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Abstract—Accurate estimation of glottal closure instants (GCIs)
and opening instants (GOIs) is important for speech processing
applications that benefit from glottal-synchronous processing.
The majority of existing approaches detect GCIs by comparing
the differentiated EGG signal to a threshold and are able to
provide accurate results during voiced speech. More recent al-
gorithms use a similar approach across multiple dyadic scales
using the stationary wavelet transform. All existing approaches
are however prone to errors around the transition regions at the
end of voiced segments of speech. This paper describes a new
method for EGG-based glottal activity detection which exhibits
high accuracy over the entirety of voiced segments, including, in
particular, the transition regions, thereby giving significant im-
provement over existing methods. Following a stationary wavelet
transform-based preprocessor, detection of excitation due to
glottal closure is performed using a group delay function and then
true and false detections are discriminated by Gaussian mixture
modeling. GOI detection involves additional processing using the
estimated GCIs. The main purpose of our algorithm is to provide
a ground-truth for GCIs and GOIs. This is essential in order to
evaluate algorithms that estimate GCIs and GOIs from the speech
signal only, and is also of high value in the analysis of pathological
speech where knowledge of GCIs and GOIs is often needed. We
compare our algorithm with two previous algorithms against a
hand-labeled database. Evaluation has shown an average GCI hit
rate of 99.47% and GOI of 99.35%, compared to 96.08 and 92.54
for the best-performing existing algorithm.

Index Terms—Electroglottograph (EGG), glottal closure in-
stants (GCIs), group delay function, laryngograph.

I. INTRODUCTION

A
LL voiced sounds are produced by an excitation signal

that is filtered by a passive resonator called the vocal tract.

This excitation is produced by the vocal folds, which consist

of opposing ligaments that form a constriction at the top of the

trachea as it joins the lower vocal tract. When air is expelled

from the lungs at sufficient velocity through this orifice—often

referred to as the glottis—the Bernoulli Effect results in a par-

tial vacuum that causes the vocal folds to snap shut and disrupt

the air flow. This glottal closure instant (GCI) is followed by a

period during which the glottis is closed, until muscle tension

and air pressure cause the folds to reopen at the glottal opening
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Fig. 1. (a) Speech signal, (b) the corresponding EGG signal, and (c) the EGG
time derivative for / /. Negative peaks due to glottal opening are weak in (c).

instant (GOI). The process repeats periodically as a series of

pulses that produces “modal” voiced speech. The ratio of open

time with respect to glottal period is termed the open quotient

(OQ) [1].

Identification of GCIs in voiced speech is important for

speech processing algorithms such as pitch tracking [2],

prosodic speech modification [3], speech dereverberation [4],

glottal-synchronous processing in speech synthesis [5] and

voice source modeling [6]. Identification of GOIs is necessary

for closed-phase LPC analysis and subsequent inverse filtering

to obtain an estimate of glottal volume flow from a speech

signal [7] for applications such as feature extraction for speaker

identification [8]. Further uses are found in the analysis of

pathological speech, including types of dysphonia [9], vocal

fold impact stress [10] and essential tremor [11]. We refer to

GOIs and GCIs as glottal activity.

The Electroglottograph (EGG) (or Laryngograph) signal

[12] is a measurement of the electrical conductance of the

glottis captured contemporaneously with speech recordings.

The measured EGG signal is proportional to the glottal contact

area, whose derivative (DEGG) during voiced speech contains

short, high-amplitude impulsive temporal features (spikes) due

to glottal closure and smaller features of opposite sign due to

glottal opening. An example of a voiced speech segment, the

corresponding EGG recording and its derivative is shown in

Fig. 1. Many approaches analyze the EGG by searching for

spikes in DEGG [13]–[16] and compare their amplitudes with

thresholds to obtain an estimate of glottal activity during voiced
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speech. Recent approaches have applied multiscale analysis

to detect glottal activity as singularities in the EGG signal

[17] and speech signal [18]. Existing techniques are, however,

often prone to errors around the end of voicing as discussed in

Section II.

In cases where only the speech signal is available, new al-

gorithms have recently been proposed which estimate glottal

activity from the speech signal alone [19]–[23], and this is an

ongoing topic of research with seemingly ever-improving re-

sults. These algorithms enable glottal activity information to be

determined in real-world applications in which, typically, the

EGG signal is not available. However, as such methods improve,

their evaluation requires ever more accurate references. This re-

quirement, alongside the application to the study of pathological

speech, further motivates the development of better EGG-based

detection algorithms.

This paper describes the Singularity in EGG by Multiscale

Analysis (SIGMA) algorithm. SIGMA benefits from the use

of multiscale processing but it novely extends the approach by

performing spike detection on the multiscale product using a

group delay method [24] which circumvents the need for thresh-

olding. The robustness of our approach to false detections is

further enhanced by Gaussian mixture modeling [25] which is

used to remove detections with unlikely features. The proposed

method provides GCI estimation with outstandingly high accu-

racy which also achieves similarly accurate GOI detection. Ad-

ditionally, the algorithm makes no assumptions about the nature

of the EGG signal other than the bounds on the range of glottal

frequency and open quotients [26]; SIGMA may therefore have

many further uses as it is also suitable for singularity detection

in applications outside the field of speech processing.

This paper is organized as follows. Section II reviews the

characteristics of the EGG signal and the methodology em-

ployed by some existing algorithms. Section III describes

multiscale analysis, the use of the group delay function and

Gaussian mixture modeling for spike detection in the multiscale

product. The proposed SIGMA algorithm is compared with

existing techniques and evaluated in Section IV. Conclusions

are drawn in Section V.

II. INTERPRETING EGG SIGNALS

A. HQTx and TXGEN

In Section IV, the performance of SIGMA is compared

with two existing algorithms: High Quality Time of excitation

(HQTx) and Time of eXcitation GENerator (TXGEN) [16].

The following is a brief description of their operation.

HQTx uses two derived functions: DEGG and an estimation

of instantaneous gradient. A threshold function varies dynami-

cally with the EGG signal, whose minimum is set by periods of

silence assumed to lie during the first and last 20 ms of the EGG

recording. The instants of time when the DEGG and instanta-

neous gradient exceed this threshold are the estimated GCIs.

TXGEN uses a more straightforward approach but attempts

to detect both GCIs and GOIs. After low-pass filtering the EGG

signal at 3 kHz, it is differentiated to find DEGG. High and

low thresholds are set by the extrema of the DEGG signal from

the entire recording multiplied by constant-valued coefficient.

If DEGG passes through both thresholds within a set period of

time, an estimated GCI is flagged. A GOI is the point in the

EGG signal whose amplitude is equal to the amplitude at the

preceding GCI.

B. Detection Errors

Both SIGMA and the algorithms described are evaluated

against a large hand-labeled database. The remainder of this

section describes common features of the EGG signal, those

cases where interpretation of the EGG signal requires clarifica-

tion and the resulting errors made by existing algorithms.

A voiced speech signal, its corresponding time-aligned

EGG signal and the EGG derivative are shown in Fig. 1. Time

alignment is achieved by ensuring that the lip-microphone

propagation distance plus an estimate of the length of the

talker’s vocal tract is a constant value, then subtracting the

corresponding delay. We define a positive EGG signal to be

high glottal contact area, giving positive- and negative-going

transients for GCIs and GOIs, respectively, with corresponding

spikes in the EGG derivative.

Errors in GCI detection can be divided into two categories

[19]: False alarm errors are made when more than one GCI is

detected within a reference cycle; Miss errors are made when no

GCI is detected within a reference cycle (GOI errors are treated

in the same manner). Errors occur when certain types of EGG

signal, discussed in the following sections, cause a poor estimate

of the signal thresholds described in Section II-A.

C. “False Alarm” Errors

It has been shown that, for normal “modal” voiced speech,

the frequency of oscillation of the glottis and the open quo-

tient are dependent on phoneme and voice quality [12], [14].

Studies have further revealed that, for a given talker, the diffi-

culty of detecting glottal closure is largely independent of the

sound produced but that interesting effects occur at the bound-

aries of voiced/unvoiced speech, noting in particular [27]:

1) “Vocal fold vibration does not stop abruptly at the end of

voicing, but slowly decays as the vocal folds come to a rest

position.”

2) “It is possible for vocal fold vibration to continue without

the generation of any significant energy,” termed “breathy

offsets” [28].

This is examined in greater detail in [28], where a third phenom-

enon is observed at the end of voicing.

1) “A persistence of energy in the speech waveform after

the EGG waveform has dropped virtually to zero,” termed

“breathy voice.”

In the case of breathy offsets, GCIs can be detected from the

EGG long after the speech amplitude has significantly dimin-

ished as the EGG signal remains modal, with increasing open

phases that result in a breathier sound [28]. This is demonstrated

in Fig. 2, showing 14 cycles of breathy offset terminating in

breathy voice when EGG signal finally loses modality.

In the case of breathy voice, observed throughout case (3)

and at the very end of case (2), the glottis is “flapping in the

breeze” [29] with insufficient contact to register on the EGG

waveform. As described in [30], “If the glottis does not shut
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Fig. 2. (a) Speech signal, (b) EGG signal, and (c) its time derivative with over-
layed HQTx GCI estimation markers at the end of a voiced speech segment, /u/,
exhibiting “breathy offset” (cycles 8–21) and briefly “breathy voice.” The first
22 GCIs are identified correctly (marked “ ”) but the last three (marked “ ”)
are erroneous.

Fig. 3. (a) Speech signal, (b) EGG signal, and (c) its time derivative with over-
layed HQTx GCI estimation markers at the end of a voiced speech segment, /I/,
exhibiting “breathy voice.” The first three GCIs are identified correctly (marked
“ ”) but the last four (marked “ ”) are erroneous. Negative peaks due to glottal
opening are significant in (c).

quickly enough no vocal wave is generated in the supra-

glottic cavity,” and is demonstrated in Fig. 3. In both cases,

a number of erroneous GCIs are detected by HQTx during

segments of breathy voice ( ) until its dynamic threshold is

no longer exceeded. These errors also often occur at erratic

intervals. For the hand-labeled reference, marked “ ,” the

labeler would not mark any GCIs where there is no visible

instant defining the periodicity, as would be the case with all

instances of breathy voice.

Breathy voice represents a natural transition from modal

voiced speech to unvoiced or silence [28]. It is further noted

Fig. 4. (a) Original Speech signal with correct GCIs (marked “ ”) and false
alarm errors (marked “ ”) and (b) time scale expanded by three times with
the PSOLA Algorithm. Voiced cycles are copied and concatenated to increase
duration; this works well for modal speech but fails when GCIs are detected in
the wrong location.

that this usually lasts for just a few cycles of speech but er-

roneous estimates by a GCI detector during these segments

can cause significant problems for glottal-synchronous algo-

rithms. For example, a pitch tracker [2] that calculates pitch

on a cycle-by-cycle basis will give highly erratic results.

Glottal-synchronous speech processing algorithms such as

prosodic speech modification [3], speech dereverberation [4],

speech synthesis [5], and voice source modeling [6] all rely

upon the manipulation of individual cycles of speech. Any

fricatives or plosives following segments of voiced speech

will be treated as periodic, giving rise to particularly annoying

artefacts [31].

An example is shown in Fig. 4 where HQTx is used to drive

the PSOLA algorithm [3] to increase the duration of a speech

signal by three times without affecting prosody or formant struc-

ture. Applications for increasing the duration of a speech signal

include enhancing intelligibility and lip synchronization in mo-

tion video. It is achieved by repeating cycles of voiced speech

and concatenating them with an estimate of the correct period

as shown in the first 70 ms of Fig. 4(b). Unvoiced speech and

voiced-unvoiced transitions do not exhibit such periodicity so a

common approach is to leave these segments unmodified [31].

This is not the case due to the erroneous detections at the voiced-

unvoiced transition from 70–150 ms, leading to strange artefacts

that detract from the otherwise natural sound of the processed

voiced speech segments.

Sudden changes in EGG amplitude can also cause false alarm

errors in dynamic threshold-based algorithms if the threshold is

too low. A further problem with dynamic thresholds arises when

GCIs have slow rise times [17], causing not a spike but a spread

pulse in the DEGG. In this case, we define the GCI as the center

of energy of the pulse.

D. “Miss” Errors

A common feature at the end of voiced segments is a reduced

EGG signal amplitude compared with normal modal voice.
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TXGEN’s thresholds are proportional to the extrema of the en-

tire signal and it is generally not prone to the false alarm errors

exhibited by HQTx. It instead gives miss errors where the EGG

amplitude is consistently low, particularly at the very beginning

and very end of voiced speech segments. For the majority of

glottal-synchronous algorithms this does not pose a significant

problem. If, however, the amplitude of the EGG signal mo-

mentarily drops below the fixed threshold, TXGEN can miss

a small number of isolated cycles which can be problematic

for certain applications. Data-Driven Voice Source Modeling

[6], for example, derives feature vectors from individual of

cycles of voiced speech which are then clustered to determine

classes of voice source. This has been demonstrated to have

applications in speech compression [6] and artificial bandwidth

extension [32]. A missed GCI results in features being derived

from multiple cycles of speech, causing misclassification and

distorting the processed signal.

HQTx can exhibit miss errors following a sudden decrease in

EGG amplitude due to smoothing of the dynamic threshold that

is not employed in TXGEN.

E. False Alarm/Miss Tradeoff

In general, HQTx is prone to false alarm errors, particularly

at the end of voiced segments. This is verified in Section IV; it is

further shown that miss errors are far less common. In contrast,

TXGEN is generally prone to miss errors with relatively few

false alarms; this is also verified in Section IV.

HQTx fails largely because thresholds are estimated over too

short a window and TXGEN because thresholds are based upon

single global thresholds for the whole speech utterance. The

constant of proportionality used to set the threshold from signal

extrema can be varied in TXGEN’s function call. The default

was empirically chosen to give the best tradeoff between miss

and false alarm errors; a marginally lower value can result in

increased false alarms and decreased misses. There is there-

fore a clear tradeoff between false alarms and misses caused

by the thresholding approach employed by the majority of ex-

isting algorithms. The severity of this type of error is applica-

tion-specific but, when used as a reference to evaluate speech-

based GCI/GOI detectors, neither should be deemed acceptable.

SIGMA instead employs a novel method for detecting GCIs and

GOIs that does not use thresholding, circumventing the false

alarm/miss tradeoff and providing accurate estimates for the en-

tire EGG signal.

F. EGG at Glottal Opening

A glottal closure instant is usually followed by a GOI, which

manifests itself as a weaker spike of opposite sign in the EGG

derivative [13] whose amplitude is largely speaker-dependent.

GOI detection suffers from the same problems as GCI detec-

tion but is more challenging because of the low amplitude of

the opening pulses. Compare the negative halves of the EGG

signals in Figs. 1 and 3. In Fig. 1, glottal opening results in

spread pulses, hence the concept of an opening phase rather

than opening instant is often used. However, as in the case of

a spread-pulse GCI, we consistently define the GOI as its center

of energy. Fig. 3 represents a speaker for whom the opening

spikes in DEGG are easier to locate.

Fig. 5. Three-level dyadic signal decomposition on a signal into detail,
, and approximation, , signals. (a) is the Dyadic Wavelet Transform

(DWT), and (b) the Stationary Wavelet Transform (SWT), an overcomplete ver-
sion of the DWT useful in the detection of discontinuities.

III. GLOTTAL ACTIVITY DETECTION WITH

THE SIGMA ALGORITHM

Detection of glottal activity from an EGG signal involves iso-

lating regions of discontinuity, sometimes referred to as singu-

larities. A common approach is the detection of spikes in the

derivative of the EGG signal, whose estimates are refined using

the peak amplitude of the DEGG and a longer-term measure of

the change in EGG amplitude as a cost function.

A. Multiscale Analysis

Let us consider a generalization of the HQTx approach that

employs two estimates of signal gradient. The dyadic wavelet

transform [33] involves iteratively decomposing a signal

into decimated subbands; a three-level decomposition is shown

in Fig. 5(a), where the downsampling and filtering operations

split the signal into octave-wide subbands.

The filters and have high- and low-pass character-

istics, respectively. It is shown in [34] that, for singularity detec-

tion in EGG signals, each filter in the filterbank should be a first-

order differentiation operator at increasing levels of smoothing.

A wavelet fulfilling this criteria is described as having one van-

ishing moment and discontinuities in the input signal are seen

as converging maxima across scales [35].

A derivative-of-Gaussian (dG) approximation with cubic

spline wavelet decomposition filters is used in [36] and [34]

which provides the differentiation and smoothing we require.

However, an arbitrary number of filters exist which fulfil the

same criteria. A number of derivations can be found in [37] but

give little idea as to their use in the detection of singularities.

In order to determine the relative performance, the proposed

algorithm was run with five different sets of decomposition fil-

ters. Section IV-C presents a performance comparison between

the chosen wavelet, whose filters are shown in Fig. 6, and the

popular cubic spline dG wavelet.

The dyadic wavelet transform is dyadic in both scale and

time. Only scale is of interest in singularity detection, so we

do not decimate as shown in Fig. 5(b). Instead, the filters

and are upsampled by 2 at each iteration to implement the
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Fig. 6. (a) Approximation and (b) detail analysis filters for multiscale analysis.
Iterating these filters through a dyadic filterbank constructs a biorthogonal spline
wavelet with one vanishing moment.

change of scale to form and at scale . This over-

complete representation of a signal is discussed in detail in [35]

and is given many names including: Stationary Wavelet Trans-

form (SWT), Algorithme à Trous (Hole Algorithm), Redundant

Wavelet Transform (RWT) and Undecimated Wavelet Transform

(UWT). The signal’s length remains unchanged throughout the

filterbank tree, allowing simple sample-by-sample multiplica-

tion of the signal at different scales to find converging maxima.

Denote the wavelet , where

. The SWT of the EGG signal at scale is

(1)

where , plus the remaining coarse scale information

denoted . This is a simple linear filtering operation

(2)

where is the SWT of at scale and are the ap-

proximation coefficients at scale . The multiscale product,

, is formed by

(3)

where it is assumed that the lowest scale to include is always 1.

The sign of is inverted compared with a DEGG using the

chosen wavelet, hence a minus sign is included to maintain the

convention. The de-noising effect of at each scale in con-

junction with the multiscale product means that is near-

zero except at discontinuities across the first scales of

as depicted in Fig. 7(b), allowing better identification of discon-

tinuties than the DEGG. The function can be half-wave

rectified to contain peaks pertaining only to GCIs, , or

GOIs, , which aids the group delay function in the fol-

lowing step. The value of is limited by , but it is often no

greater than as the region of support (RoS) of and

Fig. 7. EGG waveform, multiscale product and group delay function for GCI
detection. Candidates are marked “ ” and chosen candidates are marked “ .”
The ideal slope, marked in a dashed line on the lowest plot, is the slope which
would exist if the candidates were perfect impulses.

becomes prohibitively large, demanding high processing

resources and smoothing adjacent discontinuties. is

deemed a good compromise [36].

B. Group Delay Function

A group delay function (GD) [24] can be used for detection

of peaks in linear prediction residuals of speech and can be ap-

plied to locate spikes in any signal if their minimum separation,

, is known. Consider the multiscale product, , and an

-sample windowed segment beginning at sample

(4)

The group delay of is given by [38]

(5)

where is the Fourier transform of and is

the Fourier transform of at frequency . If

, where is a unit impulse function, it

follows from (5) that . In the presence of noise,

remains constant but with a degree of additive noise, so

an averaging procedure needs to be performed over ; different

approaches are reviewed in [24]. The Energy-Weighted Group

Delay was deemed the most appropriate [20], defined as

(6)

Manipulation yields the simplified expression

(7)
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which is an efficient time-domain formulation and can be

viewed as the “center of energy” of , bounded in the

range . The location of the nega-

tive-going zero crossings of give an accurate estimation

of the location of a spike in a function as depicted in Fig. 7(c).

Additionally, if a spike is spread in time then the group delay

method will find its center of energy, which is particularly

useful in the case of the “redoubled” GCI discussed in [17].

The same analysis is applied to to provide , whose

negative-going zero crossings are GOI candidates.

C. Candidate Selection

The true GCIs are usually a subset of the negative-going zero

crossings of , with additional false crossings during un-

voiced speech, silence and occasionally between GCIs. Many

existing approaches concentrate only on those areas where false

candidates are unlikely to occur. The following candidate selec-

tion technique aims to remove all false candidates to provide a

set of true GCIs throughout an entire segment of speech. Let the

number of candidates be occurring at samples ,

. Three measurements construct a

feature vector, , from which is derived

a feature matrix, . The features are

defined as follows.

1) Consistency of the group delay gradient. In the case of

a Dirac pulse, is a negative unit slope, with a

zero crossing at the location of the impulse and width

samples, as shown in Fig. 7(c). A spread pulse or the

presence of noise will cause the slope to deviate from

the ideal shape, denoted . The RMS error between

ideal and measured is calculated as

(8)

2) Peak value of multiscale product’s root inside group

delay window. It is shown in [34] that the root of

helps to give a “zooming in” on the signal, par-

ticularly at weak amplitudes (in this case ). Exper-

imentation with this algorithm has shown that the group

delay function gives best results on but that its

root has better discriminative properties.

(9)

3) Area beneath multiscale product’s root inside group

delay window. In the case of a spread singularity, the

area beneath the multiscale product’s root can pro-

vide better discrimination of candidates.

(10)

The distributions of the feature vectors are modeled as two

multivariate Gaussians using the EM algorithm [25], initialized

with two random data points. Acceptance or rejection is based

Fig. 8. Typical distribution of GCI feature vectors for a segment of voiced/
unvoiced/silent speech. The chosen cluster, whose members are marked “ ” is
the one whose mean is furthest from the origin. Rejected candidates are
marked “ .”

upon the likelihood of class , , given feature vector

(11)

Fig. 8 shows a typical distribution of the feature vectors for

a segment of mixed voiced/unvoiced/silent speech. It has been

found empirically that the cluster whose mean is furthest

from the origin is most likely to contain the chosen candidates,

marked “ .” Rejected candidates are marked “ .” The chosen

GCI estimates are defined as .

GOIs are calculated in the same way but with reversed signs

where appropriate.

D. Swallowing

The algorithm proposed thus far performs accurate singu-

larity detection on an input signal without considering any

characteristics peculiar to EGG waveforms. It is found that

in natural conversional speech, singularities are often caused

by swallowing and occasionally by electrical interference

in the measurement apparatus and are usually single iso-

lated impulse-like signals. Considering a maximum period

all GCIs which are separated from a neighbouring

GCI by more than are rejected, else they are kept pro-

viding: .

Experimentation has shown that provided the polarity of the

recording is correct, swallowing only causes errors in closure

detection so this technique is not applied to opening detection.

E. GOI Postfiltering

GOIs are detected from using the same approach

as applied to GCI detection (with inverted signs where appro-

priate). However, the energy imparted by glottal opening is often

significantly lower than glottal closure, which results in more er-

roneous GOI candidates. Assuming that a GOI always accompa-

nies a GCI, postprocessing can be applied to use GCI estimates

to improve GOIs accordingly.
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Fig. 9. SIGMA system diagram. The EGG signal is decomposed into multiple scales from which the half-wave rectified multiscale product is derived.
Spike detection is performed on by the negative-going zero crossings of the group delay function at samples . Feature vectors derived from
the ideal group delay slope and are clustered by an unsupervised EM algorithm to obtain the GCI estimates . Similarly, GOIs are detected using
the negative half-wave of the multiscale product . Postprocessing is applied to the GCI estimates to remove isolated clicks from sources other than glottal
closure to give . GOI postprocessing removes candidates which do not lie within the range of permitted open quotients, using the GCIs as references giving .

The main cause of error in GOI post-filtering is small pertur-

bations in immediately preceding a glottal closure which

triggers a zero crossing in the group delay function. A region

surrounding the closure is therefore isolated, limiting the al-

lowed open quotient, , to the bounds and . The

first candidate which lies within these limits is accepted; if no

candidate is found, then one is inserted following the current

GCI at the previous open quotient.

The SIGMA system diagram is shown in Fig. 9. Symmetry

can be seen between closure and opening detection up until the

postprocessing stage; prior to this point the algorithm need only

know the maximum frequency of the singularities to detect and

so is suitable for general singularity detection.

IV. RESULTS AND DISCUSSION

The SIGMA algorithm has three parameters and these were

set as follows.

• : the group delay evaluation window size and there-

fore the maximum frequency of singularities which can be

detected. In the case of voiced speech, the maximum glottal

frequency is Hz giving ms.

• : the maximum glottal period, so that isolated GCI

candidates separated from neighboring candidates by more

than this value are removed in the GCI postfiltering step.

A minimum glottal frequency of 50 Hz leads to a

ms.

• : the minimum and maximum open quotients

for GOI postfiltering. Their purpose is to isolate a region

around a GCI inside which a GOI cannot be detected. They

are set at 10% and 90%, respectively.

The MATLAB implementation of the chosen biorthogonal

spline decomposition filters is called bior1.5.

A. Experiment 1: Evaluation With APLAWD and SAM

The APLAWD database [39] contains speech and contem-

poraneous EGG recordings of five short sentences, repeated

ten times by five male and five female talkers. GCIs and

GOIs were hand-labeled on the first repetition of every

sentence independently of the algorithms under test, de-

noted , , and ,

, respectively. A subset of the

SAM database [40] contains readings of duration approxi-

mately 150 seconds by two male and two female speakers

and these were labeled in the same manner. SAM recordings

are considered to contain more natural speech with a greater

number of swallows and present a more challenging task for a

glottal activity detector. The EGG recordings were run through

the HQTx (GCI only), TXGEN and SIGMA algorithms and

were evaluated by finding the number of estimates per reference

cycle then classified as follows, depicted in Fig. 10.

1) Hit. One estimate per true glottal cycle.

2) Miss. No estimates per true glottal cycle.

3) False Alarm (FA). More than one estimate per glottal cycle.

4) False Alarm Total (FAT) Total number of false alarms (the

number of estimates which are not hits).

The measures are defined as follows.

1) .

2) .

3) .

4) .

5) .

A glottal cycle is defined as for GCIs and

for GOIs. Hit accuracy and hit bias

are the RMS and mean errors between all hits and the cor-

responding ground-truth estimates, respectively. The testing

strategy is identical to that employed in [19] with the addition

of the FAT measure, which counts the total number of false

alarms as a proportion of total estimates and not the number

of reference cycles containing more than one estimate as a

proportion of true glottal cycles. The overall figure of merit

provides a single-valued measure of performance by expressing

the hit rate as a proportion of all reference cycles summed with

the number of non-hit estimates (the FAT).

The GCI results in Tables I and III show that SIGMA per-

forms significantly better than HQTx and TXGEN when applied

to either database. Notably HQTx is prone to false alarm errors

whereas TXGEN is prone to miss errors; this agrees with the

qualitative analysis of HQTx’s performance in Section II which

showed that it is prone to false alarms at the end of segments of

voiced speech. HQTx and TXGEN exhibit much greater FAT

than FA which suggests that each false alarm is usually fol-

lowed by successive false alarms within a single reference cycle.

SIGMA’s miss, FAT and FA measures are broadly similar which

tells us that successive false alarms do not usually occur within a

Authorized licensed use limited to: Imperial College London. Downloaded on January 4, 2010 at 08:01 from IEEE Xplore.  Restrictions apply. 



1564 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 8, NOVEMBER 2009

Fig. 10. Testing strategy. A hit is one estimate occuring during a reference
cycle. A miss is the absence of an estimate per reference cycle. If more than one
estimate occurs per reference cycle, one false alarm (FA) is counted and the total
number false alarms in the cycle are added to false alarm total (FAT). Accuracy
and bias are the RMS and mean errors between hits and the corresponding ref-
erence, respectively.

TABLE I
CLOSURE PERFORMANCE ON THE APLAWD DATABASE BY HQTX, TXGEN,

SIGMA (dG AND bior1.5 WAVELET) ALGORITHMS

TABLE II
OPENING PERFORMANCE ON THE APLAWD DATABASE BY TXGEN, SIGMA

(dG AND bior1.5 WAVELET) ALGORITHMS

TABLE III
CLOSURE PERFORMANCE ON THE SAM DATABASE BY HQTX, TXGEN,

SIGMA (dG AND bior1.5 WAVELET) ALGORITHMS

given reference cycle and that misses and false alarms have sim-

ilar likelihood. SIGMA’s overall figures of merit are more than

an order of magnitude greater than the other algorithms under

test.

SIGMA’s GCI hit accuracy is in the order of a few samples

which agrees with the statement in Section III-C that the true

GCIs are usually a subset of the SIGMA candidate GCIs before

TABLE IV
OPENING PERFORMANCE ON THE SAM DATABASE BY TXGEN, SIGMA (dG

WAVELET AND bior1.5 WAVELET) ALGORITHMS

clustering. SIGMA and HQTx hit bias are universally low but

TXGEN’s estimates tend to occur slightly early.

SIGMA’s GOI results in Tables II and IV are also encour-

aging. The reliance upon the estimated GCIs results in similar

hit, miss and false alarm rates, with diminished hit accuracy due

to the greater difficulty of precisely locating openings. The gap

in the overall figure of merit between SIMGA and TXGEN is

again more than an order of magnitude.

B. Experiment 2: Variation in Group Delay Window Size

The group delay evaluation window size was set according to

the physical constraints of human speech, whose minimum fun-

damental period is around 2.5 ms. This experiment assesses the

algorithm’s sensitivity to variation in the group delay window

size on the APLAWD database.

The results presented in Fig. 11 show that 2.5 ms is indeed

an optimal choice of window length. The reliance on GCIs to

estimate GOIs means that intuitively the overall, hit, miss, and

FAT rates should vary in a similar manner which is confirmed

by these results.

FAT rates increase with decreasing window sizes due to the

fact that more negative zero crossings can occur in the group

delay function per unit time. In this case the true candidates re-

main a subset of all candidates, with a number of additional false

ones arising. Providing the clustering algorithm can discrimi-

nate against the false candidates, those which are true should

always be detected so false alarm rates should therefore increase

slowly with decreasing window size.

Miss rates increase with window size as neighboring singular-

ities can occur within a single group delay window and reduce

the number of negative zero crossings. It becomes impossible

for the GMM to find the correct candidates as they are no longer

a subset of the candidate set, hence miss rates climb rapidly with

increasing window size.

GCI bias and hit accuracy are relatively immune to variations

in window size, suggesting that providing one candidate occurs

per true period, is it statistically the correct choice. GOI bias and

hit accuracy are more sensitive, showing the most significant in-

crease with reduced window size. Bias increases monotonically

with decreasing window length.

This experiment was repeated for male- and female-only

speech. The results provide similar curves to the previous ex-

periment that employs both genders, the optimum value being

shifted up to approximately 3 ms for male voices and down to

approximately 2 ms for female. The experiment with mixed

male/female speech shows that variation in group delay size

does not have a significant effect upon the results in the range

of approximately 1.5 to 3.5 ms, hence performance is weakly

dependent on gender.
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Fig. 11. Effect of varied group delay window length on (a) overall and hit, (b)
miss and FAT, and (c) and bias and hit accuracy. The choice of 2.5 ms from
physical reasoning is close to the optimal value.

C. Experiment 3: Comparison With Cubic Spline Wavelet

The derivative-of-Gaussian (dG) cubic spline wavelet is the

wavelet of choice for multiscale analysis in [17], [18] and [36].

Experiments with other common wavelets have shown that the

bior1.5 biorthogonal spline wavelet is more effective for EGG

analysis with this algorithm. The results in Tables I–IV show

SIGMA using the dG wavelet (labeled SIGMA-dG) as well as

the proposed bior1.5 (labeled SIGMA).

The performance of SIGMA is slightly reduced with the dG

wavelet, particularly with increased false alarms and increased

hit error on the opening tests. Miss rates are slightly reduced but

the greater increase in false alarm rate diminishes the overall

performance results.

V. CONCLUSION

We have shown that robust detection of GCIs and GOIs from

EGG signals is particularly challenging at the transition regions

around the ending of voicing. A new method for glottal activity

detection from EGG recordings has been presented which is

accurate even in these challenging regions. It first detects sin-

gularities in the EGG signal by the multiscale product of three

dyadic scales. It then employs a technique based upon the group

delay function which detects peaks in the multiscale product. In-

correct estimates are removed by the clustering of three-dimen-

sional feature vectors using the EM algorithm. Postprocessing

removes isolated GCIs and uses GCIs to aid GOI detection.

A comparison was made between the proposed approach and

two popular existing methods by evaluating their performance

against 50 short and four long hand-labeled sentences. An ex-

isting testing procedure with some new enhancements was used,

showing very accurate GCI and GOI detection with the pro-

posed method, fulfilling our objective of obtaining results that

are accurate enough to be used as a reference. Our method en-

ables accurate evaluation of speech-based glottal activity detec-

tion algorithms, precise estimation of the closed phase for the

estimation of glottal volume flow and could also be applied to

the analysis of a number of types of pathological speech. Fur-

ther, few assumptions are made about the nature of the input

signal. This allows the application of the proposed algorithm

to singularity detection in almost any signal provided the min-

imum separation of singularities is known.
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