, 0) is the decomposition of

the 0-group. In transverse magnetic mode, one has πj(0, 0)u = 0 for all j:
all the equations are trivial.

Ferromagnetism. Consider system (2.22) with an initial datum polar-
ized along Ker (A−1), with the same notation as above. For the characteris-
tic variety pictured in Figure 4, (1, 0, 0) is a critical point. The axisymmetry
hypothesis in Assumption 3.3 is actually not satisfied by the characteristic
variety of this model. The slow-time evolution equation will therefore be
slightly different.

The first-order operator at (1, 0, 0) is

−i π1Eπ1 =
1

2
cos θ (π1,+ − π1,−),

where π1,+ and π1,− have rank 1 and π1 = π1,++π1,−. In transverse magnetic
mode,

π1,±u = (0,± i

4
(E − By),

1

4
(E − By), 0,−1

4
(E − By),±

−i

4
(E − By), 0R3).

The nonlinearity vanishes, and it yields






















(∂T + ∂X)π1,±u = 0,

(∂t ±
1

2
i cos θ)π1,±u = 0,

(

∂τ∂X +
1

2

(1

4
(1 + sin2 θ) + α(1 − 1

2
sin2 θ) ± i sin θ∂y + ∂2

y

))

π1,±u = 0.

(3.72)

The fact that these equations are linear when they were expected to be
nonlinear does not stem from a transparency property of the system as in
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[16] but from the nature of the nonlinearity and the oscillations in t, as
explained in Section 3.6.3.

The presence of a term in ∂y in the equation in τ is due to the fact that the
characteristic variety is not rotation invariant with respect to {ξ = η = 0}.
If sin θ = 0, the branches of the characteristic variety depend on ξ2 + η2 and
η2, and it follows from the analysis led in Section 3.4.1 that the equation in
τ does not involve any term in ∂y, as in (3.72).

Consider finally an initial datum polarized along Ker A. The focus is on
the point (0, 0, 0) of the characteristic variety associated with the long-wave
operator (Figure 4). The tangent operator −iπ0Eπ0 has rank 4, and its

eigenvalues are {0, ±
√

α(α + sin2 θ)}. The second-order operators and the
nonlinear term vanish. The only nontrivial equations are ordinary differential
equations in t

(∂t − ivj)πj(0, 0)u = 0,

where vj ∈ {0,±
√

α(α + sin2 θ)} and π0 =
∑

j πj(0, 0) is the decomposition
of the 0-group. In transverse magnetic mode, these equations are trivial
again.
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