The Shunt: An FPGA-Based Accelerator
for Network Intrusion Prevention

Nicholas Weaver Vern Paxson Jose M Gonzalez
ICSI ICSI ICSI
nweaver@icsi.berkeley.edu vern@icir.org chema@icsi.berkeley.edu
ABSTRACT mercial products—is the use of sophisticated custom haeiviaor

very high-speed processing, such systems often cast tine @mal-

ysis process in ASICs.

In this work we pursue a different architectural appro&itnt-

ing, which marries a conceptually quite simple hardware device

with an Intrusion Prevention System (IPS) running on comityod
U PC hardware. Our goal is to keep the hardware both cheap and
readily scalable to future higher speeds; and also to rétaimn-
paralleled flexibility that running the main IPS analysisarfull
general-computing environment provides.

The Shunting architecture uses a simple in-line hardwaze el
ment that maintains several large state tables indexed tkepa
header fields, including IP/TCP flags, source and destimdfo
addresses, and connection tuples. The tables yield deoisie
ues the element makes on a packet-by-packet basis: forlvard t

Today'’s network intrusion prevention systems (IPSs) masfigom
increasingly sophisticated analysis—parsing protocold iater-
preting application dialogs rather than simply searchiogsig-
nature strings—for which the necessary algorithms deflyifiod
plementation in hardware, being much more readily impleegn
using general-purpose CPUs. Yet the performance of suchsCP
increasingly lags behind that necessary to process totmyisrate
traffic streams.

We observe that in many environments much of the traffic com-
prising a high-volume stream can, after some initial ans)yise
qualified as “likely uninteresting.” Thus, we would like a ams
by which we can couple a general-purpose CPU with a speedliz
hardware element such that only the hardware element Eeses
the bulk of the bytes in a network stream, while the CPU cdh sti

inspect those elements of network flows deemed germanedor se Packet, drop it, or divert (*shunt”) ithroughthe IPS (the default).
rity analysis. By manipulating table entries, the IPS can, on a fine-grabaesis:

To this end, we have developed an in-line, FPGA-based IPS ac- (i_) specify_the tra_f_f_icit wishes to ?xam_inéi) directly bloqk mali-
celerator, theShunt using the NetFPGA2 platform. The Shunt ¢ious traffic, andiii) “cut through” traffic streams once it has had
maintains several large state tables indexed by packethéaltls, an opportunity to “vet Fhem, ofiv) skip over Ie_lrge items within a
including IP/TCP flags, source and destination IP addresses ~ Stréam before proceeding to further analyze it. .
connection tuples. The tables yield decision values theehe The efl“lcacy of th',,s ap_proa(_:h _depends on the degree to W*.“’Ch th
makes on a packet-by-packet basis: forward the packet,itjrop IPS can shed Ioad_ by |dent|fy|ng‘ large-volume ;ubsetgaﬁrm
divert it through the IPS. By manipulating table entrieg HRAS can that it can safely skip. Opportun|t|e§ for these arise, bamaple,
specify the traffic it wishes to examine, directly block maus due to encrypted SSH "_"F‘d SSL Sessions, for which the lPS. gpn on
traffic, and “cutting through” traffic streams once it has laadbp- usefully analyze thg initial negotiation process, or HT-EB&X.)”S
portunity to “vet” them, all on a fine-grained basis. We bage o that transfer large items such as images or movies. Whilb suc
design on a novel series of caches, with a “fail safe” misicpol flows make up only a small proportion of the connections seem o

coupled to a host PC to handle both cache management and highenftworg link, '('; manyhenvi_rgnlrn%nts they mg'ﬁi upa Ia_rlgzufmct
level IPS analysis. The design requires only 2 MB of SRAM fer i of the bytes, due to the widely documented “heavy-tailedure

extensive caches, and can support four Gbps Ethernets aglasi ~ ©f network traffic [11,12, 6, 23, 22, 5]. i
Virtex 2 Pro 30. Reference [7] presents the overall architecture and eweiiin

detalil. In this paper we focus on our subsequent efforts sigde
and implement an FPGA-based realization of Shunting. The de

1. INTRODUCTION vice can operate in-line on a network link, facilitate swittased
Stateful, in-depth, in-line traffic analysis for intrusidetection LAN monitoring, or as a load balancer for a clusterized Ision
and prevention is growing increasingly more difficult as taa Detection System (IDS).

rates of modern networks rise. One point in the design sparce f ~ We implemented the Shunt on top of the NetFPGA2 [19] re-
high-performance network analysis—pursued by a numbesrof ¢ search and education platform. This platform contains fsbps
Ethernets, two 2MB SRAMs, and a Virtex 2 Pro 30 FPGA, all lo-
cated on a single PCI card which fits inside a standard host. We
began by modifying an existing design, a 4-port Ethernet Nk
used only one of the SRAMs as a buffer, to crealdET, a frame-
Permission to make digital or hard copies of all or part o§ thiork for work for in-place packet manipulation and routing. The RNET
personal or classroom use is granted without fee providetidbpies are framework provides a shim between each receiving MAC and the
not made or distributed for profit or commercial advantage that copies main controller. Each shim buffers one packet at a time, @md ¢

bear this notice and the full citation on the first page. Toyooiherwise, to : P
republish, to post on servers or to redistribute to listguiees prior specific ?Oasrzlpulate the packet before routing it to any output MAGodhe

permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

We then built the Shunt using the RNET infrastructure. The de
sign centers around two primary caches: a connection cdché o
entries and an IP cache 2% entries. The connection cache uses
multi-location associativity, a variant of a design by Sengl [16],
where two separate hash functions are used to provide tfeselif
possible locations for each entry, to allow the host to mouvees
to free up space. The IP cache is a multilocapermutatiorcache:
rather than using a conventional tag/index structure, weag2-bit
block cypher to encrypt the IP address to create the tag alexX,in
which can result in a 50% savings in memory by allowing part of
the tag to be implicitly stored.

For both these caches, we encode an action (shunt, sample, fo
ward, or drop) and a priority. Additional rules also encode a
tions and priorities based on fixed-header fields. The hamlwa
selects the highest priority match, or, if no match, defaudtshunt-
ing the packet to the host. Additionally, the rules for catiens
can have an optional record that specifies an alternatendésti
MAC, VLAN, and/or output port to which connections should be
forwarded, and an alternate rule that applies if the TCP esgcpi
number is within a specified range (to skip over items with@PT
streams).

The resulting design requires 21,200 4-LUTs for logic, B,77
LUTS for routethrough (87 % of the available resources), Hpfl
out of 136 available BlockRams. It requires only 41 cyclesiake
a decision when unloaded (and no more than 101 cycles whign ful
loaded), running at 62.5 MHz. Packets that pass directiyutin
the hardware path see onlys of additional network latency.

We begin in Section 2 with a survey of related work and a dis-
cussion of the NetFPGA board. Section 3 discussefROIETad-
dition to the NetFPGA firmware, designed as a general plaitfor
network processing. Section 4 discusses our overall haedam
chitecture and how this architecture realizes our desaskist We
then in Section 5 present multi-location associativityjchtallows
us to more efficiently utilize our caches. Section 6 discsigm-
mutation caches, a space-saving technique we employ fdiPthe
cache that doubles the available capacity when associstiai
values with 32-bit keys.

Section 7 details the actual implementation used for then@hu
caches and general operation. We evaluate the Shunt iroB&ti
with present conclusions in Section 9.

2. RELATED WORK

The NetFPGA version 2 [19] was developed by McKeown et
al as a platform for both research and network experimemtati
consists of a single Virtex 2 Pro (V2Pro 30, speedgrade 5)&PG
two 2 MB (512kx36) SRAMs, a quad-port Gigabit Phy, on a PCI
card, with the PCl interface implemented in a Spartan || FPGA

Additionally, the NetFPGA platform has three significardqes
of code associated with fUNET, CNET, and assorted software
tools. UNET is a generic design for student projects. It ias
of a single Ethernet MAC and associated control logic, iditlg
memory interfaces. CNET implements a quad port Ethernet NIC
complete with a host DMA interface and an Ethernet drivere Th
NetFPGA tools include a configuration downloader whichvaio
the NetFPGA to be reconfigured, a driver for the NetFPGA board
and an API to peek and poke both status registers and the two on
board SRAMs.

There has been considerable hardware designed for intrdeio
tection. Several projects have implemented partial or detep
regular-expression based rulesets [17, 18], while a latgeber
of commercial intrusion detection and prevention systefasnc
to use hardware acceleratio?].[In particular, [17] also takes a
preprocessor approach, but it only implements the staliset to

filter out uninteresting communication, without the dynenper
connection control we provide.

The most closely related work to ours is SPANIDS [15]. SPARID
is a front-end load balancer for parallel intrusion detattpplica-
tions, which uses a series of hash functions to determinetwhi
analyzer should recieve a packet. The SPANIDS load balaeeer
ceives packets on a single Gigabit ethernet, rewrites thindgion
MAC address based on a series of hash functions, and outputs t
packet. SPANIDS uses four small hash tables of 4096 entrigs-t
termine where to route the packet, with these tables impiésaen
on-chip SRAM. Unlike the Shunt, SPANIDS cant precisely eout
individual connections, only hash-based aggregates afexiions
to balance flows and prevent hotspots.

3. RNET

Although the NetFPGA platform is designed for easy extehsib
ity as part of class projects, the design framework for ghasjects,
UNET, was not suitable for our purposes. The UNET design only
activates a single ethernet and, more importantly, lackia h-
terface to the host. Instead, we began with the NetFREBIET
design, which implements a 4 port Ethernet NIC, completdn wit
DMA packet transfer and a Linux driver, as the starting péamt
our work.

We wished to create a general framework for packet proagssin
not just an application-specific instance. We observed rifeaty
network processing tasks have the following propertiesks are
read in from an Ethernet, may be modified in-place (such asgzha
ing MAC addresses and IP TTLs, or decrypting payload data), a
then written out to an appropriate MAC or forwarded to thethos
for further analysis. This analysis may also need some nedyp-
sized shared memory, and an easy interface to the host ikefmc
operation is more complex than what the hardware can support

Thus we created a small module, a shim, that fits between each
receiving MAC and the memory arbiter which processes packet
destined for the host. The purpose of the shim is to read itkepa
from the MAC (on a 32 bit, 62.5 MHz bus) into a buffer, process
the packet with user-specified logic, and then forward thekgia
to its appropriate destinations. The shim has to wait forattiiter
to complete the transaction if the packet is forwarded tohibet,
but once the shim begins writing the packet to the output MACs
begins reading the next packet. This can allow the shim toabpe
near or at gigabit rates if the packets don’t need to be reideto
the host.

In addition to the shim, other portions of the design needed t
be modified. In order to prevent contention, each MAC senH pat
was given 4 additional FIFOs, for a total of five. These FIF@s a
served in a round-robin fashion. As a result, the RNET fraorew
implements a full 5x5 crossbar, with the 5x4 crossbar to titput
MACs having independent buffers for each path.

Finally, the memory controller for the second SRAM was modi-
fied to provide 5 read and write ports. Each shim is given ae&ing
pipelined read and write port to this shared 256kx36 SRAMaiAg
these requests are also serviced in a round-robin fashich{he
memory controller is pipelined for greater throughput.

The resulting framework (Figure 1) can then be used to imple-
ment a large class of packet processors. As the packet iroead
the MAC, at 2 Gbps, the headers are extracted and the paciket wr
ten into a BlockRAM buffer. Once the packet is fully read inya
user logic can modify the packet in place and decide where the
packet should be routed. The biggest limitation on RNETebdas
designs is that effectively all BlockRAMs are used in thet&fr
2 Pro 30, mostly because of the 20 BlockRAMs required simply
for the output buffers for the MAC output crossbar and theoth

Extract

MAC Group 0 Shim0 |—>_,
Packet [
‘ > Buffer Router H= -
Header > MemCitl

Decision [

F
F

MACL1..3

AAA

-{Frol

~— FIFO

Figure 1: The RNET structure. Items in gray are carried over from the CNET infrastructure unchanged.

BlockRAMs for the packet buffer in the shim, which are on tdp o
the already significant buffering used in the base CNET desig

3.1 Click Interface

One other addition was an interface to allow the Click [9]tevu

framework to access NetFPGA resources. Click is a C++ frame-

work for writing software routers and software packet pssieg
elements which runs on Linux.

The Shunt looks up the source IP, the destination IP, anddhe ¢
nection 5-tuple. The IP lookup just involves finding a manghac-
tion and priority. Connection lookup, however, can alsmlue an
optional record stored in a separate table. This optiorarcecan
specify a different destination for the packet, both in teohMAC
address and VLAN tag and can also specify an alternate aiftion
the packet's TCP sequence number is within a specified range.
The goal of the alternate record’s sequence skipping isablen

For packets being passed to and from the host, using the CNETthe IPS to skip over a predefined “less interesting” rangeadfi¢.

driver, Click treats the NetFPGA like any other Ethernethveiach
port having a unique Ethernet name. Click can read and wpite a
proximately 20k packets per second through this interface.

To access control information, including both NetFPGA istat
registers and the shared SRAM memory, a peek/poke inteiface
provided, which can allow Click elements to write and readme
ory state. In particular, the 2 MB shared SRAM can be both read
and written by programs written in Click to facilitate comnica-
tion with the shims, without needing to modify or add stateris-
ters contained in the CNET infrastructure.

4. THE SHUNT'S ARCHITECTURE

The Shunt is designed to accelerate three separate-btgdéh-
trusion detection tasks: in-line operation (necessanyirftsusion
prevention), LAN operation, and IDS load balancing. We hdee
signed the Shunt to perform in all these environments ussgigge
common hardware design.

The key to the Shunt’s operation is its ability to act as a pro-
grammable, priority based filter. For each packet receitied,
Shunt examines the layer 3 and layer 4 headers incrudingthiees
IP, the destination IP, and the connection 5-tuple (souPceésti-
nation IP, IP protocol, source port, and destination paa)find
the appropriate 2 bit action (forward the packet onwardpdie
packet, forward the packet and sample with a specified pilbbab
ity, or Shunt the packet to the host for further examinatidggch
matching rule also has a 3 bit priority (values 0 to 7), with kigh-
est matching rule being selected, and a 3 bit sample schidié
selected action is sample.

The header examination uses a set of static rules. Non-IR pac
ets will always be Shunted to the host. Likewise, packetshvhi
are IP fragments (which can be used for evasive purposesgino
IP options, or are TCP connection delimiters (SYNs, SYN/ACK
FINs, or RSTs) are Shunted to the host with priofity

In contrast, both the connection rules and IP rules are prograble.

For example, in an HTTP stream, a large embedded image is of
little interest to most IPSs. By using the header to deteentiire
length of the image, the sequence-skipping can be used éthav
Shunt directly forward the image, while ensuring that thbssu
quent traffic will still be directed to the host for detailexbenina-

tion.

4.1 In-line Operation

For in-line operation, the Shunt (and associated IPS) arteqir
ing an institution from external threats, by filtering aliffic on the
wide area network (WAN) link or links. To protect a GigabitHi
the Shunt will need to be placed in-line, with one port for AN
side and another port for the WAN side. In this mode, a single
NetFPGA board can process two Gigabit WAN links.

In this mode, the Shunt’s role is to act as a front end filterafor
IPS running on the Shunt’s host. When the IPS determines that
a particular connection doesn't significantly benefit froeeper
inspection, it will place dorward rule for this connection. Any
subsequent traffic will be directly routed from the input &tiret to
the output, without loading the host. Likewise, if the 1P Sedts
that a host is behaving offensive in some way (attackingate
hosts, or attempting to disrupt the IPS itself with offeediraffic),
it can institute a high-priority drop rule for traffic comirfigom this
IP.

4.2 LAN Operation

For LAN operation, the Shunt’s role is to isolate and control
traffic passing between a large group of hosts, either fordpS
eration [20, 21] or to implement LAN-based policy contro).[Bs
such,all traffic on the local network must pass through the Shunt
before proceeding to the destination.

There are two options for LAN traffic management: direct rout
ing and VLAN rewriting. In direct routing, every host or gipof
hosts is on a separate Shunt port. In this context, the ctionisc

table’s optional record for each destination will specifigigh out-
put port a connection should be routed to.

For VLAN rewriting, every host is on its own unique VLAN, us-
ing untagged switch ports, with the Shunt on one or more VLAN
trunks which can read and write every 802.1(q) VLAN on thetslwi
with tagged packets. For VLAN rewriting, the optional retor
specifies the destination VLAN. Any packet which is forwatde
will have its VLAN tag rewritten and then be reinjected bantoi
the same port, where the switch will route the packet to istida-
tion. This, naturally, requires switches which both supmrANs
and maintain per-VLAN MAC caches.

One limitation for these LAN operations is that forward aper
tions can only be encoded in the connection table’s optida, fimt
the IP table. As such, the IP table is effectively limited imgly
blocking offensive sites, not whitelisting good traffic.

4.3 |IDS Load Balancer

100%

90% /-

80% /

70%

60% /

/ Direct Mapped

50%
// — 2-way assoc
40%

— 2-loc assoc
/ [=2-loc assoc + search

30% /
20%

0% 100% 200%

Desired Percentage Occupancy

Figure 2: The fraction of the cache actually filled as a functbn

A final deployment we are pursuing is as a load balancer for a of the number of inserts attempted for four different strategies:

large cluster-based IDS deployment. In this role, four 1 Stap
ports are fed into a switch, with each data feed on a unique VLA

Direct mapped, number of data inserted for 4 different strate-
gies: Direct mapped, 2-way associative, 2-location assative,

The Shunt is placed on four ports on the switch, with each port and 2-location associative with a small search to move engs.
configured with a VLAN trunk. Each port has access to one of the These results are for 100 runs each with a 64k entry cache.

tap feeds, and can also write to an experimental VLAN whih th
cluster systems are on.

In this mode, the host only acts as a load balancer and managernumber of entries exceeds the size of the cache, the maltitoc

putting in appropriate forward rules for all active connes. This
will require work on a per-connection basis, but allows gigantly

greater flexibility than static rules, as the load balaneer, on re-
quest, also drop connections, react to node failures, mectdon-
nections to different analyzers on demand. Since the aathite
does not include the IDS nodes reinjecting traffic, the Stuoets
not operate in-line, and thus does not support intrusiongmtéon;

however, the approach could be extended to support suchtaper

5. MULTILOCATION ASSOCIATIVITY

Traditionally, higher associativity caches will have nipli lo-
cations at the same index. Thus if the cache is 2-way asa@giat
and Dy, D;, and D all hash to the same index, only two entries
can actually be stored. In a multilocation associativitgheg mul-
tiple hash functions are used rather than one, and the vadyeom
at the index specified by any hash function. This design, umzxa
it is a cache rather than a complete hash table (and therafore
chained buckets) is a simplification of the Fast Hash Taldpgsed
by Song et al [16], which was itself based on bloom filters [2].

In a multilocation cache the multiple hash functions areduse
specify multiple locations where an element might residmisifor
a 2-way multilocation cache, two different hash functiores ased
and the data could be at either location. Unlike a bloom fittew-
ever, the hashed locations are checked to see if the dattuallgc
stored at the location. Otherwise, its a cache miss. Thigiloed-
tion design allows the cache to be much more fully populaasdf
Dy, D, andD» map to the same location with one hash function, it
is highly unlikely that they map to the same location for taead
hash function.

Additionally, when the cache evictions are rare and the eash
managed by a sophisticated processor, entries can be mByed.
conducting a partial or complete depth-first-search, ticheanan-
ager can help ensure that the cache is completely full, dasitmit
simpler process to the pointer balancing in Song et al's Rash
Table design.

Figure 2 shows how location associativity can help bettéizet
the cache. As can be clearly seen, when the cache is onlyylight
occupied, the choice of associativity has little effectiBait as the

associativity helps considerably. Adding the search djmeram-
proves things even more.

A small simulator was made to model this cache architecture,
with 100 runs for each parameter selected. For Figure 2, 26tk
cache was used. In particular, when 64k elements are hasided a
inserted into the direct mapped cache (desired occupatioale
100% of cache size), on average, only 41,000 elements can act
ally reside in the cache. Changing to a two-way associatgigt
allows 47,600 elements to be actually cached. A two-loca&so-
ciative cache, however, allows 49,800 elements. If a smefith 5
search is used to find an appropriate entry when there is datonfl
now 54,800 elements can be stored, using the exact same amoun
of memory. Thus going with multiway associativity and a dmal
search to find valid configurations can result in a 15% in@éas
cache utilization.

There are three disadvantages to this style of cache cothpare
with a conventional cache. The firstis that it requires midthash
functions instead of a single function. This is simply bessail-
way location associativity requires N hash functions (oriffécent
keys to the same keyed hash function). In general, this sasu-
ally low.

The second is that, if a search is employed, it can be costheas
cache fills up. Instead of simply checkifglocations to determine
where to insert, a small search of degthwill require checking
K % N locations. Thus some tradeoff will need to be determined
where to halt the search and just evict an old entry instead.

The biggest concern is that &ilocation cache requires access-
ing N differentmemory locations. If the cache is stored in SRAM,
and the entry size is equal to or greater than the word size, th
is not an issue. However, for DRAM-based caches, or any mem-
ory system which fetches large groups of words at a timeimca
associative caches may not be effective.

6. PERMUTATION CACHES

One of the keys to the Shunt’s design is efficient caches. With
only a 2 MB working memory, we needed to develop efficient
caches to maximize the hit rate while minimizing the workingm-
ory. In particular, for the IP cache, we used a variant on trenpi-

tation cache we first described in our AC-TRW paper [10] which Keyed Permutation Function
allows us to double the capacity of this cache. Input: Din[31:0], K[63:0]
A permutation cache is particularly well suited to assocgg Output: Dout[31:0]

small amount of data (such as an 8 bit source action and an 8 bit BO <= (SBoxA(Din[7 : 01)>>>2) + K[7: 0]
destination action) to 32 bit keys. Rather than splittingitay into Bl <= (SBoxA(Din[15: 8])>>>3) + K[15: 8]
an index and tag, a permutation cache first encrypts the kag us B2 <= (SBOXA(DJ.'n[B:lG])>>>4) + K[23:16]
o) B3 <= (SBoxA(Din[31:24])>>>5) + K[31:24]

a block cypher where the block size is the same as the caole’s k CO <= BO ~ (Bl>>>1) A (B2>>>2) ~ K[39:32]
size. Since a bI(_)ck cypher is r_eaIIy a permutatl_o_n, thlsgulmes_ Cl <= Bl ~ (B2>>»4) A (B3>>>5) ~ K[47:40]
that each Key will map to a unique yalue. Additionally, .byn.gy C2 <= B2 A (B3>>>7) A (CO>>>1) A K[55:48]
a cypher with a random cryptographic key, the permutatiaaris €3 <= B3 ~ (CO>>>3) ~ (Cl>>>4) ~ K[63:56]
domized and therefore can’t be predicted by an attackeidiagp DO <= SBoxC (CO)
the attack by Crosby et al [4]. D1 <= SBoxC (Cl1)

The resulting 32 bit value is then split into an index and teith D2 <= SBoxC (C2)
the index used to find the proper location and the tag verifieehw D3 <= SboxC (C3)
fetching the associtated value, just like a conventioneheaAs a EO <= DO ~ (D1>>>1) ~ (D2>>>5) ~ (D3>>>2)
result, an encryption cache for 32 bit keys wath locations only El <= D1 ~ (D2>>>2) ~ (D3>>>6) *~ (E0>>>3)
needsl6 bits of tag per entry, rather than the 32 bits required if a E2 <= D2 ~ (D3>>>3) ~ (E0>>>7) * (E1>>>4)
hash was used instead of a permutation. E3 <= D3 * (E0>>>4) ~ (E1>>>1) ~ (E2>>>5)

We extended the permutation cache to support multilocatsn Dout [31:0] <= {E3, E2, El, EO}
sociativity by using different cryptographic keys. Insteaf just
storing the tag, an additional ID number is used to specificivh SBoxA-> Apply Serpent SBox0 to upper 4 bits
cryptographic key was used for this entry. Thus with 2 kelyis, he- Serpent SBoxl to lower 4 bits
comes a 2-way multilocation associative encryption cathevo SBoxC-> Apply Serpent SBox2 to upper 4 bits
values encrypt to the same location with one encryption #ey Serpent SBox3 to lower 4 bits

will, with very high probability, map to different locatienwhen

the other encryption key is used, giving a freedom for caafetit
we discussed in Section 5. Figure 3: The pseudo-code for our keyed permutation (a sim-

) plified block cypher).
6.1 Keyed Permutation

Due to the usage model in a permutation cache, we don’t need Start End Purpose
a cryptographically strong block cypher, we only need arieffit Address| Address
block cypher-like keyed permutation, one which requirey @n 0x00000| OXxOFFFF| Staus Registers, Keys, Misc I/{)
small amount of FPGA resources and which can be computed in 0x10000| OXIFFFE| IP Address Cache'™ entries
one or two clock cycles. Additionally, we need a 32 bit block 0x20000 | OX3FFFF | Optional Record2™® entries
cypher, while most block cyphers operate on 64 or 128 bitksibc 0x40000| OX7EEEF| Connection Cache&'™® entries

We also desire a 64 bit key, which allows a large amount obegtr
to be injected into the permutation.

Thus we committed the classic cryptographic sin and deeelop
our own 32 bit keyed permutation specifically for use in 32deit-
mutation caches. Our goal was to have a single round withsanea
able amount of mixing which can be efficiently implementedaon
4-LUT based fabric as an S/P (Substitution/Permutatiotyore.
Thus the primitives we used are 4-bit S-boxes (from the Seifi¢
block cypher), byte addition, fixed rotation, and 4-input RO

The initial input first passes through the initial S-boxeasfd
on the Serpent [1] 4-bit S-boxes). The resulting output $yies
rotated and are bytewise added to the first 32 bits of the khg. T
resulting word is then is passed through bytewise rotatiuh 4
input XORs, with each XOR combining 3 bytes of data with 1 byte
of key. Finally, the data passes through one more round ax@s)
and then a series of 4-input XORs and rotations. Figure 3 show
the complete pseudocode.

Although we never actually need to decrypt data for our appli
cation, the decryption process is effectively the oppasitine en-
cryption process, with inverted operations in reverseidecryp-
tion requires exactly the same resources as encryptionwauottl
be necessary for any application which needs to examinerthe e 7., SHUNT CACHES

tire contents of a permutation cache, rather than just fapkip a For the actual implementation of the Shunt, we needed tolfit al
specific entry. the caches into the single 512kx36 (2 MB) second SRAM on the

1The RC5 13] and RC6 [14] cvphers can be parameterized down NetFPGA board. '_I'able 1 summarizes our memory allocation. We
to a 32 bit E)Io!:k, but the)E ar]e %gt efficient in t%is applicatidue reserved the locations 0x0000 to OXOFFFF (the fitStaddresses)

to their multiround structure, choice of primitives inclng 16 bit for miscelanious I/0, including status registers, deboaggnfor-
variable rotations, and complex key schedule. mation, and the two permutation keys which are written byhibe.

Table 1: The memory allocation used in the NetFPGA Shunt

This design is very efficient when targeting an FPGA. All step
require only 32 LUTs each. Thus with two S-box steps (64 LUTSs)
the initial key addition (32 LUTSs), the key-dependent mgif82
LUTSs), and the key independent mixing (32 LUTS), the totalrar
only requires 160 LUTs. Given a registered input and onlyna si
gle pipeline register on the output, this cypher runs at #nget
62.5 MHz clock cycle on our Virtex 2 Pro FPGA, without needing
placement directives.

Additionally we have deliberately designed it for hashifgald-
dresses. In this case, it is OK if the lower bits of the outpetreot
as high quality as the upper bits, as it is the upper bits whieh
used as the index for looking up entries. As a result, for llo¢h
computation of the C and E words, the feedback loop causes the
upper bytes to be more affected by all input data and key bits.

Packet [scip [pstip | Proto| Frags| sport| DPor|
[| Fixed Rules
IP Cache Connection Cache
Tag& Src Dst Low High Proto Low High Low High Low High
KeyIDy jActn; Actn 1P 1P Port ; Port ; Optn; Optn; Actn;Actn
JN oy =0 Selected
| Action:
o Da Forward,
i Shunt,
[o) Sample,
17b EIER 32b 32b 8b | 16b | 16b | 14b | 16b [8b | &b |" or Drop)
L
) Option Table
Action Entry Format: New New New Seq Seq
[Action (2b) [Sample Rate (3b) [Priority (3b) | MAC 4 VLAN jOut 1 # 4 Actn
0__
490 176 | 3b | 32b | &b

Figure 4: The packet processing operation used by the Shunt

The IP address cache us@%® addresses from 0x10000 to

0 OX1FFFF. We implemented the address cache as a 2-location a

sociative permutation cache. WigH° addresses and 2 keys, the
first 16 bits are used to store the tag, one bit is used for thélke

ing 20 words from 8 contiguous locations in memory.

7.1 The Packet Processing Procedure
When a packet is received, the entire packet is first readlito

#, 8 bits are used for the SRC IP record, and 8 bits are used for Shim's BlockRAM buffer. As the packet is received, the agpiro

the DST IP record, with 3 bits of the entry unused. Looking up a
packet in the IP cache requires checking four locations fowthe
SRC record and two for the DST record.

The connection cache us@s® addresses, from 0x40000 to
0 OX7FFFF. This cache is two location associative, usingeyed
permutation as the basis for the hash function and same ty ke
used for the address cache. Each record in the connectitie cac
is 4 words, thus the cache conta’$ entries. The entry contains
both IP addresses (64 bits), both port numbers (32 bits)Ptipeo-
tocol number (8 bits), and an 8 bit action field. Additionatko
16 bit pointers are included, one for each optional recotd,f@e
for each direction of the connection.

Finally, the optional records usE” addresses, from 0x20000
to Ox3FFFF. This optional record contains a 48 bit option&Q/
address to overwrite the destination MAC, a 16 bit optionlaAW
tag, a 2 bit alternate destination port designation. Alsthéelds
also have an associated bit which specifies if the alterne¢é-d
nation (MAC, VLAN, and/or Ethernet port) should be used. Fi-
nally, the optional record contains a 32 bhit TCP sequencebeum
and an associated 8 bit action. If the packet is a TCP pachkdt, a
the packet's sequence number is less than the recordednseque
number, the alternate action field is used instead of theastiom
cache’s action field.

ate fields (including IP header, TCP header, and Ethernetehpa
are captured and stored in registers. Once the packet isletatyp
read in, the IP cache, connection cache, and alternatedrecer
looked up. For each cache which matches, the appropriatmact
field is used, or, if there is no match, the default actiorslofint
with priority O is selected.

Additionally, the fixed rules are examined. Non-IP packets a
always shunted to the host. IP packets with IP options set are
shunted with priority 4, as are TCP SYNs, FINs, and RSTs. Only
the highest matching action is selected, with the resulpiagket
either being shunted to the host, forwarded to the destimatr
sampled with a copy going both to the host and destination.

Finally, if the connection cache entry has an alternatertk@nd
the alternate record specifies that the MAC or VLAN tag shdad
overwritten, this record is overwritten in place before plagket is
forwarded. Because this overwriting uses the same memtey in
face used to write the packet to the BlockRAM, we need to veait f
the packet to be completely received before this can occur.

7.2 Priority Inversion and Cache Management

The caches are always managed by the host, never the Shunt
hardware. The Shunt hardware only reads the caches, tordeéer
the appropriate action. It is up to the host to manage theecach

We pipeline the memory access when a packet is received in Or-including both setting entries (when the policy requiresnth or
der to improve memory access time. We first access the 4 wordseyjcting entries when space is required.

used to specify the two, 64 bit encryption keys used for bb¢h t
permutation cache for IP lookup and the hash function foneon
tion lookup. Then the two possible connection entry logati¢4

An important feature is that an evicted cache entry is safe. |
there is no entry, the packet is alwasisuntedto the host. Thus
if only one rule applies, it is always legal for the host tootthat

words each) are fetched. Then the 4 words forr the IP cache. At gntry if space is needed in the cache.

this point, the state machine may pause to ensure that theecon
tion entries are properly loaded, before fetching the 4 wpainted
to by the optional record. Thus processing a packet reqtetek-

There is one exception, however. If a high priority entry and
a low priority entry exist for the same connection (such asva |
priority drop associated with an offensive IP but a high priority

forward for an allowed connection), and the high priority entry is
evicted, the Shunt will compute the wrong action.

We rely on the host never creating the condition where gyiori
inversion occurs. If an evicted entry would create suchuasiin,
the host must either also evict the low-priority rule (to mm the
inversion) or select a different entry to evict.

8. EVALUATION

We evaluated the Shunt’s hardware in several contextsjdira
the hardware utilization, latency required to process etckoth
through a hardware only and a hardware/software path, hidttdw
testing, and the cycles required to make a decision.

Currently, the complete Shunt implementation require2@1,
LUTSs, or 77 % utilization of the Virtex 2 Pro 30 FPGA's availab
resources. Another 2770 LUTSs are used for routethroughy avit
total LUT utilization of 87%. 95% of the slices are occupifdhe
Shunt also uses 135 out of 136 available BlockRAMs. We believ
that we can save 3000 LUTs by removing several redundant Bo-
goCrypt instantiations in each shim and instead multiplesina
gle implementation. The Shunt meets the target clock ra62df
MHz.

To measure the overall latency incurred by the Shunt, we con-
nected two systems, each to their own Gbps switch, and thegeat
the switches either with a cable, with the Shunt set to fodwar
all packets (hardware-only path), or with the Shunt forvwagdall
packets to the Click test harness, which reinjects the pa¢kardware-
plus-software-interface path). Using Linpkng -f -c¢ 10000,
the direct connection showed a average RTT of 13éc, the hardware-
only path took 187:sec, and the hardware+software path g4dc.
Thus, packets forwarded by the Shunt incur only an additiona
5 psec of latency.

We tested the Shunt’s ability to process large data ratewjusi
ipperf [8] in the Deter testbed. Using a single sending host a
a receiving host on the other side, each Shunt port is capdble
receiving and processing data at 480 Mbps, as there is tiyreen
bug in the input FIFO which is causing a lockup condition when
higher data rates are attempted. Additionally, one othewkrbug
is causing corrupt MAC and VLAN tags when overwriting packet
contents.

The Shim itself is capable of processing packets at full Giiga
line rate, but only for reasonably sized packets which atedio
rected to the host. It requires 41 cycles from when a packatis
pletely received in the BlockRAM buffer to when it can be read,
when the board is lightly loaded. During heavy load, memany-c
tention could increase this by, at most, 60 clock cyclesltieg) in
a maximum decision time of 101 clock cycles.

If the packet is destined for the host, the Shim will have tatwa
until the arbiter reads the packet into the host packet bb#ore
receiving the next packet. Additionally, since the hoseifece is
only 32b, 33 MHz, it is obviously insufficient to support fui-
gabit line rates. But if the packet is destined solely forthao
Ethernet, it can begin reading the next packet. Since tleefatte
from the MAC is 2 Gbps, and the interframe gap is 20 bytes, the
Shunt can maintain full line rate for forwarded packets & #v-
erage packet size is over 80 bytes. Since the minimum Etherne
packet size is 64 bytes, the Shunt can't quite keep up witHla fu
rate stream of minimum sized packets, but can process arstrea
of slightly over minimum size at full rate. In practice theusltis
throughput will be limited by the fraction of packets whichea
shunted or sampled, not by its ability to forward packetsclvhi
don't involve the host.

9. CONCLUSIONS

We have developed the Shunt, an FPGA based accelerator for
intrusion prevention systems based on the NetFPGA arc¢hic
The Shunt’s design is based on RNET, a modified version of the
NetFPGA CNET design which is optimized for developing net-
work processing applications.

The Shunt uses a novel cache structure to track addresses and
connections of interest. It uses a 2-location associatde for
connections, and a 2-location associative permutatiohecdor
tracking addresses. The permutation cache allows twiceaay m
IP address entries to be stored in the same memory. We aleb dev
oped a new block cypher specifically for FPGA-based pernuutat
caches, which can be realized in 160 LUTSs, while the muléifoc
tion associativity allows the cache to be more effectivéiyaed by
the software host. Additionally, the caches are “safe”hveiaiche
misses resulting in packets being shunted to the host.

As aresult, the Shunt can utilize a very small amount of mgmor
a single 2 MB (512kx32) SRAM to maintain its caches, and is im-
plemented on a relatively small (Virtex 2 Pro 30) FPGA. Thergh
is also fast, requiring 41 cycles to make a decision whertliigh
loaded (and a maximum of 101 cycles when fully utilized). For
packets handled entirely in hardware, additional latesag only
5 ps, which is nearly unmeasurable for network traffic.

10. REFERENCES

[1] R. Anderson, E. Biham, and L. Knudsen. Serpent: A
proposal for the advanced encryption standard.
Burton Bloom. Space/time trade-offs in hash coding with
allowable errorsCACM, July 1970.
Martin Casado, Tal Garfinkel, Aditya Akella, Michale
Freedman, Dan Boneh, and Nick McKeown. SANE: A
protection architecture for enterprise networksUsenix
Security 2006.
Scott Crosby and Dan Wallach. Denial of Service via
Algorithmic Complexity Attacks. IrProceedings of the 12th
USENIX Security SymposiutdSENIX, August 2003.
M. Crovella. Performance evaluation with heavy tailed
distributions. INJSSPP '01: Revised Papers from the 7th
International Workshop on Job Scheduling Strategies for
Parallel Processingpages 1-10, London, UK, 2001.
Springer-Verlag.
M. Crovella and A. Bestavros. Self-Similarity in Worldi#é
Web Traffic: Evidence and Possible Causeioceedings
of SIGMETRICS’96: The ACM International Conference on
Measurement and Modeling of Computer Systems.
Philadelphia, Pennsylvania, May 1996. Also, in Perforneanc
evaluation review, May 1996, 24(1):160-169.
[7] J.M. GonzalezEfficient Filtering Support for High-Speed
Network Intrusion DetectiarPhD thesis, University of
California, Berkeley, 2005.
National laboroatory for applied network research,
distributed applications support team, iperf, the tcp/udp
bandwidth measurement tool.
http://dast.nlanr.net/projects/iperf/.
R. Morris, E. Kohler, J. Jannotti, and M. Frans Kaashoek.
The click modular router. I8ymposium on Operating
Systems Principlepages 217-231, 1999.
Nicholas Weaver and Stuart Staniford and Vern Paxsery V
fast containment of scanning worms.18th USENIX
Security SymposiundSENIX, August 2004.
[11] V. Paxson. Empirically derived analytic models of wideea
TCP connectiondEEE/ACM Transactions on Networking

(2]
(3]

(4]

(5]

(6]

(8]

9]

[10]

2(4):316-336, 1994.

[12] V. Paxson and S. Floyd. Wide area traffic: The failure of
poisson modeling EEE/ACM Transactions on Networking
3(3):226-244, 1995.

[13] Ronald L. Rivest. The RC5 encryption algorithm, from dr
dobb’s journal, january, 1995, 1996.

[14] Ronald L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L.
Yin. The RC6 block cipher.

[15] Lambert Schaelicke, Kyle Wheeler, and Curt Freeland.
SPANIDS: A scalable network intrusion detection
loadbalancer, 2005.

[16] Haoyu Song, Sarang Dharmapurikar, Jonathan Turndr, an
John Lockwood. Fast hash table lookup using extended
bloom filter: An aid to network processings. 8 iGCOMM
2005.

[17] Haoyu Song, Todd Sproull, Mike Attig, and John Lockwood
Snort offloader: A reconfigurable hardware nids filter.

[18] loannis Sourdis and Dionisios Pnevmatikatos. Fast,
large-scale string match for a 10 gbps fpga-based network
intrusion detection system.

[19] Greg Watson, Nick McKeown, and Martin Casado. Netfpga:
A tool for network research and education.2md workshop
on Architectural Research using FPGA Platforms (WARFP)
2006.

[20] Nicholas Weaver, Dan Ellis, Stuart Staniford, and Vern
Paxson. Worms verses perimiters: The case for hard lans, in
submission.

[21] Nicholas Weaver, Vern Paxson, and Robin Sommer. Work in
progress: Bro-LAN pervasive network inspection and contr
ol for lan traffic, 2006.

[22] W. Wilinger, V. Paxson, and M. Taqqu. Self-similaritych
heavy tails: Structural modeling of network traffic. In
R. Adler, R. Feldman, and M. Taqqu, editofsPractical
Guide To Heavy Tails: Statistical Techniques and
TechniquesBirkhauser, 1998.

[23] W. Willinger, M. Tagqu, R. Sherman, and D. Wilson.
Self-similarity through high-variability: Statisticahalysis
of Ethernet LAN traffic at the source levéEEE/ACM
Transactions on Networking:71-86, 1997.

