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Abstract

Real-life decision-making problem has been demonstrated to cover the indeterminacy through single valued neutrosophic 

set. It is the extension of interval valued neutrosophic set. Most of the problems of real life involve some sort of uncertainty 

in it among which, one of the famous problem is finding a shortest path of the network. In this paper, a new score function 

is proposed for interval valued neutrosophic numbers and SPP is solved using interval valued neutrosophic numbers. Addi-

tionally, novel algorithms are proposed to find the neutrosophic shortest path by considering interval valued neutrosophic 

number, trapezoidal and triangular interval valued neutrosophic numbers for the length of the path in a network with illus-

trative example. Further, comparative analysis has been done for the proposed algorithm with the existing method with the 

shortcoming and advantage of the proposed method and it shows the effectiveness of the proposed algorithm.

Keywords Interval valued triangular neutrosophic number · Interval valued trapezoidal neutrosophic number · Ranking 

methods · Deneutrosophication · Neutrosophic shortest path problem · Network

Introduction and literature of review

In this part, introduction to the objective of the paper is given 

by presenting basic concepts and procedure of the shortest 

path problem (SPP) and the literature of review have been 

collected to know the recent work related to the presented 

concept which shows the novelty of the presented work

Introduction

SPP is the ultimate and popular problem in the different 

areas also it is the heart of the network flows. In conventional 

problem, the distance between the nodes is considered to be 

certain and for the uncertain environment fuzzy numbers 

can be adopted to get an optimized result. Computing the 

minimum cost of the path from every vertex is called sin-

gle source SPP. Especially in the process of finding shortest 

path, finding the path which has minimum number of bends 

is very important and will give the most optimized result. 

And the cost is the mapping of length and bends. The con-

ventional SPP is to catch the minimum cost path from initial 

to end node and the cost is the addition of the costs of the 

curves on the path [1, 2, 4].
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While applying in real time situations the vertices and 

the edges will be considered as follows. In transmission 

networks, telephone exchange, communication proficiency, 

satellites, work stations terminals and computers will be con-

sidered as the vertices and cables, wires and fiber optics will 

be treated as the arcs or paths and it is expected to meet trans-

mission requirements at the minimum cost whereas in traffic 

control management the cost is due to only the paths with 

heavy traffic [8]. In the established network every path has 

a weight which will extend the flow in a recurrence fashion. 

The fusion of costs and weights proposes different ways of 

cost minimizing cycles. There may be cycles with negative 

cost which allow raise to perpetual instances and cost of min-

imum infinity and weight minimizing cycles which permits 

rise to a sink in such a way that it is inexpensive to consume 

a flow in an infinite cycle rather than transit to the station.

SPP plays an essential role in combinatorial optimization 

due to its elemental aspects and a broad range of applications. 

Investigating shortest paths is an essential thing in communi-

cation, computer networks, manufacturing systems and trans-

portation. The weight of the path will represent the transporta-

tion timing from one end to other, i.e., the traveling time from 

the source to the destination. The efficiency of the transmis-

sion can be improved by speed up some of the routes to reduce 

the traveling time between some of the pairs of sources and 

terminals by minimizing the weights of the links. One needs 

some amount to reduce the traveling time by improving the 

road conditions for the faster traveling and the total cost sup-

posed to be less to face the needs of the speedup [9].

In all the SPP, the source and terminal nodes should sat-

isfy a set of conditions defined over a set of resources which 

associates to a quantity like the time, pickup of load by the 

vehicle or the duration of the break. The constraint of the 

resource will be given in the form of intervals which regulate 

the values that can be considered by the resources at each 

node on the path. SPP using complete graph can be encrypted 

as an assignment problem and is equivalent to an exceptional 

case of the assignment problem. Providing the shortest path 

is a necessary thing to the system of transport management, 

from a particular source node to the terminal node. The arc 

lengths are stimulated to represent time or cost of the trans-

portation rather the geographical distances [10, 11].

The technique of using fuzzy numbers can be adopted 

for the environment with uncertainty. Crisp number is 

obtained from fuzzy number using defuzzification function 

and it is widely used in an optimization methods. SPP is not 

restricted to the geometric distance. Even though it is fixed, 

the traveling time within the cities may be represented by 

fuzzy variable. Since the weight of the arcs is uncertain in 

almost all the communication and transportation networks, 

it cannot be designed into crisp graphs. Dubois and Prade 

solved fuzzy shortest path problem for the first time. The 

most crucial combinatorial optimization problem is to find 

the SP to the directed graph and its primary format unable 

to represent the situations where the value of the detached 

function should be found not only by the preference of each 

single arc [15–19].

Shortest path of the network can be found using neutro-

sophic set (NS) by considering edge weight as neutrosophic 

numbers (NNs) and that may be single and interval valued, 

and bipolar as well [21, 22]. Samarandache described about 

neutrosophic for the first time in the year 1995 and proposed 

an important mathematical mechanism called neutrosophic 

set theory to handle imprecise, uncertain and indeterminate 

problems which cannot be dealt by fuzzy and its various 

type. NS is obtained by three autonomous mapping such as 

truth (T), indeterminacy (I) and falsity (F) and takes values 

from  ]0−,  1+[. It is very difficult to utilize NS directly.

While getting uncertainty in the set of vertices and edge 

then fuzzy graph can be adopted for SPP, but if there is inde-

terminacy exist between the relation of nodes and vertices 

then neutrosophic will be the appropriate concept to deal the 

real life problems [23]. Since indeterminacy is also treated 

seriously, NSs can be able to handle uncertainty in a better 

way [35]. The model of the NS is an important mechanism to 

deal with real scientific and engineering as it is able to deal 

uncertain, inconsistent and also indeterminate information 

[36]. Route maintenance or supply with uncertainty is play-

ing a primary role in intelligent transport systems.

Due to inadequate data, as the stochastic shortest path 

needs accurate probability distributions, it is unable give the 

optimized result. Due to accuracy, adoptability and rapport 

to a system, single valued neutrosophic graph (SVNG) gets 

more attention and produce optimized solution than other 

types of fuzzy sets. Application of probabilities in machine 

learning is done by the score function. These functions play 

an essential role to find the minimum cost path in SPP and 

minimum spanning tree (MST) to UIVNGs (undirected 

interval valued neutrosophic graphs). When the data are in 

the form of intervals then that can dealt effectively by con-

sidering interval valued neutrosophic setting [40, 41]. Many 

group decision making methods including hybrid methods 

have been proposed to solve decision making problems such 

as supplier selection, project selection under triangular and 

trapezoidal neutrosophic environment [55–64].

The rest of the paper is arranged as follows. In Sect. 1.2, 

literature of review has been collected. In Sect. 2, over view 

of interval valued neutrosophic set is given. In Sect. 3, novel 

algorithms are proposed to find the neutrosophic shortest 

path under interval valued neutrosophic environment and 

interval valued triangular and trapezoidal neutrosophic 

environments with the help of proposed score function. In 

Sect. 4, shortcoming of the existing methods, advantages 

of the proposed method and comparative analysis are pre-

sented for the proposed method with the existing method. In 

Sect. 5, conclusion of the presented work is given.



393Complex & Intelligent Systems (2019) 5:391–402 

1 3

Literature of review

The authors of, Ahuja et al. [1] proposed a different model 

redistributive heap as a rapid algorithm to find SP of the 

network. Yang et al. [2] presented a graph-theoretic strat-

egy of rectilinear paths on bends and lengths. Ibarra and 

Zheng [3] proved that the single-origin shortest path prob-

lem for permutation graphs can be determined by order of 

the logarithmic of n. Arsham [4] examined the robustness 

of the shortest path problem. Tzoreff [5] examined the dis-

connected SPP with group path lengths. Batagelj et al. [6] 

proposed generalized SPP.

Zhang and Lin [7] introduced the calculation of the 

reverse SPP. Vasantha and Samaranadache [8] proposed pri-

mary neutrosophic algebraic framework. Also their utiliza-

tion to fuzzy and NEUTROSOPHIC models as well. Roditty 

and Zwick [9] acquired some results associated with effec-

tive forms of the SPP. Irnich and Desaulniers [10] proposed 

SPP with support force. Buckley and Jowers [11] intro-

duced SPP using the concept of fuzzy logic. Wastlund [12] 

analyzed the relationship between random assignment and 

SPP problem on the complete graph. Turner [13] attained 

strongly polynomial algorithms for a collection of SPP on 

acyclic and normal digraphs. Deng et al. [14] proposed fuzzy 

Dijkstra algorithm for SPP for imprecise environment.

Biswas et al. [15] introduced an algorithm for deriving 

shortest path in intuitionistic fuzzy environment. Arnautovic 

et al. [16] obtained the complement of the ant colony devel-

opment for the SPP using open MP and CUDA. Gabrel and 

Murat [17] presented different models, methods and princi-

ple for the stability of the SPP. Grigoryan and Harutyunyan 

[18] proposed SPP in the Knodel graph. Rostami et al. [19] 

proposed quadratic SPP. Randour et al. [20] presented algo-

rithms to incorporate the approaches with various securities 

on the length allocation of the paths instead of decreasing its 

normal value. Broumi et al. [21] solved SPP under neutro-

sophic setting using Dijkstra algorithm. Broumi et al. [22] 

introduced SPP based on triangular fuzzy neutrosophic 

environment.

Broumi et al. [23] proposed assertive types of SVNGs 

and examination of properties with validation and examples. 

Nancy and Harish [24] proposed an improved score func-

tion and applied in decision making process. Sahin and Liu 

[25] maximized method of deviation for neutrosophic deci-

sion making problem with a support of incomplete weight. 

Broumi et al. [26] proposed the measurements for SPP using 

SV-triangular neutrosophic numbers. Broumi et al. [27] cal-

culated MST in interval valued bipolar neutrosophic (IVBN) 

setting. Hu and Sotirov [28] proposed amenity of semi defi-

nite programming for the quadratic SPP and performed some 

arithmetic operations to solve the QSPP using branch and 

bound algorithm. Dragan and Leitert [29] solved SPP on 

minimal peculiarity. Zhang et al. [30] proposed stable SPP 

with circulated uncertainty.

Broumi et al. [31] solved SPP using SVNG. Broumi et al. 

[32] solved SSP under bipolar neutrosophic environment. 

Peng and Dai [33] proposed interval-based algorithms based 

on neutrosophic environment for decision making process. 

Liu and You [34] proposed muirhead mean operators and 

employed them in decision making problem. Smarandache 

[35] solved SPP using trapezoidal neutrosophic knowledge. 

Wang et al. [36] applied SV-trapezoidal neutrosophic prefer-

ence in decision making problem. Deli and Subas [37] pro-

posed a ranking method of SVNNs and applied in decision 

making problem. Broumi et al. [38] proposed matrix algo-

rithm for MST in undirected IVNG. Enayattabar et al. [39] 

applied Dijkstra algorithm to find the shortest path under 

IV Pythagorean fuzzy setting. Broumi et al. [40] proposed 

IVN soft graphs. Broumi et al. [41] proposed some notion 

with respect to neutrosophic set with triangular and trap-

ezoidal concept and primary operations as well. Also done a 

contingent analysis with the existing concepts and proposed 

neutrosophic numbers.

Broumi et al. [42] proposed an innovative system and 

technique for the planning of telephone network using NG. 

Broumi et al. [43] proposed SPP under interval valued neu-

trosophic setting. Bolturk and Kahraman [44] presented a 

novel IVN AHP with cosine similarity measure. Wang et al. 

[45] proposed interval neutrosophic set and logic in detail. 

Biswas et al. [46] proposed distance measure using interval 

trapezoidal neutrosophic numbers. Deli [47] given detailed 

work on expansion and contraction on conventional neutro-

sophic soft set. Deli [48] solved a decision making problem 

using interval valued neutrosophic soft numbers.

Deli [49] proposed theory of npn-soft set and its appli-

cation. Deli [50] proposed single valued trapezoidal neu-

trosophic operators and applied them in a decision making 

problem. Deli and Subas [51] proposed weighted geometric 

operators under single valued triangular neutrosophic num-

bers and applied in a decision making problem. Deli et al. 

[52] solved a decision making problem using neutrosophic 

soft sets. Basset et al. [53] proposed framework of hybrid 

neutrosophic group AND-TOPSIS for supplier selection. 

Chang et al. [54] experimented in detail about framework 

for the pattern of reuse necessary decision from theoretical 

perspective to practices.

Basset et al. [55] proposed a hybrid method of neutro-

sophic sets and method of DEMATEL to develop criteria 

for supplier selection. Basset et al. [56] proposed a struc-

ture based on VIKOR technique for e-government web-

site evaluation. Basset et al. [57] Introduced a framework 

to evaluate cloud computing services. Basset et al. [58] 

proposed a hybrid method for project selection under neu-

trosophic environment. Basset et al. [59] proposed a new 

method for a neutrosophic linear programming problem. 
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Basset et al. [60] proposed an economic tool for risk quan-

tification for supply chain. Basset et al. [61] proposed a 

framework for AHP-QFD to solve a supplier selection. 

Basset et  al. [62] proposed neutrosophic AHP-Delphi 

group decision model under trapezoidal neutrosophic 

numbers. Basset et al. [63] solved a group decision mak-

ing problem using neutrosophic analytic hierarchy process. 

Basset et al. [64] proposed a group decision making prob-

lem using triangular neutrosophic numbers. Kumar et al. 

[65] proposed an algorithm to solve neutrosophic short-

est path problem under triangular and trapezoidal neutro-

sophic environment.

From this literature review, to the best of our knowledge, 

there is no contribution of research for SPP using interval 

neutrosophic numbers under triangular and trapezoidal envi-

ronments. Additionally, this is the first study that SPP is 

solved by considering interval valued triangular and trap-

ezoidal neutrosophic numbers for the length of the arc for 

a given network.

Overview on interval valued neutrosophic 
set

Here, a brief description of some basic concepts on NSs, 

SVNSs, IVNSs and some existing ranking functions for 

IVNNs are given.

De�nition 2.1 [35] NS is constructed by N =
{

< x;T
N
(x), I

N

(x), F
N
(x) >, x ∈ X

}

, where X be an universal set of elements 

x and T
N
(x), I

N
(x), F

N
(x) ∶ X →]−0, 1+[ are the truth, indeter-

minacy and also falsity membership functions and satisfies 

the criterion,

De�nition 2.2 [36] SVNS is defined by 
∙

N =

{

< x;T ∙

N
(x), I ∙

N

(x), F ∙

N
(x) >, x ∈ X

}

 and for every 

and the sum of these three is less than or equal to 3.

De�nition 2.3 [45] An interval valued NS is defined by 
∙

N =

{

< x ∶

[

T
L
∙

N

(x), T
U
∙

N

(x)

]

,

[

I
L
∙

N

(x), I
U
∙

N

(x)

]

,

[

F
L
∙

N

(x), F
U
∙

N

(x)

]

>, x ∈ X

}

 , where T ∙

N
(x) =

[

T
L
∙

N

(x), T
U
∙

N

(x)

]

⊆ [0, 1],

(1)
−

0 ≤ T
N
(x) + I

N
(x) + F

N
(x) ≤ 3

+
.

(2)x ∈ X, T ∙

N
(x), I ∙

N
(x), F ∙

N
(x) ∈ [0, 1],

(3)

I ∙

N
(x) =

[

I
L
∙

N

(x), I
U
∙

N

(x)

]

⊆ [0, 1],

F ∙

N
(x) =

[

F
L
∙

N

(x), F
U
∙

N

(x)

]

⊆ [0, 1] and

Now we assume some mathematical operations on IVNNs 

(interval valued neutrosophic numbers).

De�nition 2.4 [45] Let 
∙

N1 =

{

< x ∶

[

T
L
∙

N1

, T
U
∙

N1

]

,

[

I
L
∙

N1

, I
U
∙

N1

]

,

[

F
L
∙

N1

, F
U
∙

N1

]

>, x ∈ X

}

 and 
∙

N2 =

{

< x ∶

[

T
L
∙

N2

, T
U
∙

N2

]

,

[

I
L
∙

N2

, I
U
∙

N2

]

,

[

F
L
∙

N2

, F
U
∙

N2

]

>, x ∈ X

}

 be two IVNNs and � > 0 then we have 

the following operational laws.

Deneutrosophication formulas for IVNNs: To compare two 

IVNNs 
∙

N
1
 and 

∙

N
2
 . We use the score function (SF) which rep-

resents a map from [N (R)] into the real line. In the literature 

there are some deneutrosophication formulas, here paper, we 

focus on some of types [24, 25, 33, 34, 44] defined as follows:

(4)
0 ≤ sup T ∙

N
(x) + sup I ∙

N
(x) + sup F ∙

N
(x) ≤ 3.

(5)

∙

N1 ⊕

∙

N2 =

⟨[

T
L
∙

N1

+ T
L
∙

N2

− T
L
∙

N1

T
L
∙

N2

, T
U
∙

N1

+ T
U
∙

N2

− T
U
∙

N1

T
U
∙

N2

]

,

[

I
L
∙

N1

I
L
∙

N2

, I
U
∙

N1

I
U
∙

N2

]

,

[

F
L
∙

N1

F
L
∙

N2

, F
U
∙

N1

F
U
∙

N2

]⟩

(6)

∙

N1 ⊗

∙

N2 =

⟨[

T
L
∙

N1

T
L
∙

N2

, T
U
∙

N1

T
U
∙

N2

]

,

[

I
L
∙

N1

+ I
L
∙

N2

− I
L
∙

N1

I
L
∙

N2

, I
U
∙

N1

+ I
U
∙

N2

− I
U
∙

N1

I
U
∙

N2

]

,

[

F
L
∙

N1

+ F
L
∙

N2

− F
L
∙

N1

F
L
∙

N2

, F
U
∙

N1

+ F
U
∙

N2

− F
U
∙

N1

F
U
∙

N2

]⟩

(7)

�

∙

N =

⟨[

1 −

(

1 − T
L

N

)�

, 1 −

(

1 − T
U

N

)�
]

,

[

(

T
L

N

)�

,
(

T
U

N

)�
]

,

[

(

F
L

N

)�

,
(

F
U

N

)�
]⟩

(8)

Ṅ
�
=

⟨[

(

T
L

N

)�

,
(

T
U

N

)�
]

,

[

1 −

(

1 − I
L

N

)�

, 1 −

(

1 − I
U

N

)�
]

,

[

1 −

(

1 − F
L

N

)�

, 1 −

(

1 − F
U

N

)�
]⟩

.

(9)

S
Bolturk

(

∙

N
1

)

=

(
(

T
L

x
+ T

U

x

)

2
+

(

1 −

(

I
L

x
+ I

U

x

)

2

)

∗

(

I
U

x

)

−

(
(

F
L

x
+ F

U

x

)

2

)

∗

(

1 − F
U

x

)

)

(10)

S
Ridvan

(

∙

N
1

)

=

(

1

4

)

×

(

2 + T
L

x
+ T

U

x
− 2I

L

x
− 2I

U

x
− F

L

x
− F

U

x

)
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The ranking of 
∙

N
1
 and 

∙

N
2
 by SF is defined as follows:

 (i) 
∙

N
1
≺

∙

N
2
 if �

(

∙

N
1

)

≺ �

(

∙

N
2

)

 (ii) 
∙

N
1
≻

∙

N
2
 if �

(

∙

N
1

)

≻ �

(

∙

N
2

)

 (iii) 
∙

N
1
=

∙

N
2
 if �

(

∙

N
1

)

= �

(

∙

N
2

)

De�nition 2.5 [36] Let R
N
=

⟨[

R
T
, R

I
, R

M
, R

E

]

,

(

T
R
, I

R
, F

R

)⟩

 

and S
N
=

⟨[

S
T
, S

I
, S

M
, S

E

]

,

(

T
S
, I

S
, F

S

)⟩

 be two trapezoidal 

neutrosophic numbers (TpNNs) and � ≥ 0 , then

Definit ion 2.6 [36]  Le t  R =

[

R
T
, R

I
, R

M
, R

E

]

 and 

R
T
≤ R

I
≤ R

M
≤ R

E
 then the centre of gravity (COG) in R is

De�nition 2.7 [36] Let S
N
=

⟨[

S
T
, S

I
, S

M
, S

E

]

,

(

T
S
, I

S
, F

S

)⟩

 

be a TpNN then the score, accuracy and certainty functions 

are as follows

(11)

SPeng

(

∙

N1

)

=

[

2

3
+

(

T
L

x
+ T

U

x

)

6
−

(

I
L

x
+ I

U

x

)

6
−

(

F
L

x
+ F

U

x

)

6

]

(12)

S
Liu

(

∙

N
1

)

=

[

2 +

(

T
L

x
+ T

U

x

)

2
−

(

I
L

x
+ I

U

x

)

2
−

(

F
L

x
+ F

U

x

)

2

]

(13)

S
Harish

(

∙

N
1

)

=

(

1

8

)

×

[

4 +

(

T
L

x
+ T

U

x
− F

L

x
− F

U

x

−2I
L

x
− 2I

U

x

)(

4 − T
L

x
− T

U

x
− F

L

x
− F

U

x

)]

.

(14)

R
N
⊕ S

N
=

⟨[

R
T
+ S

T
, R

I
+ S

I
, R

M
+ S

M
, R

E
+ S

E

]

,

(

T
R
+ T

S
− T

R
T

S
, I

R
I
S
, F

R
F

S

)⟩

(15)

R
N
⊗ S

N
=

⟨[

R
T
⋅ S

T
, R

I
⋅ S

I
, R

M
⋅ S

M
, R

E
⋅ S

E

]

,

(

T
R
⋅ T

S
, I

R
+ I

S
− I

R
⋅ I

S
, F

R
+ F

S
− F

R
⋅ F

S

)⟩

(16)

�R
N
=

⟨

[

�R
T
, �R

I
, �R

M
, �R

E

]

,

(

1 −

(

1 − T
R

)�

,
(

I
R

)�

,
(

F
R

)�
)⟩

.

(17)

COG (R)

=

⎧⎪⎨⎪⎩

R if R
T
= R

I
= R

M
= R

E

1

3

�
R

T
+ R

I
+ R

M
+ R

E
−

R
E

R
M
−R

I
R

T

R
E
+R

M
−R

I
−R

T

�

otherwise

.

(18)�
(

S
N

)

= COG(R) ×

(

2 + T
S
− I

S
− F

S

)

3

De�nition 2.8 [36] Let R
N
=

⟨[

R
T
, R

I
, R

P

]

,

(

T
R
, I

R
, F

R

)⟩

 be a 

triangular neutrosophic number then the score and accuracy 

function are,

De�nition 2.9 [46] Let N be a trapezoidal neutrosophic num-

ber in the set of real numbers with the truth, indeterminacy 

and falsity membership functions are defined by

w h e r e  t
N
= [tL, t

U] ⊂ [0, 1], i
N
= [iL, i

U] ⊂ [0, 1] a n d 

fN = [f L, f U] ⊂ [0, 1] are interval numbers. Then the number 

N can be denoted by 
(

[a, b, c, d];[tL
, tU], [iL, iU], [f L

, f U]
)

 and 

is called interval valued trapezoidal neutrosophic number.

• If b = c in interval valued trapezoidal neutrosophic num-

ber then it becomes interval valued triangular neutrosophic 

number.

(19)a
(

S
N

)

= COG(R) ×
(

T
S
− F

S

)

(20)C
(

S
N

)

= COG(R) ×
(

T
S

)

.

(21)�
(

R
N

)

=
1

12

[

R
T
+ 2 ⋅ R

T
+ R

P

]

×

[

2 + T
R
− I

R
− F

R

]

(22)a
(

R
N

)

=
1

12

[

R
T
+ 2 ⋅ R

T
+ R

P

]

×

[

2 + T
R
− I

R
+ F

R

]

.

(23)T
N
(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(x−a)tN

b−a
, a ≤ x < b

t
N

, b ≤ x ≤ c
(d−x)tN

d−c
, c < x ≤ d

0 , otherwise

(24)I
N
(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

b−x+(x−a)tN

b−a
, a ≤ x < b

i
N

, b ≤ x ≤ c
x−c+(d−x)iN

d−c
, c < x ≤ d

0 , otherwise

(25)FN(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

b−x+(x−a)fN

b−a
, a ≤ x < b

fN , b ≤ x ≤ c
x−c+(d−x)fN

d−c
, c < x ≤ d

0 , otherwise

,
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Proposed improved algorithm and score 
function

To find the length of the arc, the following algorithm and 

score function are proposed as follows.

Improved algorithm to solve SPP under interval 
valued neutrosophic number

Step 1:  Determine the source node (SN) arc length 

l1 = ⟨[1, 1], [0, 0], [0, 0]⟩ and classify SN, node 1 

by

  

Step 2:  Find the  minimum of  the  length of 

n
1
 wi th  i t s  acquaintance  node us ing 

li = min
{

li ⊕ lij
}

, j = 2, 3,… , r.

Step 3:  If there is a minimum in the node and equating to 

the singular measure of i (i.e., i = k ), then classify 

that node j as [lj, k].

Step 4:  If the minimum value exists in the node matching 

to more values from i then it can be concluded that 

there are more IVN paths between SN ( i ) and DN 

( j ) and select any value of i.

Step 5:  Classify the destination node (DN) (node r ) by 

[l
r
, 1] . Then the interval valued neutrosophic dis-

tance (IVND) among SN l
r
.

Step 6:  Find the IVNSP between initial and terminal node 

according to [l
r
, 1] and check the label of n

1
 and is 

denoted by [l
a
, d] . Classify node a and so on. Rerun 

the process until get n
1
.

Step 7:  By connecting all the nodes acquired by repeating 

the process in step 4, IVNSP can be found.

�
l1 = ⟨[1, 1], [0, 0], [0, 0]⟩,−

�

  Note: If �
(

Ni

)

< �
(

Np

)

 then the interval valued 

neutrosophic number (IVNN) is the minimum of 

Np , where N
i
, i = 1, 2,… , r is the set of IVNN and 

� is the score function.

Proposed score function

The novel SF for finding the minimum cost path under inter-

val valued neutrosophic shortest path (IVNSP) problem is 

provided as follows

Numerical example:

 For the edge 1–2: SNagarajan(A⃛1) =
1

2
[(0.1 + 0.2) − (0.2)

(0.3) + (0.3 − 1)
2 + (0.5)

]

= 0.125

 For the edge 1–3: SNagarajan(A⃛1) =
1

2
[(0.2 + 0.4) − (0.3)

(0.5) + (0.5 − 1)
2 + (0.2)

]

= 0.2.

Similarly for other edges.

Note: Formulas used in the proposed algorithms.

Score function used in the proposed algorithm under IVN 

environment and COG for TFN are

Computation of shortest path using IVNNs

Illustrate to the basic process of the improved algorithm, one 

simple example is shown.

(26)

�Nagarajan

(

∙

N1

)

=
1

2

[

(

T
L

x
+ T

U

x

)

−

(

I
L

x
.IU

x

)

+

(

I
U

x
− 1

)2
+

(

F
U

x

)

]

.

(27)

�(�) = COG(R) ×
1

2

[

T
L + T

U −
(

I
L
⋅ I

U
)

+
(

I
U − 1

)2

+ F
U

]

(28)

COG for TFN is
1

3

[

R
T
+ 2R

M
+ R

E
−

R
M

(

R
E
− R

I

)

(

R
E
− R

I

)

]

.

Fig. 1  Interval-valued neutro-

sophic network
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Illustrative example

This section is based on a numerical problem adapted from 

Broumi et al. [40] to show the potential application of the pro-

posed algorithm and score function.

Consider a network Fig. 1 with six nodes and eight edges 

with SN, node 1 and DN, node 6. The interval valued neutro-

sophic distance is given in Table 1.

In this situation, we need to evaluate the shortest distance 

from SN, i.e., node 1 to DN, i.e., node 6.

Calculating the shortest path using proposed algorithm of 

interval valued neutrosophic path problem is given as follows.

Here r = 6 , since there are totally 6 nodes.

Let, l1 = ⟨[1, 1], [0, 0], [0, 0]⟩ and classify the SN 

n1 =
�
⟨[1, 1], [0, 0], [0, 0]⟩,−

�
.

To find the value of lj, j = 2, 3, 4, 5, 6.

Iteration no. 1:

Since n
2
 has only n

1
 as the predecessor, let i = 1, j = 2 

in step 2.

To find l
2
:

Since, minimum occurs for i = 1 , classify the node 

n2 =
�
⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩, 1

�
.

Iteration no. 2:

Since n
3
 has two predecessors n

1
 and n

2
 , let  i = 1, 2 & j = 3 

in step 2.

To find l
3
:

l
2
= min

{

l
1
⊕ l

12

}

=min{⟨[1, 1], [0, 0], [0, 0]⟩⊕ ⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩}

= ⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩.

l3 = min
{

l1 ⊕ l13, l2 ⊕ l23

}

= min{⟨[1, 1], [0, 0], [0, 0]⟩⊕ ⟨[0.2, 0.4], [0.3, 0.5], [0.1, 0.2]⟩ ,

⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩⊕ ⟨[0.3, 0.4], [0.1, 0.2], [0.3, 0.5]⟩}

= min{⟨[1 + 0.2 − 1(0.2), 1 + 0.4 − 1(0.4)],

[0(0.3), 0(0.5)], [0(0.1), 0(0.2)]⟩,

⟨[0.1 + 0.3 − (0.1)(0.3), 0.2 + 0.4 − (0.2)(0.4)],

[(0.2)(0.1), (0.3)(0.2)], [(0.4)(0.5), (0.5)(0.5)]⟩}

= min{⟨[1, 1], [0, 0], [0, 0]⟩ , ⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩}

= ⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩.

Since the score function values are,

and the minimum occurs for i = 2 , then classify the node 

n3 =
�
⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩, 2

�
.

Iteration no. 3:

Since n
4
 has one predecessors n

3
 , let i = 3 & j = 4 in step 2.

To find the value of l
4
:

Since, minimum occurs for i = 3 , hence classify the node 

n4 =
�
⟨[0.6, 0.67], [0.004, 0.018], [0.048, 0.125]⟩, 3

�
.

Iteration no. 4:

Since n
5
 has two predecessors n

2
 and n

3
 , let i = 2, 3&j = 5 

in step 2.

To find the value of l
5
:

Since the score function values are,

�(⟨[1, 1], [0, 0], [0, 0]⟩

=
1

2

�
(1 + 1) − (0 × 0) + (0 − 1)

2 + 0
�
= 1.5

�(⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩)

=
1

2

�
(0.37 + 0.52) − (0.02 × 0.06) + (0.06 − 1)

2 + 0.25
�

= 0.9

l
4
= min

{

l
3
⊕ l

34

}

= min{⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩

⊕⟨[0.2, 0.3], [0.2, 0.5], [0.4, 0.5]⟩}

= ⟨[0.6, 0.67], [0.004, 0.018], [0.048, 0.125]⟩.

l5 = min
{

l2 ⊕ l25, l3 ⊕ l35

}

= min{⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩

⊕ ⟨[0.1, 0.3], [0.3, 0.4], [0.2, 0.3]⟩,

⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩

⊕⟨[0.3, 0.6], [0.1, 0.2], [0.1, 0.4]⟩}

= min{⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩ ,

⟨[0.56, 0.81], [0.002, 0.012], [0.012, 0.1]⟩}

= ⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩.

�(⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩) = 0.75

Table 1  The details of edges 

information in term of IVNNs
Edges Interval valued neutrosophic distance Edges Interval valued neutrosophic distance

1–2 
(

e
1

)

([0.1, 0.2], [0.2, 0.3], [0.4, 0.5]) 3–4 
(

e
5

)

([0.2, 0.3], [0.2, 0.5], [0.4, 0.5])

1–3 
(

e
2

)

([0.2, 0.4], [0.3, 0.5], [0.1, 0.2]) 3–5 
(

e
6

)

([0.3, 0.6], [0.1, 0.2], [0.1, 0.4])

2–3 
(

e
3

)

([0.3, 0.4], [0.1, 0.2], [0.3, 0.5]) 4–6 
(

e
7

)

([0.4, 0.6], [0.2, 0.4], [0.1, 0.3])

2–5 
(

e
4

)

([0.1, 0.3], [0.3, 0.4], [0.2, 0.3]) 5–6 
(

e
8

)

([0.2, 0.3], [0.3, 0.4], [0.1, 0.5])
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and the minimum occurs for i = 2 , hence classify the node 

n5 =
�
⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩, 2

�

Iteration no. 5:

Since n
6
 has two predecessors n

4
 and n

5
 , let 

i = 4, 5 & j = 6 in step 2.

To find the value of l
6
:

Since the score function values are,

and the minimum occurs for i = 5 hence classify 

n6 =
�
⟨[0.35, 0.63], [0.018, 0.048], [0.008, 0.075]⟩, 5

�
.

�(⟨[0.56, 0.81], [0.002, 0.012], [0.012, 0.1]⟩) = 1

l6 = min
{

l4 ⊕ l46, l5 ⊕ l56

}

= min{⟨[0.6, 0.67], [0.004, 0.018], [0.048, 0.125]⟩

⊕ ⟨[0.4, 0.6], [0.2, 0.4], [0.1, 0.3]⟩,

⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩

⊕⟨[0.2, 0.3], [0.3, 0.4], [0.1, 0.5]⟩}

= min{⟨[0.76, 0.87], [0.008, 0.0018], [0.0048, 0.0375]⟩ ,

⟨[0.352, 0.63], [0.018, 0.048], [0.008, 0.075]⟩}

= ⟨[0.35, 0.63], [0.018, 0.048], [0.008, 0.075]⟩.

�(⟨[0.76, 0.87], [0.008, 0.0018], [0.0048, 0.0375]⟩) = 1

�(⟨⟨[0.352, 0.63], [0.018, 0.048], [0.008, 0.075]⟩⟩) = 0.82

Since n
6
 is the DN of the given network, IVNSP between 

n
1
 and n

6
 is ⟨[0.35, 0.63], [0.018, 0.048], [0.008, 0.075]⟩.

Now, IVNSP from n
1
 and n

6
 is obtained as follows.

Since, n6 =
�
⟨[0.35, 0.63], [0.018, 0.048], [0.008, 0.075]⟩,

5] ⇒ a person is coming from 5 → 6n5 =
�
⟨[0.19, 0.47], [0.06,

0.12], [0.08, 0.15]⟩, 2
�
⇒ a person is coming from 2 → 5

n2 =
�
⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩, 1

�
⇒ a person is com-

ing from 1 → 2.

By joining all the acquired nodes, interval valued neu-

trosophic shortest path from n
1
 and n

6
 is obtained.

Hence IVNSP of the given network is 1 → 2 → 5 → 6.

The IVNS distance and IVNSP of all the nodes from 

SN node 1 in the below Table 2 and the classification of 

all the nodes are shown in Fig. 2.

The following table is formed using different deneutro-

sophic functions called score functions for all the possible 

edges and using proposed improved score function in the 

last column (Table 3).

According to the improved score function proposed in 

Sect. 3, the shortest path from node one to node six can be 

computed as follows (Table 4).

Therefore, the path P ∶ 1 → 2 → 5 → 6. is identified as 

the neutrosophic shortest path.

Algorithm: a new approach to �nd SPP using 
TpIVNN and TIVNN

Consider a directed and noncyclic graph, where the length of 

the arcs is represented by IVNN. The introduced algorithm 

Table 2  Interval valued 

neutrosophic shortest path
Node number (j) l

i
IVNSP between 

jth and node 1

2 ⟨[0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩ 1 → 2

3 ⟨[0.37, 0.52], [0.02, 0.06], [0.12, 0.25]⟩ 1 → 2 → 3

4 ⟨[0.6, 0.67], [0.004, 0.018], [0.048, 0.125]⟩ 1 → 2 → 3 → 4

5 ⟨[0.19, 0.47], [0.06, 0.12], [0.08, 0.15]⟩ 1 → 2 → 5

6 ⟨[0.35, 0.63], [0.018, 0.048], [0.008, 0.075]⟩ 1 → 2 → 5 → 6

Fig. 2  Interval-valued neutro-

sophic shortest path
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determines the shortest path from the initial node to the ter-

minal node. The algorithm is described as follows.

Step 1:  Let n be the total number of paths from the ini-

tial node to terminal one. Find the score function 

of every arc length for the given network using 

Eqs. (18), (19) and (24), (25).

Step 2:  Find all the available paths P
i
, i = 1, 2,… , n and 

the corresponding path length. Also every n paths 

can be dealt as an arc which are represented by 

IVNN.

Step 3:  Find the sum of all score functions �
(

�
i

)

 of each 

available path.

Step 4:  The path which have minimum score value will 

represent an optimized interval valued shortest 

path by ranking in ascending order.

End

Note: TpIVNN-Trapezoidal interval valued neutro-

sophic number.

TIVNN-Triangular interval valued neutrosophic 

number.

Illustrative example to �nd the shortest path using TpIVNN

For the validation of the proposed algorithm, a network 

is adopted from Broumi et al. [43] and Kumar et al. [65].

Consider a network with six nodes and eight edges. The 

TpIVN cost is given below (Tables 5, 6).

Applying steps 1–4 of the proposed algorithm, it if 

found that 1 → 2 → 5 → 6 is IVNP with lowest cost 4.18 

and the IVNP is ⟨(4, 11, 15, 20); [0.35, 0.608], [0.018, 0.048],

[0.008, 0.075]⟩.

Illustrative example to �nd the shortest path using TIVNN

For the validation of the proposed algorithm, an example 

network is adopted from Broumi et al. [26, 35].

Consider a network with six nodes and eight edges. The 

TIVN cost is given below (Tables 7, 8).

Applying steps 1–4 of the proposed algorithm, it if found 

that 1 → 2 → 5 → 6 is IVNP with lowest cost 4.18 and the 

IVNP is ⟨(4, 11, 15); [0.35, 0.61], [0.02, 0.05], [0.01, 0.08]⟩.

Comparative study of the proposed 
algorithm

In this section, a comparative study is carried out with the 

shortcomings and advantage of the proposed algorithm 

and it shows the effectiveness of the proposed algorithm

Shortcoming of the existing method

The compared existing method is unable to handle the 

interval-based information about the length of the arc and 

Table 3  Different 

deneutrosophication value of 

edge (i, j)

Edges S
Ridvan

 [43] �Nagarajan

1–2 0.1 0.125

1–3 0.175 0.2

2–3 0.325 0.17

2–5 0.125 0.11

3–4 0.05 0.325

3–5 0.45 0.32

4–6 0.35 0.43

5–6 0.125 0.26

Table 4  Crisp path length for proposed algorithm

The proposed algorithm 

based �Nagarajan

Crisp path length Ranking

1 → 2 → 5 → 6 0.485 1

1 → 3 → 5 → 6 0.78 2

1 → 2 → 3 → 5 → 6 0.875 3

1 → 3 → 4 → 6 0.955 4

1 → 2 → 3 → 4 → 6 1.05 5

Table 5  Trapezoidal interval valued neutrosophic distance

Edges Trapezoidal interval valued neutrosophic distance Edges Trapezoidal interval valued neutrosophic distance

1–2 
(

e
1

)

⟨(1, 2, 3, 4); [0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩ 3–4 
(

e
5

)

⟨(2, 4, 8, 9); [0.2, 0.3], [0.2, 0.5], [0.4, 0.5]⟩

1–3 
(

e
2

)

⟨(2, 5, 7, 8); [0.2, 0.4], [0.3, 0.5], [0.1, 0.2]⟩ 3–5 
(

e
6

)

⟨(3, 4, 5, 10); [0.3, 0.6], [0.1, 0.2], [0.1, 0.4]⟩

2–3 
(

e
3

)

⟨(3, 7, 8, 9); [0.3, 0.4], [0.1, 0.2], [0.3, 0.5]⟩ 4–6 
(

e
7

)

⟨(7, 8, 9, 10); [0.4, 0.6], [0.2, 0.4], [0.1, 0.3]⟩

2–5 
(

e
4

)

⟨(1, 5, 7, 9); [0.1, 0.3], [0.3, 0.4], [0.2, 0.3]⟩ 5–6 
(

e
8

)

⟨(2, 4, 5, 7); [0.2, 0.3], [0.3, 0.4], [0.1, 0.5]⟩

Table 6  Available paths and its score value

Available path �
(

�
i

)

Ranking

P
1
∶ 1 → 2 → 5 → 6 4.18 1

P
2
∶ 1 → 3 → 5 → 6 8.25 2

P
4
∶ 1 → 3 → 4 → 6 12.43 3

P
3
∶ 1 → 2 → 3 → 5 → 6 13.31 4

P
5
∶ 1 → 2 → 3 → 4 → 6 17.5 5



400 Complex & Intelligent Systems (2019) 5:391–402

1 3

shortest path cannot be obtained for interval-based neu-

trosophic network.

Advantage of the proposed algorithm

If the length of the path is interval-based one then the 

shortest path of the given network can be obtained by 

interval valued neutrosophic numbers for an optimized 

path. Since triangular and trapezoidal numbers are widely 

used in many of the real world applications for their sim-

plicity of computation, interval valued triangular and trap-

ezoidal neutrosophic numbers have been used to find the 

neutrosophic shortest path. This is the advantage of the 

proposed algorithm.

Comparative study of algorithm

This section provides a comparative study of the proposed 

algorithm with the existing method of for neutrosophic 

shortest path problems.

A comparison of the results between existing and new 

techniques is shown in Table 9.

The result shows that the proposed algorithm provides 

sequence of visited nodes which shown to be similar with 

neutrosophic shortest path.

The neutrosophic shor test  path (abbr.NSP) 

remains the same namely 1 → 2 → 5 → 6 , but the 

crisp shortest path length (CSPL) differs namely 

⟨[0.35, 0.60], [0.01, 0.04], [0.008, 0.075]⟩ , respectively. From 

here we come to the conclusion that there exists no unique 

method for comparing neutrosophic numbers and different 

methods may satisfy different desirable criteria (Table 10).

Conclusion and future implication

The heart of the network community is nothing but the 

SPP. The objective of this problem is finding the minimum 

cost path among all other paths. This issue has been solved 

using many methods starts from conventional SPP with 

crisp weights. As many of the real world applications have 

uncertain vertices and edges fuzzy environment was use-

ful to handle this problem. But still fuzzy setting cannot 

handle indeterminacy of the information, neutrosophic sets 

are found to be the best choice to handle this issue and has 

applied successfully. In this paper, neutrosophic SPP has 

been solved under interval valued neutrosophic, trapezoidal 

and triangular interval valued neutrosophic environments 

as it handles interval values. Also an improved score func-

tion and center of gravity has been proposed and applied 

to find the minimum cost of the path. Our proposed score 

function is without having the lower membership of fal-

sity and which saves the time naturally. Further compara-

tive analysis is done for Broumi’s algorithm with different 

Table 7  Triangular interval valued neutrosophic distance

Edges Triangular interval valued neutrosophic distance Edges Triangular interval valued neutrosophic distance

1–2 
(

e
1

)

⟨(1, 2, 3); [0.1, 0.2], [0.2, 0.3], [0.4, 0.5]⟩ 3–4 
(

e
5

)

⟨(2, 4, 8); [0.2, 0.3], [0.2, 0.5], [0.4, 0.5]⟩

1–3 
(

e
2

)

⟨(2, 5, 7); [0.2, 0.4], [0.3, 0.5], [0.1, 0.2]⟩ 3–5 
(

e
6

)

⟨(3, 4, 5); [0.3, 0.6], [0.1, 0.2], [0.1, 0.4]⟩

2–3 
(

e
3

)

⟨(3, 7, 8); [0.3, 0.4], [0.1, 0.2], [0.3, 0.5]⟩ 4–6 
(

e
7

)

⟨(7, 8, 9); [0.4, 0.6], [0.2, 0.4], [0.1, 0.3]⟩

2–5 
(

e
4

)

⟨(1, 5, 7); [0.1, 0.3], [0.3, 0.4], [0.2, 0.3]⟩ 5–6 
(

e
8

)

⟨(2, 4, 5); [0.2, 0.3], [0.3, 0.4], [0.1, 0.5]⟩

Table 8  Available paths and its score value

Available path �
(

�
i

)

Ranking

P
1
∶ 1 → 2 → 5 → 6 4.9 1

P
2
∶ 1 → 3 → 5 → 6 8.27 2

P
4
∶ 1 → 3 → 4 → 6 11.1 3

P
3
∶ 1 → 2 → 3 → 5 → 6 12.86 4

P
5
∶ 1 → 2 → 3 → 4 → 6 15.69 5

Table 9  Comparison of sequence of nodes using neutrosophic short-

est path and our proposed algorithm

Algorithm of Broumi Path Crisp path length

S
Ridvan

 [43] 1 → 2 → 5 → 6 0.35

SNagarajan 1 → 2 → 5 → 6 0.485

Table 10  Sequence of nodes 

with shortest path length
Possible path Sequence of nodes Neutrosophic shortest path length

Neutrosophic shortest path with interval 

valued neutrosophic numbers [43]

1 → 2 → 5 → 6 ⟨[0.35, 0.60], [0.01, 0.04], [0.008, 0.075]⟩

Proposed algorithm on SNagarajan 1 → 2 → 5 → 6 ⟨[0.35, 0.60], [0.01, 0.04], [0.008, 0.075]⟩
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deneutrosophication function and proposed one. It is found 

that minimum cost is less compare than other existing 

method using proposed algorithms and score function. Also 

the proposed algorithm and improved score function have 

less computational complexity and saves the time. In future, 

the SPP would be extended to neutrosophic soft and rough 

set environments for interval-based path lengths. Also the 

proposed concept will be extended to complex neutrosophic 

environment.
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