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ABSTRACT
Today’s network intrusion prevention systems (IPSs) must perform
increasingly sophisticated analysis—parsing protocols and inter-
preting application dialogs rather than simply searching for sig-
nature strings—for which the necessary algorithms defy full im-
plementation in hardware, being much more readily implemented
using general-purpose CPUs. Yet the performance of such CPUs
increasingly lags behind that necessary to process today’shigh-rate
traffic streams.

We observe that in many environments much of the traffic com-
prising a high-volume stream can, after some initial analysis, be
qualified as “likely uninteresting.” Thus, we would like a means
by which we can couple a general-purpose CPU with a specialized
hardware element such that only the hardware element processes
the bulk of the bytes in a network stream, while the CPU can still
inspect those elements of network flows deemed germane for secu-
rity analysis.

To this end, we have developed an in-line, FPGA-based IPS ac-
celerator, theShunt, using the NetFPGA2 platform. The Shunt
maintains several large state tables indexed by packet header fields,
including IP/TCP flags, source and destination IP addresses, and
connection tuples. The tables yield decision values the element
makes on a packet-by-packet basis: forward the packet, dropit, or
divert it through the IPS. By manipulating table entries, the IPS can
specify the traffic it wishes to examine, directly block malicious
traffic, and “cutting through” traffic streams once it has hadan op-
portunity to “vet” them, all on a fine-grained basis. We base our
design on a novel series of caches, with a “fail safe” miss policy,
coupled to a host PC to handle both cache management and higher
level IPS analysis. The design requires only 2 MB of SRAM for its
extensive caches, and can support four Gbps Ethernets on a single
Virtex 2 Pro 30.

1. INTRODUCTION
Stateful, in-depth, in-line traffic analysis for intrusiondetection

and prevention is growing increasingly more difficult as thedata
rates of modern networks rise. One point in the design space for
high-performance network analysis—pursued by a number of com-
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mercial products—is the use of sophisticated custom hardware. For
very high-speed processing, such systems often cast the entire anal-
ysis process in ASICs.

In this work we pursue a different architectural approach,Shunt-
ing, which marries a conceptually quite simple hardware device
with an Intrusion Prevention System (IPS) running on commodity
PC hardware. Our goal is to keep the hardware both cheap and
readily scalable to future higher speeds; and also to retainthe un-
paralleled flexibility that running the main IPS analysis ina full
general-computing environment provides.

The Shunting architecture uses a simple in-line hardware ele-
ment that maintains several large state tables indexed by packet
header fields, including IP/TCP flags, source and destination IP
addresses, and connection tuples. The tables yield decision val-
ues the element makes on a packet-by-packet basis: forward the
packet, drop it, or divert (“shunt”) itthroughthe IPS (the default).
By manipulating table entries, the IPS can, on a fine-grainedbasis:
(i) specify the traffic it wishes to examine,(ii) directly block mali-
cious traffic, and(iii) “cut through” traffic streams once it has had
an opportunity to “vet” them, or(iv) skip over large items within a
stream before proceeding to further analyze it.

The efficacy of this approach depends on the degree to which the
IPS can “shed load” by identifying large-volume subsets of traffic
that it can safely skip. Opportunities for these arise, for example,
due to encrypted SSH and SSL sessions, for which the IPS can only
usefully analyze the initial negotiation process, or HTTP sessions
that transfer large items such as images or movies. While such
flows make up only a small proportion of the connections seen on a
network link, in many environments they make up a large fraction
of the bytes, due to the widely documented “heavy-tailed” nature
of network traffic [11, 12, 6, 23, 22, 5].

Reference [7] presents the overall architecture and evaluates it in
detail. In this paper we focus on our subsequent efforts to design
and implement an FPGA-based realization of Shunting. The de-
vice can operate in-line on a network link, facilitate switch-based
LAN monitoring, or as a load balancer for a clusterized Intrusion
Detection System (IDS).

We implemented the Shunt on top of the NetFPGA2 [19] re-
search and education platform. This platform contains fourGbps
Ethernets, two 2MB SRAMs, and a Virtex 2 Pro 30 FPGA, all lo-
cated on a single PCI card which fits inside a standard host. We
began by modifying an existing design, a 4-port Ethernet NICthat
used only one of the SRAMs as a buffer, to createRNET, a frame-
work for in-place packet manipulation and routing. The RNET
framework provides a shim between each receiving MAC and the
main controller. Each shim buffers one packet at a time, and can
manipulate the packet before routing it to any output MAC or to the
host.



We then built the Shunt using the RNET infrastructure. The de-
sign centers around two primary caches: a connection cache of 216
entries and an IP cache of216 entries. The connection cache uses
multi-location associativity, a variant of a design by Songet al [16],
where two separate hash functions are used to provide two different
possible locations for each entry, to allow the host to move entries
to free up space. The IP cache is a multilocationpermutationcache:
rather than using a conventional tag/index structure, we use a 32-bit
block cypher to encrypt the IP address to create the tag and index,
which can result in a 50% savings in memory by allowing part of
the tag to be implicitly stored.

For both these caches, we encode an action (shunt, sample, for-
ward, or drop) and a priority. Additional rules also encode ac-
tions and priorities based on fixed-header fields. The hardware
selects the highest priority match, or, if no match, defaults to shunt-
ing the packet to the host. Additionally, the rules for connections
can have an optional record that specifies an alternate destination
MAC, VLAN, and/or output port to which connections should be
forwarded, and an alternate rule that applies if the TCP sequence
number is within a specified range (to skip over items within TCP
streams).

The resulting design requires 21,200 4-LUTs for logic, 2,770
LUTS for routethrough (87 % of the available resources), and135
out of 136 available BlockRams. It requires only 41 cycles tomake
a decision when unloaded (and no more than 101 cycles when fully
loaded), running at 62.5 MHz. Packets that pass directly through
the hardware path see only 5�s of additional network latency.

We begin in Section 2 with a survey of related work and a dis-
cussion of the NetFPGA board. Section 3 discusses ourRNETad-
dition to the NetFPGA firmware, designed as a general platform for
network processing. Section 4 discusses our overall hardware ar-
chitecture and how this architecture realizes our desired tasks. We
then in Section 5 present multi-location associativity, which allows
us to more efficiently utilize our caches. Section 6 discusses per-
mutation caches, a space-saving technique we employ for theIP
cache that doubles the available capacity when associatingsmall
values with 32-bit keys.

Section 7 details the actual implementation used for the Shunt’s
caches and general operation. We evaluate the Shunt in Section 8,
with present conclusions in Section 9.

2. RELATED WORK
The NetFPGA version 2 [19] was developed by McKeown et

al as a platform for both research and network experimentation. It
consists of a single Virtex 2 Pro (V2Pro 30, speedgrade 5) FPGA,
two 2 MB (512kx36) SRAMs, a quad-port Gigabit Phy, on a PCI
card, with the PCI interface implemented in a Spartan II FPGA.

Additionally, the NetFPGA platform has three significant pieces
of code associated with it:UNET, CNET, and assorted software
tools. UNET is a generic design for student projects. It consists
of a single Ethernet MAC and associated control logic, including
memory interfaces. CNET implements a quad port Ethernet NIC,
complete with a host DMA interface and an Ethernet driver. The
NetFPGA tools include a configuration downloader which allows
the NetFPGA to be reconfigured, a driver for the NetFPGA board,
and an API to peek and poke both status registers and the two on-
board SRAMs.

There has been considerable hardware designed for intrusion de-
tection. Several projects have implemented partial or complete
regular-expression based rulesets [17, 18], while a large number
of commercial intrusion detection and prevention systems claim
to use hardware acceleration [?]. In particular, [17] also takes a
preprocessor approach, but it only implements the static ruleset to

filter out uninteresting communication, without the dynamic, per
connection control we provide.

The most closely related work to ours is SPANIDS [15]. SPANIDS
is a front-end load balancer for parallel intrusion detection applica-
tions, which uses a series of hash functions to determine which
analyzer should recieve a packet. The SPANIDS load balancerre-
ceives packets on a single Gigabit ethernet, rewrites the destination
MAC address based on a series of hash functions, and outputs the
packet. SPANIDS uses four small hash tables of 4096 entries to de-
termine where to route the packet, with these tables implemented in
on-chip SRAM. Unlike the Shunt, SPANIDS cant precisely route
individual connections, only hash-based aggregates of connections
to balance flows and prevent hotspots.

3. RNET
Although the NetFPGA platform is designed for easy extensibil-

ity as part of class projects, the design framework for classprojects,
UNET, was not suitable for our purposes. The UNET design only
activates a single ethernet and, more importantly, lacks a DMA in-
terface to the host. Instead, we began with the NetFPGACNET
design, which implements a 4 port Ethernet NIC, complete with
DMA packet transfer and a Linux driver, as the starting pointfor
our work.

We wished to create a general framework for packet processing,
not just an application-specific instance. We observed thatmany
network processing tasks have the following properties: Packets are
read in from an Ethernet, may be modified in-place (such as chang-
ing MAC addresses and IP TTLs, or decrypting payload data), and
then written out to an appropriate MAC or forwarded to the host
for further analysis. This analysis may also need some reasonably-
sized shared memory, and an easy interface to the host if a packet’s
operation is more complex than what the hardware can support.

Thus we created a small module, a shim, that fits between each
receiving MAC and the memory arbiter which processes packets
destined for the host. The purpose of the shim is to read in a packet
from the MAC (on a 32 bit, 62.5 MHz bus) into a buffer, process
the packet with user-specified logic, and then forward the packet
to its appropriate destinations. The shim has to wait for thearbiter
to complete the transaction if the packet is forwarded to thehost,
but once the shim begins writing the packet to the output MACsit
begins reading the next packet. This can allow the shim to operate
near or at gigabit rates if the packets don’t need to be redirected to
the host.

In addition to the shim, other portions of the design needed to
be modified. In order to prevent contention, each MAC send path
was given 4 additional FIFOs, for a total of five. These FIFOs are
served in a round-robin fashion. As a result, the RNET framework
implements a full 5x5 crossbar, with the 5x4 crossbar to the output
MACs having independent buffers for each path.

Finally, the memory controller for the second SRAM was modi-
fied to provide 5 read and write ports. Each shim is given a single
pipelined read and write port to this shared 256kx36 SRAM. Again,
these requests are also serviced in a round-robin fashion, and the
memory controller is pipelined for greater throughput.

The resulting framework (Figure 1) can then be used to imple-
ment a large class of packet processors. As the packet is readfrom
the MAC, at 2 Gbps, the headers are extracted and the packet writ-
ten into a BlockRAM buffer. Once the packet is fully read in, any
user logic can modify the packet in place and decide where the
packet should be routed. The biggest limitation on RNET-based
designs is that effectively all BlockRAMs are used in the Virtex
2 Pro 30, mostly because of the 20 BlockRAMs required simply
for the output buffers for the MAC output crossbar and the other 4
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Figure 1: The RNET structure. Items in gray are carried over from the CNET infrastructure unchanged.

BlockRAMs for the packet buffer in the shim, which are on top of
the already significant buffering used in the base CNET design.

3.1 Click Interface
One other addition was an interface to allow the Click [9] router

framework to access NetFPGA resources. Click is a C++ frame-
work for writing software routers and software packet processing
elements which runs on Linux.

For packets being passed to and from the host, using the CNET
driver, Click treats the NetFPGA like any other Ethernet, with each
port having a unique Ethernet name. Click can read and write ap-
proximately 20k packets per second through this interface.

To access control information, including both NetFPGA status
registers and the shared SRAM memory, a peek/poke interfaceis
provided, which can allow Click elements to write and read mem-
ory state. In particular, the 2 MB shared SRAM can be both read
and written by programs written in Click to facilitate communica-
tion with the shims, without needing to modify or add status regis-
ters contained in the CNET infrastructure.

4. THE SHUNT’S ARCHITECTURE
The Shunt is designed to accelerate three separate-but-related in-

trusion detection tasks: in-line operation (necessary forintrusion
prevention), LAN operation, and IDS load balancing. We havede-
signed the Shunt to perform in all these environments using asingle
common hardware design.

The key to the Shunt’s operation is its ability to act as a pro-
grammable, priority based filter. For each packet received,the
Shunt examines the layer 3 and layer 4 headers incruding the source
IP, the destination IP, and the connection 5-tuple (source IP, desti-
nation IP, IP protocol, source port, and destination port),to find
the appropriate 2 bit action (forward the packet onward, drop the
packet, forward the packet and sample with a specified probabil-
ity, or Shunt the packet to the host for further examination). Each
matching rule also has a 3 bit priority (values 0 to 7), with the high-
est matching rule being selected, and a 3 bit sample scheduleif the
selected action is sample.

The header examination uses a set of static rules. Non-IP pack-
ets will always be Shunted to the host. Likewise, packets which
are IP fragments (which can be used for evasive purposes), contain
IP options, or are TCP connection delimiters (SYNs, SYN/ACKs,
FINs, or RSTs) are Shunted to the host with priority3.

In contrast, both the connection rules and IP rules are programmable.

The Shunt looks up the source IP, the destination IP, and the con-
nection 5-tuple. The IP lookup just involves finding a matching ac-
tion and priority. Connection lookup, however, can also involve an
optional record stored in a separate table. This optional record can
specify a different destination for the packet, both in terms of MAC
address and VLAN tag and can also specify an alternate actionif
the packet’s TCP sequence number is within a specified range.

The goal of the alternate record’s sequence skipping is to enable
the IPS to skip over a predefined “less interesting” range of traffic.
For example, in an HTTP stream, a large embedded image is of
little interest to most IPSs. By using the header to determine the
length of the image, the sequence-skipping can be used to have the
Shunt directly forward the image, while ensuring that the subse-
quent traffic will still be directed to the host for detailed examina-
tion.

4.1 In-line Operation
For in-line operation, the Shunt (and associated IPS) are protect-

ing an institution from external threats, by filtering all traffic on the
wide area network (WAN) link or links. To protect a Gigabit link,
the Shunt will need to be placed in-line, with one port for theLAN
side and another port for the WAN side. In this mode, a single
NetFPGA board can process two Gigabit WAN links.

In this mode, the Shunt’s role is to act as a front end filter foran
IPS running on the Shunt’s host. When the IPS determines that
a particular connection doesn’t significantly benefit from deeper
inspection, it will place aforward rule for this connection. Any
subsequent traffic will be directly routed from the input Ethernet to
the output, without loading the host. Likewise, if the IPS detects
that a host is behaving offensive in some way (attacking internal
hosts, or attempting to disrupt the IPS itself with offensive traffic),
it can institute a high-priority drop rule for traffic comingfrom this
IP.

4.2 LAN Operation
For LAN operation, the Shunt’s role is to isolate and control

traffic passing between a large group of hosts, either for IPSop-
eration [20, 21] or to implement LAN-based policy control [3]. As
such,all traffic on the local network must pass through the Shunt
before proceeding to the destination.

There are two options for LAN traffic management: direct rout-
ing and VLAN rewriting. In direct routing, every host or group of
hosts is on a separate Shunt port. In this context, the connection’s



table’s optional record for each destination will specify which out-
put port a connection should be routed to.

For VLAN rewriting, every host is on its own unique VLAN, us-
ing untagged switch ports, with the Shunt on one or more VLAN
trunks which can read and write every 802.1(q) VLAN on the switch
with tagged packets. For VLAN rewriting, the optional record
specifies the destination VLAN. Any packet which is forwarded
will have its VLAN tag rewritten and then be reinjected back into
the same port, where the switch will route the packet to its destina-
tion. This, naturally, requires switches which both support VLANs
and maintain per-VLAN MAC caches.

One limitation for these LAN operations is that forward opera-
tions can only be encoded in the connection table’s option field, not
the IP table. As such, the IP table is effectively limited to simply
blocking offensive sites, not whitelisting good traffic.

4.3 IDS Load Balancer
A final deployment we are pursuing is as a load balancer for a

large cluster-based IDS deployment. In this role, four 1 Gbps tap
ports are fed into a switch, with each data feed on a unique VLAN.
The Shunt is placed on four ports on the switch, with each port
configured with a VLAN trunk. Each port has access to one of the
tap feeds, and can also write to an experimental VLAN which the
cluster systems are on.

In this mode, the host only acts as a load balancer and manager,
putting in appropriate forward rules for all active connections. This
will require work on a per-connection basis, but allows significantly
greater flexibility than static rules, as the load balancer can, on re-
quest, also drop connections, react to node failures, or redirect con-
nections to different analyzers on demand. Since the architecture
does not include the IDS nodes reinjecting traffic, the Shuntdoes
not operate in-line, and thus does not support intrusion prevention;
however, the approach could be extended to support such operation.

5. MULTILOCATION ASSOCIATIVITY
Traditionally, higher associativity caches will have multiple lo-

cations at the same index. Thus if the cache is 2-way associative,
andD0, D1, andD2 all hash to the same index, only two entries
can actually be stored. In a multilocation associativity cache, mul-
tiple hash functions are used rather than one, and the value may be
at the index specified by any hash function. This design, because
it is a cache rather than a complete hash table (and thereforeno
chained buckets) is a simplification of the Fast Hash Table proposed
by Song et al [16], which was itself based on bloom filters [2].

In a multilocation cache the multiple hash functions are used to
specify multiple locations where an element might reside. Thus for
a 2-way multilocation cache, two different hash functions are used
and the data could be at either location. Unlike a bloom filter, how-
ever, the hashed locations are checked to see if the data is actually
stored at the location. Otherwise, its a cache miss. This multiloca-
tion design allows the cache to be much more fully populated,as ifD0,D1 andD2 map to the same location with one hash function, it
is highly unlikely that they map to the same location for the second
hash function.

Additionally, when the cache evictions are rare and the cache is
managed by a sophisticated processor, entries can be moved.By
conducting a partial or complete depth-first-search, the cache man-
ager can help ensure that the cache is completely full, a similar but
simpler process to the pointer balancing in Song et al’s FastHash
Table design.

Figure 2 shows how location associativity can help better utilize
the cache. As can be clearly seen, when the cache is only lightly
occupied, the choice of associativity has little effective. But as the
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Direct mapped, number of data inserted for 4 different strate-
gies: Direct mapped, 2-way associative, 2-location associative,
and 2-location associative with a small search to move entries.
These results are for 100 runs each with a 64k entry cache.

number of entries exceeds the size of the cache, the multilocation
associativity helps considerably. Adding the search operation im-
proves things even more.

A small simulator was made to model this cache architecture,
with 100 runs for each parameter selected. For Figure 2, a 64kentry
cache was used. In particular, when 64k elements are hashed and
inserted into the direct mapped cache (desired occupation equals
100% of cache size), on average, only 41,000 elements can actu-
ally reside in the cache. Changing to a two-way associative design
allows 47,600 elements to be actually cached. A two-location asso-
ciative cache, however, allows 49,800 elements. If a small,depth 5
search is used to find an appropriate entry when there is a conflict,
now 54,800 elements can be stored, using the exact same amount
of memory. Thus going with multiway associativity and a small
search to find valid configurations can result in a 15% increase in
cache utilization.

There are three disadvantages to this style of cache compared
with a conventional cache. The first is that it requires multiple hash
functions instead of a single function. This is simply because N-
way location associativity requires N hash functions (or N different
keys to the same keyed hash function). In general, this cost is usu-
ally low.

The second is that, if a search is employed, it can be costly asthe
cache fills up. Instead of simply checkingN locations to determine
where to insert, a small search of depthK will require checkingK � N locations. Thus some tradeoff will need to be determined
where to halt the search and just evict an old entry instead.

The biggest concern is that anN location cache requires access-
ingN differentmemory locations. If the cache is stored in SRAM,
and the entry size is equal to or greater than the word size, this
is not an issue. However, for DRAM-based caches, or any mem-
ory system which fetches large groups of words at a time, location
associative caches may not be effective.

6. PERMUTATION CACHES
One of the keys to the Shunt’s design is efficient caches. With

only a 2 MB working memory, we needed to develop efficient
caches to maximize the hit rate while minimizing the workingmem-
ory. In particular, for the IP cache, we used a variant on the permu-



tation cache we first described in our AC-TRW paper [10] which
allows us to double the capacity of this cache.

A permutation cache is particularly well suited to associating a
small amount of data (such as an 8 bit source action and an 8 bit
destination action) to 32 bit keys. Rather than splitting the key into
an index and tag, a permutation cache first encrypts the key using
a block cypher where the block size is the same as the cache’s key
size. Since a block cypher is really a permutation, this guarantees
that each key will map to a unique value. Additionally, by using
a cypher with a random cryptographic key, the permutation isran-
domized and therefore can’t be predicted by an attacker, avoiding
the attack by Crosby et al [4].

The resulting 32 bit value is then split into an index and tag,with
the index used to find the proper location and the tag verified when
fetching the associtated value, just like a conventional cache. As a
result, an encryption cache for 32 bit keys with216 locations only
needs16 bits of tag per entry, rather than the 32 bits required if a
hash was used instead of a permutation.

We extended the permutation cache to support multilocationas-
sociativity by using different cryptographic keys. Instead of just
storing the tag, an additional ID number is used to specify which
cryptographic key was used for this entry. Thus with 2 keys, this be-
comes a 2-way multilocation associative encryption cache.If two
values encrypt to the same location with one encryption key,they
will, with very high probability, map to different locations when
the other encryption key is used, giving a freedom for cache layout
we discussed in Section 5.

6.1 Keyed Permutation
Due to the usage model in a permutation cache, we don’t need

a cryptographically strong block cypher, we only need an efficient
block cypher-like keyed permutation, one which requires only a
small amount of FPGA resources and which can be computed in
one or two clock cycles. Additionally, we need a 32 bit block
cypher, while most block cyphers operate on 64 or 128 bit blocks.1

We also desire a 64 bit key, which allows a large amount of entropy
to be injected into the permutation.

Thus we committed the classic cryptographic sin and developed
our own 32 bit keyed permutation specifically for use in 32 bitper-
mutation caches. Our goal was to have a single round with a reason-
able amount of mixing which can be efficiently implemented ona
4-LUT based fabric as an S/P (Substitution/Permutation) network.
Thus the primitives we used are 4-bit S-boxes (from the Serpent [1]
block cypher), byte addition, fixed rotation, and 4-input XOR.

The initial input first passes through the initial S-boxes (based
on the Serpent [1] 4-bit S-boxes). The resulting output bytes are
rotated and are bytewise added to the first 32 bits of the key. The
resulting word is then is passed through bytewise rotation and 4-
input XORs, with each XOR combining 3 bytes of data with 1 byte
of key. Finally, the data passes through one more round of S-boxes,
and then a series of 4-input XORs and rotations. Figure 3 shows
the complete pseudocode.

Although we never actually need to decrypt data for our appli-
cation, the decryption process is effectively the oppositeof the en-
cryption process, with inverted operations in reverse order. Decryp-
tion requires exactly the same resources as encryption, andwould
be necessary for any application which needs to examine the en-
tire contents of a permutation cache, rather than just looking up a
specific entry.

1The RC5 [13] and RC6 [14] cyphers can be parameterized down
to a 32 bit block, but they are not efficient in this application due
to their multiround structure, choice of primitives including 16 bit
variable rotations, and complex key schedule.

Keyed Permutation Function

Input: Din[31:0], K[63:0]

Output: Dout[31:0]

  B0 <= (SBoxA(Din[7 : 0])>>>2)  + K[ 7: 0]

  B1 <= (SBoxA(Din[15: 8])>>>3)  + K[15: 8]

  B2 <= (SBoxA(Din[23:16])>>>4)  + K[23:16]

  B3 <= (SBoxA(Din[31:24])>>>5)  + K[31:24]

  C0 <= B0 ^ (B1>>>1) ^ (B2>>>2) ^ K[39:32]

  C1 <= B1 ^ (B2>>>4) ^ (B3>>>5) ^ K[47:40]

  C2 <= B2 ^ (B3>>>7) ^ (C0>>>1) ^ K[55:48]

  C3 <= B3 ^ (C0>>>3) ^ (C1>>>4) ^ K[63:56]

  D0 <= SBoxC(C0)

  D1 <= SBoxC(C1)

  D2 <= SBoxC(C2)

  D3 <= SboxC(C3)

  E0 <= D0 ^ (D1>>>1) ^ (D2>>>5) ^ (D3>>>2)

  E1 <= D1 ^ (D2>>>2) ^ (D3>>>6) ^ (E0>>>3)

  E2 <= D2 ^ (D3>>>3) ^ (E0>>>7) ^ (E1>>>4)

  E3 <= D3 ^ (E0>>>4) ^ (E1>>>1) ^ (E2>>>5)

  Dout[31:0] <= {E3, E2, E1, E0}

SBoxA-> Apply Serpent SBox0 to upper 4 bits�

         Serpent SBox1 to lower 4 bits

SBoxC-> Apply Serpent SBox2 to upper 4 bits�

         Serpent SBox3 to lower 4 bits

Figure 3: The pseudo-code for our keyed permutation (a sim-
plified block cypher).

Start End Purpose
Address Address

0x00000 0x0FFFF Staus Registers, Keys, Misc I/O
0x10000 0x1FFFF IP Address Cache,216 entries
0x20000 0x3FFFF Optional Records,215 entries
0x40000 0x7FFFF Connection Cache,216 entries

Table 1: The memory allocation used in the NetFPGA Shunt

This design is very efficient when targeting an FPGA. All steps
require only 32 LUTs each. Thus with two S-box steps (64 LUTs),
the initial key addition (32 LUTs), the key-dependent mixing (32
LUTs), and the key independent mixing (32 LUTs), the total cypher
only requires 160 LUTs. Given a registered input and only a sin-
gle pipeline register on the output, this cypher runs at the target
62.5 MHz clock cycle on our Virtex 2 Pro FPGA, without needing
placement directives.

Additionally we have deliberately designed it for hashing IP ad-
dresses. In this case, it is OK if the lower bits of the output are not
as high quality as the upper bits, as it is the upper bits whichare
used as the index for looking up entries. As a result, for boththe
computation of the C and E words, the feedback loop causes the
upper bytes to be more affected by all input data and key bits.

7. SHUNT CACHES
For the actual implementation of the Shunt, we needed to fit all

the caches into the single 512kx36 (2 MB) second SRAM on the
NetFPGA board. Table 1 summarizes our memory allocation. We
reserved the locations 0x0000 to 0x0FFFF (the first216 addresses)
for miscelanious I/O, including status registers, debugging infor-
mation, and the two permutation keys which are written by thehost.
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Figure 4: The packet processing operation used by the Shunt

The IP address cache uses216 addresses from 0x10000 to
0 0x1FFFF. We implemented the address cache as a 2-location as-
sociative permutation cache. With216 addresses and 2 keys, the
first 16 bits are used to store the tag, one bit is used for the key ID
#, 8 bits are used for the SRC IP record, and 8 bits are used for
the DST IP record, with 3 bits of the entry unused. Looking up a
packet in the IP cache requires checking four locations, twofor the
SRC record and two for the DST record.

The connection cache uses218 addresses, from 0x40000 to
0 0x7FFFF. This cache is two location associative, using ourkeyed
permutation as the basis for the hash function and same two keys
used for the address cache. Each record in the connection cache
is 4 words, thus the cache contains216 entries. The entry contains
both IP addresses (64 bits), both port numbers (32 bits), theIP pro-
tocol number (8 bits), and an 8 bit action field. Additionally, two
16 bit pointers are included, one for each optional record field, one
for each direction of the connection.

Finally, the optional records use217 addresses, from 0x20000
to 0x3FFFF. This optional record contains a 48 bit optional MAC
address to overwrite the destination MAC, a 16 bit optional VLAN
tag, a 2 bit alternate destination port designation. All these fields
also have an associated bit which specifies if the alternate desti-
nation (MAC, VLAN, and/or Ethernet port) should be used. Fi-
nally, the optional record contains a 32 bit TCP sequence number
and an associated 8 bit action. If the packet is a TCP packet, and
the packet’s sequence number is less than the recorded sequence
number, the alternate action field is used instead of the connection
cache’s action field.

We pipeline the memory access when a packet is received in or-
der to improve memory access time. We first access the 4 words
used to specify the two, 64 bit encryption keys used for both the
permutation cache for IP lookup and the hash function for connec-
tion lookup. Then the two possible connection entry locations (4
words each) are fetched. Then the 4 words forr the IP cache. At
this point, the state machine may pause to ensure that the connec-
tion entries are properly loaded, before fetching the 4 words pointed
to by the optional record. Thus processing a packet requiresfetch-

ing 20 words from 8 contiguous locations in memory.

7.1 The Packet Processing Procedure
When a packet is received, the entire packet is first read intothe

Shim’s BlockRAM buffer. As the packet is received, the appropri-
ate fields (including IP header, TCP header, and Ethernet header)
are captured and stored in registers. Once the packet is completely
read in, the IP cache, connection cache, and alternate record are
looked up. For each cache which matches, the appropriate action
field is used, or, if there is no match, the default action ofshunt
with priority 0 is selected.

Additionally, the fixed rules are examined. Non-IP packets are
always shunted to the host. IP packets with IP options set are
shunted with priority 4, as are TCP SYNs, FINs, and RSTs. Only
the highest matching action is selected, with the resultingpacket
either being shunted to the host, forwarded to the destination, or
sampled with a copy going both to the host and destination.

Finally, if the connection cache entry has an alternate record, and
the alternate record specifies that the MAC or VLAN tag shouldbe
overwritten, this record is overwritten in place before thepacket is
forwarded. Because this overwriting uses the same memory inter-
face used to write the packet to the BlockRAM, we need to wait for
the packet to be completely received before this can occur.

7.2 Priority Inversion and Cache Management
The caches are always managed by the host, never the Shunt

hardware. The Shunt hardware only reads the caches, to determine
the appropriate action. It is up to the host to manage the cache,
including both setting entries (when the policy requires them) or
evicting entries when space is required.

An important feature is that an evicted cache entry is safe. If
there is no entry, the packet is alwaysshuntedto the host. Thus
if only one rule applies, it is always legal for the host to evict that
entry if space is needed in the cache.

There is one exception, however. If a high priority entry and
a low priority entry exist for the same connection (such as a low
priority drop associated with an offensive IP but a high priority



forward for an allowed connection), and the high priority entry is
evicted, the Shunt will compute the wrong action.

We rely on the host never creating the condition where priority
inversion occurs. If an evicted entry would create such a situation,
the host must either also evict the low-priority rule (to remove the
inversion) or select a different entry to evict.

8. EVALUATION
We evaluated the Shunt’s hardware in several contexts, including

the hardware utilization, latency required to process packets both
through a hardware only and a hardware/software path, bandwidth
testing, and the cycles required to make a decision.

Currently, the complete Shunt implementation requires 21,200
LUTs, or 77 % utilization of the Virtex 2 Pro 30 FPGA’s available
resources. Another 2770 LUTs are used for routethrough, with a
total LUT utilization of 87%. 95% of the slices are occupied.The
Shunt also uses 135 out of 136 available BlockRAMs. We believe
that we can save 3000 LUTs by removing several redundant Bo-
goCrypt instantiations in each shim and instead multiplex asin-
gle implementation. The Shunt meets the target clock rate of62.5
MHz.

To measure the overall latency incurred by the Shunt, we con-
nected two systems, each to their own Gbps switch, and then bridged
the switches either with a cable, with the Shunt set to forward
all packets (hardware-only path), or with the Shunt forwarding all
packets to the Click test harness, which reinjects the packets (hardware-
plus-software-interface path). Using Linuxping -f -c 10000,
the direct connection showed a average RTT of 176�sec, the hardware-
only path took 187�sec, and the hardware+software path 344�sec.
Thus, packets forwarded by the Shunt incur only an additional
5 �sec of latency.

We tested the Shunt’s ability to process large data rates using
ipperf [8] in the Deter testbed. Using a single sending host and
a receiving host on the other side, each Shunt port is capableof
receiving and processing data at 480 Mbps, as there is currently a
bug in the input FIFO which is causing a lockup condition when
higher data rates are attempted. Additionally, one other known bug
is causing corrupt MAC and VLAN tags when overwriting packet
contents.

The Shim itself is capable of processing packets at full Gigabit
line rate, but only for reasonably sized packets which are not di-
rected to the host. It requires 41 cycles from when a packet iscom-
pletely received in the BlockRAM buffer to when it can be readout,
when the board is lightly loaded. During heavy load, memory con-
tention could increase this by, at most, 60 clock cycles, resulting in
a maximum decision time of 101 clock cycles.

If the packet is destined for the host, the Shim will have to wait
until the arbiter reads the packet into the host packet buffer before
receiving the next packet. Additionally, since the host interface is
only 32b, 33 MHz, it is obviously insufficient to support fullGi-
gabit line rates. But if the packet is destined solely for another
Ethernet, it can begin reading the next packet. Since the interface
from the MAC is 2 Gbps, and the interframe gap is 20 bytes, the
Shunt can maintain full line rate for forwarded packets if the av-
erage packet size is over 80 bytes. Since the minimum Ethernet
packet size is 64 bytes, the Shunt can’t quite keep up with a full
rate stream of minimum sized packets, but can process a stream
of slightly over minimum size at full rate. In practice the Shunt’s
throughput will be limited by the fraction of packets which are
shunted or sampled, not by its ability to forward packets which
don’t involve the host.

9. CONCLUSIONS

We have developed the Shunt, an FPGA based accelerator for
intrusion prevention systems based on the NetFPGA architecture.
The Shunt’s design is based on RNET, a modified version of the
NetFPGA CNET design which is optimized for developing net-
work processing applications.

The Shunt uses a novel cache structure to track addresses and
connections of interest. It uses a 2-location associative cache for
connections, and a 2-location associative permutation cache for
tracking addresses. The permutation cache allows twice as many
IP address entries to be stored in the same memory. We also devel-
oped a new block cypher specifically for FPGA-based permutation
caches, which can be realized in 160 LUTs, while the multiloca-
tion associativity allows the cache to be more effectively utilized by
the software host. Additionally, the caches are “safe”, with cache
misses resulting in packets being shunted to the host.

As a result, the Shunt can utilize a very small amount of memory,
a single 2 MB (512kx32) SRAM to maintain its caches, and is im-
plemented on a relatively small (Virtex 2 Pro 30) FPGA. The shunt
is also fast, requiring 41 cycles to make a decision when lightly
loaded (and a maximum of 101 cycles when fully utilized). For
packets handled entirely in hardware, additional latency is is only
5 �s, which is nearly unmeasurable for network traffic.
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