
ar
X

iv
:1

11
0.

54
79

v3
  [

ph
ys

ic
s.

co
m

p-
ph

] 
 2

8 
Ja

n 
20

12

The sign problem and population dynamics in the full configuration

interaction quantum Monte Carlo method
J.S. Spencer,1, 2 N.S. Blunt,2 and W.M.C. Foulkes2
1)Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ,

U.K.
2)Department of Physics, Imperial College London, Exhibition Road, London, SW7 2AZ,

U.K.

The recently proposed full configuration interaction quantum Monte Carlo method allows access to essentially
exact ground-state energies of systems of interacting fermions substantially larger than previously tractable
without knowledge of the nodal structure of the ground-state wave function. We investigate the nature of the
sign problem in this method and how its severity depends on the system studied. We explain how cancelation
of the positive and negative particles sampling the wave function ensures convergence to a stochastic repre-
sentation of the many-fermion ground state and accounts for the characteristic population dynamics observed
in simulations.

I. INTRODUCTION

One of the major goals of electronic structure methods
is to produce accurate ground-state energies and prop-
erties of many-electron systems.1 Quantum chemistry
provides a hierarchy of ab initio methods2 based upon
Hartree-Fock, of which coupled-cluster singles and dou-
bles with perturbative triples (CCSD(T)) is the most ac-
curate applicable to medium-sized molecules.3 Quantum
Monte Carlo methods such as Green’s function Monte
Carlo4,5 (GFMC), the closely related diffusion Monte
Carlo6–8 (DMC), and auxiliary-field quantum Monte
Carlo9 (AFQMC) produce accurate results via a stochas-
tic sampling of the many-electron wave function, but
none of these methods is exact: GFMC and DMC sim-
ulations of all but the smallest systems converge to the
physically irrelevant many-boson ground state unless the
fixed-node approximation is made;6,7 whilst AFQMC re-
quires the phaseless approximation10 in order to avoid
an exponential growth in noise except in certain special
cases.11

The full configuration interaction (FCI) method12

casts the Schrödinger equation as a matrix eigenvalue
problem, in which the requirement that the many-
electron wave function be anti-symmetric with respect to
exchange of electrons is imposed by working in a space
of Slater determinants formed from a finite basis set of
single-particle wave functions. The lowest eigenvalue and
eigenvector of the FCI Hamiltonian matrix give the ex-
act ground-state energy and wave function of the sys-
tem, subject only to the error due to the finite basis set.
Whilst the computational cost of FCI scales factorially
with system size, it nevertheless represents the holy grail
of electronic structure methods.

In 2009, Booth, Thom and Alavi13 introduced a new
stochastic approach in which the nodal structure of the
ground-state wave function emerges spontaneously by
sampling the discrete space of Slater determinants. Their
“full configuration interaction quantum Monte Carlo”
(FCIQMC) method yields exact (i.e. FCI-quality) results
whilst requiring a fraction of the memory of an FCI cal-

culation using the same basis. The memory required by
FCIQMC simulations still scales factorially with system
size, but the exponent appears to be substantially smaller
than for FCI simulations. Moreover, unlike the iterative
diagonaliation schemes required for FCI, the FCIQMC
algorithm is readily parallelizable and can run efficiently
on thousands of cores. Alavi and co-workers have used
FCIQMC to reproduce essentially every molecular FCI
calculation ever done and have obtained ground-state en-
ergies for systems with Hilbert spaces many orders of
magnitude larger than the largest FCI calculations.13–15

We believe that the FCIQMC method will become in-
creasingly important in the electronic structure commu-
nity, especially if improved algorithms or substantially
cheaper approximations can be found. Our motivation
for exploring the behavior of the method is to provide
insight into possible improvements.

An FCI calculation based on iterative diagonalization
(using, for example, the Davidson method) requires the
storage of at least two vectors, each of length equal to the
size of the Hilbert space. An FCIQMC simulation using
the same basis requires the storage of the labels of the de-
terminants occupied by a population of stochastic walk-
ers (which, following Anderson,6 we call “psi-particles”
or psips) scattered over the same Hilbert space. In order
for FCIQMC to be more efficient than FCI, the num-
ber of psips required must be a small fraction of the
size of the Hilbert space. The fraction required is sys-
tem dependent and provides a measure of how “hard” it
is for FCIQMC to treat that system. The hardness is
surprisingly difficult to predict. FCIQMC is wildly suc-
cessful for some systems, such as the neon atom, where
it requires only ∼0.01% of the memory of a conven-
tional FCI calculation.13 Even for the nitrogen molecule,
a classic example of a strongly correlated system and
a tough test for quantum chemical methods, FCIQMC
used only a quarter of the memory of the equivalent FCI
calculation.13 However, FCIQMC struggles to describe
the methane molecule,13 for which Hartree-Fock is a very
good approximation. We show in Sec. II that FCIQMC
also struggles when applied to the Hubbard model and
cannot treat systems larger than existing FCI methods

http://arxiv.org/abs/1110.5479v3


2

unless U is very small. What is it that makes a system
difficult? Evidently the answer is more complicated than
whether or not the system is strongly correlated.
The aim of this paper is to understand the FCIQMC

algorithm better. Why are some systems more difficult
to treat than others? What determines the characteristic
population dynamics observed in FCIQMC simulations?
How does the cancelation of positive and negative psips
ensure convergence to the many-fermion ground state?
How many psips are required to obtain correct results?
What goes wrong if the population of psips is too small?
We provide at least partial answers to all of these ques-
tions.
Section II reviews the FCIQMC method and applies

it to the Hubbard model as an example. In Sec. III
we discuss the nature of the sign problem in FCIQMC
and explain the effect of canceling positive and negative
psips. Section IV shows how our analysis of the sign prob-
lem also explains the characteristic population dynamics
observed in FCIQMC simulations. Section V describes
several special cases in which the sign problem can be
removed entirely. We offer some concluding remarks in
Sec. VI.

II. FCIQMC METHOD

We briefly summarize the FCIQMC method here,
largely following the derivations given by Booth et al.,13

with attention paid to details relevant later in this paper.
Consider an orthonormal set of 2M single-particle

spin-orbitals, {φ1, φ2, . . . , φ2M}. Previous FCIQMC
work13–15 has used a basis of Hartree-Fock spin-orbitals,
which is often a sensible choice but not required. One
can construct an N -electron Slater determinant, Di, by
selecting any N spin-orbitals (assuming N ≤ 2M):

Di = Di1,i2,...,iN (1)

=
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

φi1 (1) φi1(2) · · · φi1(N)
φi2 (1) φi2(2) · · · φi2(N)

...
...

. . .
...

φiN (1) φiN (2) · · · φiN (N)

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2)

To ensure that all such determinants are unique (up to a
sign), it is convenient to require that i1 < i2 < · · · < iN .
The ground-state wave function, Ψ0, may be defined

variationally as the N -electron wave function that mini-
mizes the energy expectation value,

E[Ψ] = 〈Ψ|Ĥ|Ψ〉, (3)

subject to the normalization constraint 〈Ψ|Ψ〉 = 1. If we
restrict the search for Ψ0 to the subset of wave functions
that can be expanded in the basis of 2MCN determinants,

Ψ0 =
∑

i

ciDi, (4)

and impose the normalization constraint using a La-
grange multiplier, the optimal coefficients c0i form the
lowest eigenvector c0 of the matrix-eigenvalue problem

∑

j

〈Di|Ĥ |Dj〉c0j =
∑

j

Hijc0j = E0c0i, (5)

where E0 is both the Lagrange multiplier and the ground-
state energy eigenvalue. This approach yields the FCI
wave function for the finite basis set used.
One way to find the ground-state eigenvector c0 of

the Hamiltonian matrix H is to solve the imaginary-time
Schrödinger equation:

dci
dτ

= −
∑

j

Hijcj. (6)

The solution vector c(τ) converges to c0 as τ →∞ when-
ever the starting vector c(τ=0) has a non-zero overlap
with c0; indeed, this is also the driving principle behind
other projector methods such as DMC and GFMC. The
convergence is easy to demonstrate by considering the
formal solution of the imaginary-time Schrödinger equa-
tion:

c(τ) = e−Hτc(0). (7)

If the initial vector, c(0), is expanded in terms of the com-
plete orthonormal set of the 2MCN eigenvectors, {cα}, of
the Hamiltonian matrix, H,

c(0) =
∑

α

vα(0)cα, (8)

the solution of the imaginary-time Schrödinger equation
can be written as

c(τ) = e−Hτ
∑

α

vα(0)cα =
∑

α

vα(0)e
−Eατcα. (9)

The summation is dominated by the ground-state contri-
bution in the limit τ →∞ and thus

c(τ →∞) ≈ v0(0)e
−E0τc0. (10)

The steady change in normalization due to the e−E0τ

factor is awkward but can be removed by choosing the
zero of energy such that E0 = 0. In practice, E0 is not
known until the end of the simulation, so we instead solve

dci
dτ

= −
∑

j

(Hij − Sδij)cj, (11)

where the energy shift, S, is adjusted slowly to keep the
normalization more or less constant. The energy shift
converges to the ground-state eigenvalue, E0, in the long-
time limit. Note that previous work13–15 also subtracted
the Hartree-Fock energy, EHF, from the diagonal ele-
ments of the Hamiltonian, but this amounts merely to
a redefinition of S. To make the subsequent notation as
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simple as possible, we define a “transition matrix”, T,
via

T = −(H− SI). (12)

Note that the minimal eigenvalue of H corresponds to
the maximal eigenvalue of T.
The FCIQMC algorithm proposed by Booth et al.13

may be summarized as follows. Consider a collection of
markers distributed over the space of determinants, {Di}.
The markers do not move through the Hilbert space, so
following Anderson6 we call them “psi particles” or psips
instead of “walkers”. (It is easy to devise alternative
FCIQMC algorithms in which the psips do move and be-
have much like walkers in DMC,8 but we use the approach
of Booth, Thom and Alavi here.) Each psip has both a
location, i, and a “charge”, q = ±1, associated with it.
In one time step, ∆τ , we loop over the population of

psips and allow each to “spawn” children (new psips)
located on new determinants (which may be the same
as the parent’s determinant) according to the following
rules:

• The probability that a psip at i successfully spawns
a child at j is |Tji|∆τ .

• If the spawning event is successful, the child psip
has charge qchild = sign(Tji)qparent, where qparent is
the charge of the parent.

At the end of the time step, pairs of psips of opposite
charge on the same determinant cancel each other out
(“annihilate”) and are removed from the simulation. For
example, psips on determinant Di with negative diago-
nal elements Tii may generate children which immedi-
ately annihilate with the parent psips. Thus, although
psips on different determinants may have different signs,
all psips on any given determinant have the same sign
at the end of every time step. Any psips which remain
(whether originally “child” or “parent”) are merged and
are allowed to spawn new psips in subsequent time steps.
The FCIQMC algorithm13 actually yields a stochastic

sampling of the solution of the iterative equation

ci(τ +∆τ) =
∑

j

(δij + Tij∆τ)cj(τ), (13)

which may be regarded as a finite-difference approxima-
tion to the imaginary-time Schrödinger equation

dci
dτ

=
∑

j

Tijcj. (14)

Assuming that S = E0, as is the case once the sim-
ulation has converged on the ground state, the domi-
nant eigenvectors of δij + Tij∆τ and Tij are identical if
∆τ(Emax−E0) < 2, where Emax is the largest eigenvalue
of the FCI Hamiltonian matrixH. This means that there
is no time-step error if ∆τ is small enough. In order for
there to be a finite time step, the Hamiltonian must be

bounded from both above and below. It also follows that
the time step is limited if high-energy states are included
in the basis; for example increasing the basis set in calcu-
lations of quantum chemical systems requires a decrease
in the time step.
Rather than considering all possible spawning events,

it is computationally efficient to allow a psip at Di to at-
tempt to spawn only onto its own determinant and a sin-
gle connected determinant Dj per time step. (Connected
determinants are linked by non-zero transition matrix
elements Tji.) The connected determinant is chosen
stochastically according to some generation probability

pgen(j← i), which must be non-zero whenever Tji is non-
zero and normalized such that

∑

j pgen(j ← i) = 1. To
maximise the probability of successful spawning, the gen-
eration probabilities should be as similar to |Tji|/

∑

j |Tji|
as possible; in practice, we go for speed and set the gen-
eration probabilities for spawning on all connected de-
terminants equal. Once the candidate spawning location
j has been chosen, the spawning event is accepted with
probability |Tji|∆τ/pgen(j ← i).13 The effective size of
the Hilbert space can be reduced by only selecting can-
didate spawning locations of some desired symmetry.
The population evolution of the psips over the course

of an FCIQMC simulation has some commonly observed
features, as illustrated in Fig. 1; we develop simple math-
ematical models to understand these results in Sections
III and IV. The energy shift S is initially set to a value
greater than (i.e., less negative than) the ground-state
energy eigenvalue, ensuring that the largest eigenvalue
of T = SI − H is positive and hence that total psip
population grows exponentially. Once the population
reaches a critical size the simulation spontaneously en-
ters a “plateau” regime, where the total psip population
remains stable and during which the ground-state wave
function emerges. The height of the plateau relative to
the size of the space of Slater determinants provides a
measure for how hard a system is to solve using FCIQMC.
After a system- and S-dependent waiting time, the sim-
ulation exits the plateau phase and the psip population
starts to grow in an exponential fashion again, albeit at
a slower rate than before. At this point the distribution
of psips is a stochastic representation of the FCI ground-
state wave function. Allowing the psip population to in-
crease further serves only to reduce the statistical noise,
so it is convenient to hold the population constant by
varying the shift from this point in the simulation. The
changes in shift must be carried out smoothly and slowly
to avoid introducing a bias. Following Booth,13 we use
the shift-update algorithm originally proposed for DMC
simulations by Umrigar16:

S(τ +A∆τ) = S(τ) +
ξ

A∆τ
ln

(

Np(τ +A∆τ)

Np(τ)

)

, (15)

where A is the number of iterations between which the
shift is updated, ξ is a damping parameter and Np(τ) is
the total psip population at time τ . In the simulations
presented here we set A = 20 and ξ = 0.1. Once the psip
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population has settled down, the expected value q̄i of the
sum of the charges of the psips on Di is proportional to
the weight of Di in the exact ground-state wave function:

lim
τ→∞

q̄i(τ) ∝ c0i. (16)

Note that annihilation of psips of opposite charge does
not affect q̄i.

There are two main ways of obtaining an estimate of
the ground-state energy from an FCIQMC simulation.
The shift estimator is the mean value of the shift S in the
constant-population-mode simulation after the plateau.
The projected estimator is obtained by noting that, for
any single determinant D0 with a non-zero ground-state
component, the quantity

E = lim
τ→∞

〈D0|Ĥ |Ψ(τ)〉
〈D0|Ψ(τ)〉 (17)

=

∑

j H0jq̄j

q̄0
(18)

tends to the ground-state energy as τ → ∞. Since the
Hamiltonian operator only links determinants differing
by two or fewer excitations, the number of terms included
in the sum is limited. Note that it is important to average
qj(τ) and q0(τ) separately; the projected estimator and
its associated error can then be found by taking the ra-
tio of the averages and using the covariance, respectively.
TakingD0 to be the determinant with the largest overlap
with the exact ground-state wave function minimises the
relative stochastic noise in the denominator of the above
equation. Furthermore, such a determinant will typically
have single and double excitations which also have sig-
nificant contributions to the ground-state wave function,
and hence determinants contributing to the numerator
will also often have a significant population. The de-
terminant with greatest overlap may not necessarily be
known a priori (or even be clearly defined, as is the case
in systems studied in Sec. V) but in practice the Hartree–
Fock determinant is usually a good choice. The choice
of D0 can be changed during the course of a simulation
if a determinant with a particularly large population is
found.

We can illustrate the main features of the FCIQMC
method by applying it to the Hubbard Hamiltonian17

for a d-dimensional cubic lattice,

Ĥ = −t
∑

〈r,r′〉,σ
ĉ†r,σ ĉr′,σ + U

∑

r

n̂r,↑n̂r,↓, (19)

where ĉ†r,σ (ĉr,σ) creates (destroys) an electron of spin σ

on site r, the number operator n̂r,σ = ĉ†r,σ ĉr,σ counts the
spin-σ electrons on site r, and the summation over 〈r, r′〉
includes all nearest-neigbor pairs of lattice sites. Assum-
ing a system of M sites and 2M spin-orbitals subject to
periodic boundary conditions, the Hubbard Hamiltonian

may also be written in reciprocal space,

Ĥ =
∑

k,σ

ǫkĉ
†
k,σ ĉk,σ+

U

M

∑

k1,k2,k3

ĉ†k1,↑ĉ
†
k2,↓ĉk3,↓ĉk1+k2−k3,↑,

(20)

where ĉ†k,σ = 1√
M

∑

r ĉ
†
r,σe

ik·r is the creation opera-

tor for a Bloch state of wave vector k, the sums are
over the M wave vectors in the first Brillouin zone,

ǫk = −2t
∑d

i=1 cos(kia) is the one-electron kinetic energy
for wave vector k = (k1, k2, . . . , kd), and a is the lattice
parameter (which is set to unity from now on). The com-
bination of wave vectors k1 +k2−k3 is assumed to have
been reduced into the first Brillouin zone by addition of
a reciprocal lattice vector if necessary.

Whilst the FCIQMC algorithm may be used in the
real- and reciprocal-space representations, here, for illus-
trative purposes, we focus on the reciprocal-space formu-
lation, as would be appropriate if U/t were small. As
U/t increases and so electrons become increasingly more
localised, the real-space formulation becomes more ap-
propriate. Indeed, as we show in Sec. V, the real-space
basis is substantially more favourable for non-zero values
of U/t in the one-dimensional Hubbard model.

The imaginary-time evolution of the psip population
and energy estimators during a k-space FCIQMC sim-
ulation of the 2D 18-site half-filled Hubbard model at
U/t = 4 (which is not small) is shown in Fig. 1. As might
be expected, the k-space FCIQMC method becomes less
efficient at finding the ground state of this system as U/t
increases — in fact, the psip population at the plateau
increases approximately linearly with U/t for U/t > 2
(Fig. 2). When U/t ≥ 4, one needs at least as many
psips as there are determinants in the Hilbert space and
the memory requirements are comparable to those of it-
erative diagonalization. As a result, unless U/t is small,
k-space FCIQMC is not able to treat half-filled Hubbard
model systems substantially larger than those accessible
to the FCI method.

Working in a space of Slater determinants has two
main advantages. As the basis is anti-symmetric with
respect to exchange of two spin-orbitals, there is no need
to use the fixed-node approximation to prevent collapse
to the bosonic ground state, as in DMC and GFMC. Al-
though FCIQMC still has a sign problem (see Sec. III),
the instability is not with respect to the a bosonic state
and is often less severe. The second advantage is that
the annihilation of psips with opposite charges proves
surprisingly efficient in the discrete space of Slater de-
terminants. Walker cancelation can in principle cure the
sign problem in continuum DMC and GFMC simulations
too,21–30 but such algorithms are substantially more com-
plicated and less successful than the sign cancelation in
FCIQMC.
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FIG. 1. Population dynamics and energy estimators for the
2D 18-site square lattice half-filled Hubbard model at U = 4t.
Periodic boundary conditions are applied to a 45◦ tilted
square cell with sides 3

√
2. The ground-state wave function

has momentum k = (0, 0) and the Hilbert space formed from
all determinants of this momentum contains 1.3× 108 states.
Graph (a) shows how the psip population evolves with simula-
tion time. The psip population initially grows exponentially
before reaching a plateau, during which the distribution of
psips settles to model the FCI wave function. The psip pop-
ulation then begins to grow exponentially again, reinforcing
the wave function signal, at which point the shift is allowed
to vary to stabilize the number of psips. Graph (b) shows the
shift and projected energy estimators as a function of simula-
tion time. The FCI energy is from Ref. 18. FCIQMC requires
roughly the same number of psips as the size of the Hilbert
space to converge on the ground-state wave function in this
case.

III. THE ORIGIN OF THE SIGN PROBLEM IN FCIQMC

Booth et al.13 showed that annihilation is crucial in
FCIQMC; without it the simulation never converges to
the FCI ground state. In this section we attempt to ex-
plain why annihilation is required and how it helps the
ground state to emerge.

First, consider the effect of removing annihilation from
the simulation procedure. This means that psips of both
charges are permitted to reside on and propagate from
the same determinant at the same time. We shall use
n+
i and n−

i to represent the populations of positive and
negative psips on determinant Di. It is convenient to
write the transition matrix T as T+ − T−, where T+

contains the positive transition matrix elements, T+
ij =

max(Tij, 0), and T− contains the absolute values of the

negative elements, T−
ij = max(−Tij, 0). All elements of

T+ and T− are therefore non-negative. The populations
of positive and negative psips evolve according to the

coupled differential equations:

dn+
i

dτ
=

∑

j

(

T+
ij n

+
j + T−

ij n
−
j

)

,

dn−
i

dτ
=

∑

j

(

T+
ij n

−
j + T−

ij n
+
j

)

.

(21)

These can be decoupled by adding and subtracting:

d
(

n+
i + n−

i

)

dτ
=

∑

j

(

T+
ij + T−

ij

)(

n+
j + n−

j

)

,

d
(

n+
i − n−

i

)

dτ
=

∑

j

(

T+
ij − T−

ij

)(

n+
j − n−

j

)

.

(22)

As τ → ∞, n+ + n− tends to the eigenvector core-
sponding to the largest eigenvalue of T+ + T−, whilst
n+ − n− tends to the eigenvector corresponding to the
largest eigenvalue of T+ − T−. We wish to find the
latter state. However, as explained below, the largest
eigenvalue of T+ + T− is always larger than that of
T+−T−. Thus, the signal n+−n− always decays relative
to n+ + n−. Fig. 3 shows that performing an FCIQMC
simulation without annihilation does indeed give this un-
desired state. We note that a similar analysis has been
performed previously for the world-line Quantum Monte
Carlo method31,32.
One can prove that the largest eigenvalue of T+ +T−

is always greater than or equal to the largest eigenvalue
of T+−T− as follows. Suppose that c0 is the eigenvector
corresponding to the largest eigenvalue, λmax

diff , of T+ −
T−. If c0 is normalized and the Hamiltonian matrix is
real, all components of c0 may also be chosen real and so

λmax
diff =

∑

i,j

c0i(T
+
ij − T−

ij )c0j. (23)

Now consider the vector |c0| with components |c0i|. This
vector is also normalized and may be used as a trial state
in the (upside-down) variational principle for the largest
eigenvalue, λmax

sum , of T+ +T−:

λmax
sum ≥

∑

i,j

|c0i|(T+
ij + T−

ij )|c0j|. (24)

The right-hand side of Eq. 24 is manifestly greater than
or equal to the right-hand side of Eq. 23, so λmax

sum ≥ λmax
diff .

The discrete annihilation process is difficult to model
exactly33 in a differential equation. We therefore consider
a simpler annihilation process in which pairs of psips of
opposite sign on the same determinant annihilate each
other at a constant rate 2κ, where κ is a small positive
constant and the factor of 2 is introduced solely for alge-
braic convenience. This leads to the differential equations

dn+
i

dτ
=

∑

j

(

T+
ij n

+
j + T−

ij n
−
j

)

− 2κn+
i n

−
i ,

dn−
i

dτ
=

∑

j

(

T+
ij n

−
j + T−

ij n
+
j

)

− 2κn+
i n

−
i .

(25)
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FIG. 2. Graphs (a)–(d) show the psip population dynamics for the 2D 18-site square lattice half-filled Hubbard model at
k = (0, 0) for various values of U/t. Periodic boundary conditions are applied to a 45◦ tilted square cell with sides 3

√
2. The

data for U = 4t in (b) is identical to that in Fig. 1. Graph (e) shows that the number of psips at the plateau increases linearly
with U/t when U/t ≥ 2. The standard errors in the numbers of psips during the plateau phases were obtained using a blocking
analysis19 and the straight line was fitted using the method of least squares as implemented in Ref. 20. Unless shown, the error
bars are smaller than the markers.
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FIG. 3. The impact of removing annihilation from the
FCIQMC algorithm applied to a 100 × 100 randomly-
generated real symmetric Hamiltonian matrix H. E0 is the
exact ground-state eigenvalue and E(τ ) the projected estima-
tor for H. λ0 and λ(τ ) are the analogous quantities for the
matrix H

+ +H
−, where H = H

+ −H
− and all elements of

H
+ and H

− are negative (i.e., all elements of T+ and T
− are

positive). The simulation converges to the lowest eigenvector
of H+ +H

−, which does not correspond to an eigenvector of
the Hamiltonian matrix.

The decoupled ordinary differential equations (ODEs) in

Eq. 22 thus become

d
(

n+
i + n−

i

)

dτ
=

∑

j

(

T+
ij + T−

ij

)(

n+
j + n−

j

)

− 4κn+
i n

−
i ,

d
(

n+
i − n−

i

)

dτ
=

∑

j

(

T+
ij − T−

ij

)(

n+
j − n−

j

)

.

(26)
It is clear how annihilation enables the FCIQMC method
to converge upon the ground state of the Hamiltonian
matrix: as the total psip population,

∑

i(n
+
i +n−

i ), rises,
the rate of annihilation events rises quadratically. This
causes the rate of growth of the n++n− signal to decrease
until spawning of new psips is balanced by annihilation.
The growth of n+ − n−, the desired solution, is not af-
fected and so this signal eventually emerges. As shown
in Sec. IV, the rates of growth of the two signals actually
become the same but due to annihilation all psips on the
same determinant have the same sign.

To summarize, the sign problem in FCIQMC originates
from the in-phase combination of positive and negative
psips, which grows at a rate determined by the largest
eigenvalue of T+ + T−. This eigenvalue is greater than
the largest eigenvalue of T+−T−, which determines the
growth rate of the physical ground state of the system.
The severity of the sign problem depends upon the dif-
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ference between the largest eigenvalue of T+ + T− and
the largest eigenvalue of T+ − T− — and thus on the
prevalence of negative off-diagonal elements of T — and
upon the concentration of psips required to achieve a suf-
ficient rate of annihilation for the growth of the in-phase
signal to be suppressed. A difficult sign problem does not
necessarily imply a strongly correlated system.
Eq. 21 models the time dependence of the populations

of positive and negative psips in a simulation in which all

annihilation is forbidden. In a real FCIQMC simulation,
however, the annihilation rate per psip does not tend to
zero as the psip density tends to zero. The probability
of encountering and annihilating an unrelated psip van-
ishes, but a parent may still spawn a child of the opposite
sign on its own determinant, in which case the parent and
child annihilate each other. The low-density limit of the
standard FCIQMC algorithm is better modeled by defin-
ing T+ and T− in a different way: T+ now contains all
diagonal elements of T, regardless of sign, and all pos-
itive off-diagonal matrix elements; whilst T− is zero on
the diagonal but contains the absolute values of the nega-
tive off-diagonal elements. This redefinition corresponds
to a change in viewpoint: instead of allowing parents to
spawn children of the opposite sign on their own determi-
nant, with subsequent annihilation, the negative diagonal
elements of T+ remove psips from the simulation in one
step, introducing an exponential decay of the psip pop-
ulation on determinants for which T+

ii < 0. The psip

densities n+
i and n−

i remain positive at all times and
the above analysis is unchanged, but the severity of the
sign problem, as measured by the difference between the
largest eigenvalues of T+ +T− and T+ −T−, is smaller
than the above analysis suggests.
From now on it will be assumed that T+ and T− are

defined as explained in the previous paragraph, and hence
that all diagonal elements of T− are zero.

IV. POPULATION DYNAMICS

Separating the psip population into positive and neg-
ative contributions also explains the population dynam-
ics observed during an FCIQMC simulation. Let V =
T+ +T−, p = n+ + n− and n = n+ − n−. The decou-
pled ODEs in Eq. 26 can thus be written as

dpi
dτ

=
∑

j

Vijpj − κ(p2i − n2
i )

dni

dτ
=

∑

j

Tijnj.

(27)

In the long-time limit, n(τ) becomes dominated by its
ground-state component, which grows at a rate deter-
mined by the largest eigenvalue, Tmax = S − E0, of the
transition matrix T:

n(τ) ≈ αeTmaxτc0, (28)

where α = c0 · n(0). Hence the evolution equation for p
becomes

dpi
dτ

=
∑

j

Vijpj − κp2i + κα2e2Tmaxτ c20i. (29)

Eq. 29 is difficult to solve exactly, but the population
dynamics it embodies can be illustrated using a simple
one-component analogue:

dp

dτ
= Vmaxp− κp2 + κn2, (30)

where p(τ) is the total psip population at time τ , Vmax

is larger than Tmax, and n(τ) = n0e
Tmaxτ . It is common

to start an FCIQMC simulation with a population of
positive psips only, in which case the initial condition is
p(0) = n(0) = n0. As the initial psip population and an-
nihilation rate are small, p(τ) grows exponentially at the
start of the simulation: p(τ) = n0e

Vmaxτ . The exponen-
tial growth ceases when p ≈ Vmax/κ, at which point the
κp2 annihilation term (which is larger than the κn2 term
because Vmax > Tmax) counteracts it. The psip popula-
tion then enters a plateau phase, remaining rougly con-
stant until the n(τ) signal, which has been steadily grow-
ing like n0e

Tmaxτ , begins to dominate. From then on the
population rises exponentially again, although now at a
rate determined by Tmax. The ground-state wave func-
tion thus spontaneously emerges from the simulation.
The plateau begins to appear at a time τ1 determined

by the equation p(τ1) ≈ n0e
Vmaxτ1 ≈ Vmax/κ. Hence

τ1 ≈
ln(Vmax/κn0)

Vmax
. (31)

More precisely, solving Eq. 30 with the κn2 term omitted
and assuming that κn0/Vmax ≪ 1 (which must be the
case if the annihilation rate is negligible at the beginning
of the simulation) shows that p(τ) reaches 95% of its
plateau value at time

τ95% =
ln(19(Vmax/κn0 − 1))

Vmax
. (32)

The end of the plateau occurs at a time τ2 determined
by the equation n(τ2) = n0e

Tmaxτ2 ≈ Vmax/κ, and hence

τ2 ≈
ln(Vmax/κn0)

Tmax
. (33)

Combining Eqs. 31 and 33 yields

τ2
τ1
≈ Vmax

Tmax
. (34)

The energy shift S appears on the diagonal of T =
SI−H and is incorporated into the diagonal elements of
T+; it therefore affects T = T+−T− and V = T++T−

equally. This dependence can be made explicit by writing
Tmax = S+T0 and Vmax = S+V0, where T0 and V0(≥ T0)
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FIG. 4. Effect of the initial value of the shift on the plateau
height in an FCIQMC simulation of the 2D 18-site square
lattice half-filled Hubbard model at U = 2t and k = (0, 0).
Periodic boundary conditions are applied to a 45◦ tilted cell
with sides 3

√
2. The reference determinant, D0, is formed

from occupying the 18 lowest-energy Bloch functions. Setting
the shift slightly below H00 = 〈D0|Ĥ |D0〉 reduces the plateau
height but increases the time spent in the plateau region.

are the largest eigenvalues of T and V when S = 0. This
leads to the equation

τ2
τ1
≈ S + V0

S + T0
=

S + V0

S − E0
. (35)

In most FCIQMC simulations the shift is initially held
at a fixed value, typically the Hartree-Fock energy, until
the desired psip population is reached. If S is reduced
and allowed to approach E0 from above, the simulation
never exits the plateau. The duration of the plateau can
be shortened by moving the initial value of S further
above the ground-state energy E0, but only at the cost of
increasing the psip population (S+V0)/κ at the plateau.
The effect of modifying the initial shift in an FCIQMC
simulation is shown in Fig. 4.
The ODE in Eq. 30 is an example of a Riccati differen-

tial equation34 and can be transformed from a quadratic
first-order ODE into a linear second-order ODE using the
substitution

p(τ) =
1

κu

du

dτ
. (36)

The solution of the resultant second-order ODE is

u(τ) =c1 · 0F1

(

; 1− Vmax

2Tmax
; z

)

+ c2z
Vmax/2Tmax · 0F1

(

; 1 +
Vmax

2Tmax
; z

)

,

(37)

where

z =
κ2p2(0)e2Tmaxτ

4T 2
max

, (38)

c1 and c2 are constants of integration, 0F1 is a confluent
hypergeometric limit function,35 and we have assumed

0 20 40 60 80 100

Vmaxτ

0

20

40

60

80

100

p
(τ
)/
n
0

Vmax/κn0 = 25.0; Vmax/Tmax = 30.0

Vmax/κn0 = 12.5; Vmax/Tmax = 15.0

Vmax/κn0 = 12.5; Vmax/Tmax = 30.0

FIG. 5. Model population dynamics in an FCIQMC simula-
tion. The psip population evolves according to Eq. 30 and
shows the key features of the population dynamics in real
FCIQMC calculations: an initial exponential growth phase
followed by a plateau followed by a second slower exponential
growth phase. As expected, the psip population reaches 95%
of its plateau value when Vmaxτ95% ≈ ln(19(Vmax/κn0 − 1)),
the height of the plateau is given by p/n0 = Vmax/κn0, and
the plateau ends when Vmaxτ2 ≈ ln(Vmax/κn0)Vmax/Tmax.
The vertical dashed (dotted) lines show Vmaxτ95% (Vmaxτ2)
for each set of parameters. The hypergeometric function, 0F1,
was calculated using Ref. 20.

that Vmax/(2Tmax) is not an integer. The normalization
of u(τ) drops out of p(τ) = (κu)−1du/dτ , leaving one
arbitrary constant to be fixed by the initial conditions.
Fig. 5 shows the resulting population dynamics for three
different sets of parameters, imposing the boundary con-
dition p(0) = n0 in all cases. Whilst this is an extremely
simple model, it captures all of the features of the popu-
lation dynamics seen in actual FCIQMC calculations.
Let us now return to Eq. 29 and consider what happens

beyond the end of the plateau, where the psip population
begins to rise again until the energy shift is adjusted and
a steady state with dpi/dt = 0 is attained. Since the lin-
earV term is negligible in comparison with the quadratic
terms in this regime, Eq. 29 becomes

0 =
dpi
dt
≈ −κp2i + κn2

i , (39)

implying that pi ≈ ±ni and hence that n−
i ≈ 0 or n+

i ≈
0. Determinants on which the ground-state amplitude
c0i is positive are occupied only by positive psips and
determinants on which c0i is negative are occupied only
by negative psips. The signed psip density ni = n+

i −n−
i

is proportional to c0i and the unsigned density pi = n+
i +

n−
i to |c0i|.
We can also use Eq. 29 to understand why the plateau

psip populations plotted in Fig. 2 are proportional to the



9

Hubbard U . Assuming that the growth of the in-phase
signal, p, is fast enough to allow the plateau to emerge
before the ground-state signal becomes significant, the
plateau occurs when

∑

ij

Vijpj ≈ κ
∑

i

p2i . (40)

If U/t is large, the kinetic energy contributions to the
Hamiltonian matrix (and hence T and V) can be ne-
glected and changing U simply scales these matrices.
Defining Vij = UV ′

ij and pi = Up′i leads to the follow-
ing condition for the emergence of the plateau:

∑

ij

V ′
ijp

′
j ≈ κ

∑

i

p′i
2
, (41)

where V′ and p′ contain no dependence upon U . The
total psip population at the plateau,

∑

i pi = U
∑

i p
′
i,

therefore scales linearly with U .

V. SIGN-PROBLEM-FREE SYSTEMS

If there exists a similarity transform that maps T into
V, and hence makes every off-diagonal element of T pos-
itive and every off-diagonal element of H = SI−T neg-
ative, then V and T have identical eigenvalues. Even
without annihilation, the in-phase and out-of-phase sig-
nals, p and n, grow at the same rate and there is no
difficulty extracting the ground-state (out-of-phase) sig-
nal n = n+−n−. Such systems are sign-problem free and
FCIQMC simulations of them yield correct ground-state
energies with arbitrarily small psip populations, although
no plateau phase is seen. Increasing the psip population
serves only to reduce the stochastic error. Indeed, by for-
mulating the problem in the transformed basis, we can
carry out an FCIQMC simulation in which no negative
psips need ever appear.
A particularly simple type of similarity transformation

does no more than change the signs of some of the basis
determinants. No choice of signs is sufficient to render
all off-diagonal elements of Tij positive in most cases, but
there are a few interesting model systems in which sim-
ple sign-changing transformations are effective. In some
models, for example, all psips spawned on any given de-
terminant Di have the same sign regardless of the loca-
tion of their parent, so that positive and negative psips
never mix. A simple sign-changing transformation that
multiplies every basis determinant by the sign of the psips
that occupy it then makes all off-diagonal elements of T
positive.
The antiferromagnetic Heisenberg model defined by

the Hamiltonian

Ĥ = J
∑

〈r,r′〉
Ŝr · Ŝr′ , (42)

where J>0, Ŝr is the vector spin operator on lattice site
r, and the sum runs over nearest neighbors, is such a sys-
tem if the lattice is bipartite. (Note that the basis states

in this example are spin configurations rather than Slater
determinants.) Indeed, the sign structure of the ground-
state wave function of the bipartite Heisenberg model has
long been known.36 Every non-zero off-diagonal matrix
element of the Heisenberg Hamiltonian flips a neighbor-
ing pair of spins from down-up to up-down or vice-versa.
The Hamiltonian matrix element is positive if J > 0,
implying that the corresponding matrix element of T is
negative, so the signs of children produced by off-diagonal
spawning events always differ from the signs of their par-
ents. Initially it appears as if this ought to cause a seri-
ous sign problem. Consider, however, a bipartite system
consisting of two inter-penetrating sub-lattices, arranged
such that the pairs of spins flipped by off-diagonal ele-
ments of Ĥ are always on different sub-lattices. The ac-
tion of any off-diagonal element of Ĥ increases the total
value of Sz on one sub-lattice by 1 and decreases the total
value of Sz on the other sub-lattice by 1. This allows all
spin configurations to be assigned to one of two classes,
A or B. Starting from the classical Néel state, which is
arbitrarily assigned to class A, all states that differ from
the Néel state by an even number of applications of Ĥ
are also assigned to class A, while states that differ by
an odd number of applications of Ĥ are assigned to class
B. If an FCIQMC simulation is initialized by placing a
population of positive psips on the Néel state, all psips
created on configurations in class A will be positive while
all psips created on configurations in class B will be neg-
ative. Psips of different signs will never mix, no cance-
lation is required, and there is no sign problem. In fact,
by applying a simple unitary transformation in which the
sign of every configuration in class B is flipped, all off-
diagonal matrix elements of H can be made negative.37

By way of an example, the Heisenberg model for a
two-dimensional 6×6 square lattice with periodic bound-
ary conditions has a Hilbert space of 9.08 × 109 con-
figurations. Using just 1.8 × 106 psips we find the
E/N = −0.67886(2)J , which is in excellent agreement
with the value E/N = −0.678871(8)J obtained by Runge
using Green’s function Monte Carlo.38 Note that, unlike
Runge, we did not use importance sampling. FCIQMC
simulations of Heisenberg models defined on other (non-
bipartite or “frustrated”) lattices display the same be-
havior as for fermionic systems (Fig. 6); in particular,
the population plateau is a universal feature unless the
system is sign-problem free.

The Hubbard Hamiltonian, Eq. 19, is closely related
to the Heisenberg Hamiltonian and is also sign-problem-
free, although only in one dimension. Consider a 1D
Hubbard lattice with Ns sites andN↑ (N↓) spin-up (spin-
down) electrons, where the system is not necessarily half-
filled and periodic boundary conditions are applied. IfNs

is even and N↑ and N↓ are both odd or Ns is odd and
N↑ and N↓ are both even, then there exists an analagous
transformation to that described above for the Heisen-
berg model. (This is most easily seen if the orbitals are
ordered first by spin and then by their position in the
lattice.) The ground-state energies of large 1D Hubbard
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FIG. 6. The population dynamics of an FCIQMC simulation
of the antiferromagnetic Heisenberg model for a 5 × 5 trian-
gular lattice. No periodic boundary conditions were imposed.
As with fermionic systems, frustrated Heisenberg models dis-
play a population plateau.

models with many different choices of N↑ and N↓ can
therefore be found using the FCIQMC method with very
small numbers of psips.

This brings us on to an important point: the sign prob-
lem in FCIQMC is not constant for a given system but
is dependent upon the choice of basis. Consider two
Hamiltonian matrices, H1 and H2, which describe the
same system but have been constructed using different
basis sets, one of which is obtained from the other by a
transformation matrix S, so that H1 = S−1H2S. The
corresponding transition matrices T1 and T2 are related
in the same way. However, when we partition the two
transition matrices into T+ and T−, the partitions are
not necessarily related by the same unitary transforma-
tion. In other words, although T1 = S−1T2S, and hence
T+

1 −T−
1 = S−1(T+

2 −T−
2 )S, it is not in general the case

that T±
1 = S−1T±

2 S. Consequently, the plateau height
(and thus the ease with which FCIQMC can be used to
find the ground state) depends on the basis in which the
Hamiltonian matrix is expressed.

An FCIQMC simulation of the 18-site half-filled 1D
Hubbard model at U = t exhibits no plateau when the
Hamiltonian matrix is expressed in a basis of determi-
nants of local orbitals (as in Eq. 19), since this partic-
ular problem is sign-problem free as explained above.
Yet an FCIQMC simulation of exactly the same Hamil-
tonian expressed in a basis of determinants of Bloch
functions (as in Eq. 20) exhibits a plateau at 6.9 × 106

psips. As expected, the sign problem increases the dif-
ficulty of the FCIQMC simulation in the Bloch repre-
sentation. A short simulation using just 2.8 × 105 psips
in the local orbital basis gave a ground-state energy of
−18.8423(3)t, whereas 2.3×107 psips were required to ob-
tain a ground-state energy of −18.84248(8)t in the Bloch
orbital basis. Furthermore, our implementation currently
conserves crystal momentum when using Bloch orbitals
but does not make use of symmetry when using local
orbitals; the Hilbert space used in the calculation with
local orbitals therefore contains 2.36× 109 determinants,

whereas that with Bloch orbitals contains only 1.31×108

determinants.

VI. DISCUSSION

The above observations provide some degree of insight
into the FCIQMC method and the factors that determine
how hard it is to apply FCIQMC to any given physical
system. We now briefly comment upon other topics re-
lated to FCIQMC before summarizing our work.
The initiator approximation to FCIQMC (i-FCIQMC),

whereby spawning events onto previously unoccupied de-
terminants are only allowed if the parent determinant has
a psip population above a specified threshold, has been
shown to dramatically reduce the number of psips re-
quired to obtain excellent results in many systems.15 In
i-FCIQMC, the effective Hilbert space grows and changes
dynamically as the simulation proceeds, including only
determinants that have a significant psip population or
lie close (in terms of applications of the Hamiltonian) to
determinants with a significant psip population. As a re-
sult, psips are prevented from spawning in regions of low
psip density and the annihilation rate is greatly increased
for a given psip population. No plateau is observed in
i-FCIQMC calculations14,15 because the growth of the
in-phase combination is suppressed by annihilation even
when the total psip population is low. The i-FCIQMC
approximation becomes increasingly good as the number
of psips is increased because more of the Hilbert space
becomes accessible and the psip dynamics more closely
resembles that of the true Hamiltonian.
In coupled cluster Monte Carlo39 (CCMC), the excita-

tion amplitudes of the coupled cluster wave function are
stochastically sampled in manner analogous to the sam-
pling of configuration amplitudes in FCIQMC. Although
the CCMC algorithm is much more complicated than the
FCIQMC algorithm, we believe that a similar analysis
holds. The particles or “excips”40 that sample the dis-
crete excitor space in CCMC also have positive or nega-
tive signs and annihilation is crucial for the desired (and
physically meaningful) solution to emerge. It is observed
that CCMC calculations have a higher plateau than con-
figuration interaction quantum Monte Carlo (CIQMC)
calculations at the same truncation level.39 It is likely
that this is because the excips have to explore a larger
effective Hilbert space than the psips in the equivalent
CIQMC simulation, so more excips are required to make
the annihilation rate high enough to suppress the in-
phase signal.
In summary, we have shown that the sign problem in

FCIQMC simulations is caused by the growth of an un-
physical dominant solution of the coupled ODE’s that
describe the time evolution of the densities of positive
and negative psips. This unphysical solution grows faster
than the ground-state solution we seek and masks the
ground-state signal. A similar problem arises in DMC
simulations of fermionic systems, where the dominant
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solution is the boson ground state. FCIQMC differs
from DMC, however, in that the unphysical solution in
FCIQMC is not an eigenfunction of the Hamiltonian op-
erator.
The annihilation of psips of opposite charge suppresses

the growth of the unphysical dominant solution and
allows FCIQMC simulations to converge on the true
ground state, but works only when a minimum (and
system-dependent) threshold in the psip population is
exceeded. The combination of spawning and annihila-
tion also leads to the characteristic population dynamics
observed in FCIQMC calculations. The annihilation of
psips may not be the most efficient way of suppressing the
growth of the unphysical solution, and there remains a
tantalising possibility that an alternative approach could
lead to a superior algorithm applicable to much larger
systems.
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