
 Open access Journal Article DOI:10.1109/TPDS.2009.125

The Signal Synchronous Multiclock Approach to the Design of Distributed
Embedded Systems — Source link

Abdoulaye Gamatié, Thierry Gautier

Institutions: French Institute for Research in Computer Science and Automation

Published on: 01 May 2010 - IEEE Transactions on Parallel and Distributed Systems (IEEE)

Topics: Formal specification, Correctness, Asynchronous communication and Hardware architecture

Related papers:

 Polychrony for system design

 The synchronous languages 12 years later

 The synchronous data flow programming language LUSTRE

 Software implementation of synchronous programs

 Efficient distribution of Triggered Synchronous Block Diagrams on asynchronous platforms

Share this paper:

View more about this paper here: https://typeset.io/papers/the-signal-synchronous-multiclock-approach-to-the-design-of-
4c6s0iwmjw

https://typeset.io/
https://www.doi.org/10.1109/TPDS.2009.125
https://typeset.io/papers/the-signal-synchronous-multiclock-approach-to-the-design-of-4c6s0iwmjw
https://typeset.io/authors/abdoulaye-gamatie-45lyvhkf5p
https://typeset.io/authors/thierry-gautier-195yxd0p79
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/journals/ieee-transactions-on-parallel-and-distributed-systems-1rg5f5po
https://typeset.io/topics/formal-specification-376tvf8f
https://typeset.io/topics/correctness-v0oe2aje
https://typeset.io/topics/asynchronous-communication-32zvom8z
https://typeset.io/topics/hardware-architecture-3audt7sg
https://typeset.io/papers/polychrony-for-system-design-1cwj0o6epa
https://typeset.io/papers/the-synchronous-languages-12-years-later-55re7ed5k3
https://typeset.io/papers/the-synchronous-data-flow-programming-language-lustre-2j8zn4zee2
https://typeset.io/papers/software-implementation-of-synchronous-programs-4cn2s2jmm5
https://typeset.io/papers/efficient-distribution-of-triggered-synchronous-block-2ea9iymzzf
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-signal-synchronous-multiclock-approach-to-the-design-of-4c6s0iwmjw
https://twitter.com/intent/tweet?text=The%20Signal%20Synchronous%20Multiclock%20Approach%20to%20the%20Design%20of%20Distributed%20Embedded%20Systems&url=https://typeset.io/papers/the-signal-synchronous-multiclock-approach-to-the-design-of-4c6s0iwmjw
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-signal-synchronous-multiclock-approach-to-the-design-of-4c6s0iwmjw
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-signal-synchronous-multiclock-approach-to-the-design-of-4c6s0iwmjw
https://typeset.io/papers/the-signal-synchronous-multiclock-approach-to-the-design-of-4c6s0iwmjw

HAL Id: hal-00550056
https://hal.archives-ouvertes.fr/hal-00550056

Submitted on 23 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Signal Synchronous Multiclock Approach to the
Design of Distributed Embedded System

Abdoulaye Gamatié, Thierry Gautier

To cite this version:
Abdoulaye Gamatié, Thierry Gautier. The Signal Synchronous Multiclock Approach to the Design
of Distributed Embedded System. IEEE Transactions on Parallel and Distributed Systems, Institute
of Electrical and Electronics Engineers, 2010, 21 (5), pp.641-657. 10.1109/TPDS.2009.125. hal-
00550056

https://hal.archives-ouvertes.fr/hal-00550056
https://hal.archives-ouvertes.fr

SUBMISSION FOR PUBLICATION TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

The Signal Synchronous Multi-clock Approach to the
Design of Distributed Embedded Systems

Abdoulaye Gamatié and Thierry Gautier

Abstract—This paper presents the design of distributed embedded systems using the synchronous multi-clock model of the SIGNAL
language. It proposes a methodology that ensures a correct-by-construction functional implementation of these systems from high-

level models. It shows the capability of the synchronous approach to apply formal techniques and tools that guarantee the reliability of

the designed systems. Such a capability is necessary and highly worthy when dealing with safety-critical systems. The proposed

methodology is demonstrated through a case study consisting of a simple avionic application, which aims to pragmatically help

the reader to understand the manipulated formal concepts, and to apply them easily in order to solve system correctness issues

encountered in practice. The application functionality is first modeled as well as its distribution on a generic hardware architecture. This

relies on the endochrony and endo-isochrony properties of SIGNAL specifications, defined previously. The considered architectures

include asynchronous communication mechanisms, which are also modeled in SIGNAL and proved to achieve message exchanges

correctly. Furthermore, the synchronizability of the different parts in the resulting system is addressed after its deployment on a specific

execution platform with multi-rate clocks. After all these steps, a distributed code can be automatically generated.

Index Terms—Distributed embedded systems, Correct-by-construction design methodology, Safety-critical domains, Formal validation,

Synchronous model, Asynchronous mechanisms, Multi-clock, SIGNAL language

✦

1 INTRODUCTION

There are various reasons to distribute embedded systems: the
high performance enabled by the use of several computation
units for a better response time, sometimes the geographi-
cal delocalization of the system elements, the replication of
systems for fault tolerance, etc. Typical domains in which
distributed embedded systems are useful are the following:

• transportation: the last generation of cars and aircraft in-
creasingly combine computers and electrical linkages. This
combination makes comfortable the control of the engine.
This combination leads to so-called fly-by-wire systems,
e.g., adopted in Toyota Prius automobile or in the A380.

• telecommunication: cell phone manufacturers and Internet
highly face problems related to distributed and mobile
embedded systems deployed on networks. A major issue
is the compatibility between heterogeneous devices, and
the robust and transparent communications in networks,
while guaranteeing performance and real-time properties.

• industrial automation: it covers industrial robots and em-
bedded mechatronic systems, which comprise technolo-
gies from engineering disciplines in computer software
and hardware as well as in mechanics and automatic
control. The issues concern the design of distributed ar-
chitectures for scalable and reconfigurable mechatronic
systems, and of embedded control.

The design of distributed embedded systems generally has
to take into account several crucial aspects: the used communi-
cation mechanisms must be proved to be sufficiently robust, i.e.
no loss of messages; for sub-systems located on different sites,
the duration of communications must not alter the real-time
properties of the overall system, the global functionality must

This work has been partly supported by the European project IST SAFEAIR
(Advanced Design Tools for Aircraft Systems and Airborne Software) -
Convention no 1 00 C 0149 00 31307 00 5.

• A. Gamatié is affiliated with CNRS/LIFL, Email: abdoulaye.gamatie@lifl.fr.

• T. Gautier is affiliated with INRIA, Email: thierry.gautier@irisa.fr.

be guaranteed, etc. So, the distribution of a system has to follow
well-defined methodologies that offer the suitable means to
clearly express its inherent concurrency and to validate its
behavior w.r.t. functional and non functional requirements.
In the current study, we consider the synchronous model [10]
for design and validation. This model offers an adequate for-
mal basis to deal with the reliable design of embedded systems.
Its basic assumption is that computation and communications
are instantaneous from the point of view of a logical time, referred
to as "synchrony hypothesis". This favors deterministic models of
system behaviors for safe analysis.

1.1 The synchronous multi-clock model of SIGNAL

The design of distributed systems has been extensively studied
for decades [44], [19]. The asynchrony [20] inherent to these
systems appears a priori as an obstacle to their description with
the synchronous model. According to [45], a fully synchronous
system is characterized by the boundness and knowledge of: i)
processing speed, ii) message delivery delay, iii) local clock rate
drift, iv) load pattern, and v) difference among local clocks. A fully
asynchronous system assumes none of these characteristics.
Distributed embedded systems are generally implemented
with GALS architectures, which are suitably abstracted with
the SIGNAL synchronous multi-clock or polychronous model
[37]. The multi-clock model is gaining an increasing attention
from academia and industry to address the modern electronic
designs [13], [24]. According to the polychronous model, the ac-
tivation clock of a system consists of the set of instants at which
its components react. This set is only partially ordered since
concurrent components may have their own (independent)
activation clocks. When these components do not interact, it
is not necessary that their clocks be synchronized. The central
question is not to agree on a global time, but to agree on the
common event occurrences during the interaction of compo-
nents. Contrarily to the usual monolithic approach adopted by
the other synchronous languages (e.g. LUSTRE, ESTEREL until
recently), which consists of compact single-clocked designs, the

SUBMISSION FOR PUBLICATION TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

polychronous approach aims at designing in a modular fashion
systems with multiple loosely coupled clocks so as to be able
to deal with the complexity of their distribution.
Compared to the synchrony/asynchrony definition of [45],

the polychronous model offers an intermediate vision: while
it assumes the boundness of computation and communication
activities, the difference among local activation clocks is a priori
unknown. This vision is opposed to the monolithic one, which
considers the existence of a unique common clock in a system,
represented by a totally ordered set of instants. The SIGNAL
language relies on the polychronous model.
FIG. 1 illustrates the design philosophy behind polychrony:

to give an adequate abstract model of a system shown in
Fig. 1(b), which enables a subsequent choice towards a dis-
tributed system implemented by globally asynchronous locally
synchronous (GALS) architectures [17] shown in Fig. 1(a), or
a single-clocked system implemented by centralized architec-
tures shown in Fig. 1(c).

�� ��
a

����
��

��
==

==
b

����
��

��
<<

<<

d c �oo // c e
(a) Distributed system

�� ��
a

����
��

��
==

==
b

����
��

��
==

==

d c oo // c e
(b) Polychronous system

��
a, b

~~}}
}}

�� A
AA

A

d c e
(c) Single-clocked system

Fig. 1. Distributed, polychronous and single-clocked systems.

The polychronous system, depicted in Fig. 1(b), consists of
two concurrent sub-systems that receive control from events
a and b and conditionally communicate via an event c or do
something else (d or e). It can be refined into a single-clocked
system, Fig. 1(c), by synchronizing the events a and b. It can be
also refined into a distributed system, Fig. 1(a), by distributing
a and b on two different locations and by implementing c
by a FIFO communication channel. In general, the reliability
of such channels is implicitly assumed in the polychronous
model. However, in this paper, it is explicitly proved.

1.2 Synchronous design of distributed systems

Among the large spectrum of literature devoted to the design
of distributed systems [44], [19], we mainly concentrate below
on related works that rely on the synchronous model.
As mentioned above, a major advantage of using such a

model for the development of distributed embedded systems
is that, on the one hand, the global correctness of systems
can be trust-worthily guaranteed using the associated formal
technology. It is particularly necessary when the system is used
in a safety-critical domain such as automotive or avionics.
This explains the numerous studies on program distribution
problematics in synchronous languages. Most of these studies
focus on automatic program distribution methods [27]: given a
centralized synchronous program P and a distributed archi-
tecture A, the deployment of P on A is defined automatically,
with the necessary inserted communication code, so that the
resulting distributed program has the same functional behavior

as P . However, note that beyond these studies, automatic
program distribution has been widely investigated [32].
The major contributions on this topic in the synchronous ap-
proach community could be summarized according to the main
synchronous languages [10]: ESTEREL, LUSTRE and SIGNAL.
In ESTEREL, we can mention the work of Berry and Sentovich
[12] on the construction of GALS systems as synchronous cir-
cuits represented by a network of communicating codesign finite
state machines. GALS architectures [17] consist of components
that execute synchronously and communicate asynchronously.
Another relevant work concerns the ESTEREL specification and
programming of large-scale distributed real-time systems [33].
The LUSTRE language has been also used in several studies
on the design of distributed systems. Girault [26] addressed the
distribution of synchronous automata within the framework
of this language. Afterwards, he focused on further issues
such as automatic deduction of GALS systems from cen-
tralised synchronous circuits [28], and the optimized execution
of desynchronized embedded reactive programs to guarantee
real-time constraints [29]. We must note the very important
achievements by Caspi and his colleagues on the same topics
(see [27]). They recently proposed an approach to deploy
LUSTRE programs on time-triggered architectures [16].
In SIGNAL, there have been lots of results on program distri-
bution, mostly from the theoretical viewpoint. The earlier work
of Chéron [18] dealt with the communication of separately
compiled SIGNAL programs. Then, Maffeïs [39] showed how
to abstract such programs into graphs in order to define the
qualitative scheduling and partitioning of these graphs. The
work of Aubry [6] focused on similar problems as Girault [26]
by exploring the manual and semi-automatic distribution of
synchronous dataflow programs in SIGNAL. While these stud-
ies were mostly devoted to the practical side, Benveniste and
Le Guernic lead several theoretical works on the distribution
of SIGNAL programs [8], [9], [25], [11], [37], [41]. The approach
presented in this paper shows how these theoretical results are
exploited in practice to define correct-by-construction models
of distributed embedded systems.
Finally, we can notice other interesting contributions such as
[30] in which Grandpierre showed, with Petri nets, how one
can derive a distributed implementation from a synchronous
dataflow specification, e.g. in LUSTRE or SIGNAL, of a given
application while minimizing the response time w.r.t. real-time
requirements. The SYNDEX environment [31] aims at providing
designers with such program distribution facilities.

1.3 Our contribution: a seamless design methodology

While the above studies mainly concern automatic program
distribution, in this paper we focus on how to design entirely
distributed embedded systems with a synchronous language
by proposing a general methodology, FIG. 2, composed of four
steps detailed in the following chronological order:
1) System specification and manual distribution: modeling of
application functionality, distributed hardware architec-
ture, and their association. This step is similar to the
initial step in usual harware-software codesign;

2) Automatic transformations: guaranteeing the global func-
tional correctness of the distribution. These transforma-
tions exploit the endochrony and endo-isochrony proper-
ties of SIGNAL programs, presented in Section 2.2.2;

3) Deployment on specific platforms: instantiating the parts
of the resulting model with components that represent

SUBMISSION FOR PUBLICATION TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

for each processor, including calls
of an application

SIGNAL model

of components

SIGNAL library

the same application model

application deployment

reflecting a particular

automatically added between the

after partitioning and compilation,

synchronous communications are

processors

SIGNAL model of

composed of two processors

a target architecture

and distribution
Specification

transformations
Automatic

generated embedded code (C, Java...)

to communication services

a chosen platform
Deployment on

Non functional analysis
and automatic code

generation

Fig. 2. Our design methodology for distributed embedded systems in SIGNAL.

specific platform mechanisms, e.g. for communication,
synchronization. There are only few existing works de-
voted to the synchronous modeling of asynchronous
mechanisms [34], [35], [23];

4) Non functional analysis and automatic code generation: check-
ing the non functional (temporal) constraints induced by
the chosen deployment and distributed code generation.

The above methodology is exposed through a case study. It
is built on several complementary results obtained previously.
The second step of this methodology uses an implementation
of the theoretical results of [8], [9]. The third step relies
on the insights gained from [21], [23] in which we have
proposed a library of components consisting of synchronous
models of asynchronous mechanisms for communication, syn-
chronization or execution. Here, we consider the mechanism
defined in [21] to describe the communications in the deployed
system model of our case study. We also give the proof of
queueing order preservation in this mechanism, which was an
assumption previously. On the other hand, while the design
approach presented in [23] mainly targets integrated modular
avionics architectures, the current methodology aims at more
general multi-processor architectures and fully makes use of
the SIGNAL multi-clocked model. The fourth step uses the
non functional analysis techniques proposed in [43], [36] and
implements code generation approach defined in [25].

1.4 Example: a Flight Warning System

We consider a running example from the avionic domain,
consisting of a Flight Warning System (FWS) to illustrate our
methodology. This system is used in the Airbus A340 aircraft.
It has been proposed by the Aerospatiale Company (France) as
a case study in [38]. The FWS system is in charge of deciding
on when and how to emit warning signals whenever there
is an anomaly during the operational mode of an airplane.
It is illustrated in FIG. 3 together with its implementation
architecture. It consists of two cyclic concurrent processes:

• given an alarm ai, the alarm manager process confirms ai

after a given period of time or removes ai from the set of
confirmed alarms depending on the fact that ai is detected
"present" or "absent";

• the alarm notifier process emits warning signals associated
with confirmed alarms.

In this paper, the exact way alarms are made present or absent
is supposed to be out of scope. This is achieved in another part
of the aircraft.

Fig. 3. Deployment of FWS on a platform.

Even though the above two processes interact, they exe-
cute independently. So, their activation clocks are a priori not
strongly correlated. Such a system is particularly well-suited
to be described and analyzed with the polychronous model.
The specific choice of executing the processes separately on
different processors is one possibility among others. Here, it
allows us to illustrate the possible design issues resulting from
the distribution of a system functionality and how to address
them with our proposed methodology.

1.5 Outline

The remainder of this article is organized as follows: Section
2 introduces the synchronous language SIGNAL and its as-
sociated multi-clock semantic model. Then, the next sections
present our methodology in detail through the design of FWS
on a distributed platform. Section 3 is devoted to the first and
second steps. It addresses the SIGNAL description of the FWS
system, its associated hardware architecture and its correct
distribution on the chosen architecture. Section 4 concentrates
on the third step. It deals with the modeling of an asyn-
chronous communication mechanism, represented by a FIFO
queue that is proved to be correct w.r.t. its expected services.
This mechanism is used for the deployment of the FWS system
on a specific platform. Section 5 focuses on the last step of our
methodology. It addresses clock synchronizability issues in the

SUBMISSION FOR PUBLICATION TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

deployed model of the FWS system and the automatic code
generation. Finally, our proposition is discussed in Section 6
and concluding remarks are given in Section 7.

2 THE SIGNAL LANGUAGE

In order to define the formal semantics of SIGNAL, we intro-
duce the polychronous semantic model in Section 2.1. Then,
we give an overview of the language in Section 2.2.

2.1 The polychronous semantic model

We consider the following sets: X is a countable set of vari-
ables; B = {ff, tt} is a set of Boolean values where ff and tt
respectively denote false and true; V is the domain of operands
(at least V ⊇ B); and T is a dense set equipped with a partial
order relation noted ≤, and with a greatest lower bound. The
elements of T are called tags.
We now introduce the notion of observation point.
Definition 1 (observation points): A set of observation points

is a set of tags T such that: i) T ⊂ T; ii) T is countable;
iii) each pair of tags admits a lower bound in T .
The set T provides a discrete time dimension that corre-

sponds to the logical instants at which the presence/absence
of events can be observed during a system execution. The
set T provides a continuous (physical) time dimension. So,
the mapping of T on T allows one to move from “abstract”
descriptions to “concrete” descriptions in the semantic model.
A chain C ⊆ T is a totally ordered set which admits a

lower bound. The set of chains is denoted by C. For a set of
observation points T , we denote by CT the set of all chains in
T . The notations min(C) and predC(t) respectively mean the
minimum of C and the immediate predecessor of a tag t ∈ C.
Definition 2 (events, signals and behaviors, FIG. 4):
• An event e on a given set of observation points T is a
couple (t, v) ∈ T × V .

• A signal on a given set of observation points T is a partial
function s ∈ T ⇀ V , associating values with observation
points that belong to a chain C ∈ CT . The set of signals
on T is noted ST . The domain of s is denoted by tags(s).

• For a given set of observation points T , a behavior b on
X ⊆ X is a function b ∈ X → ST that associates each
variable x ∈ X with a signal s on T . We denote by BT ,X

the set of behaviors of domain X ⊆ X on T . The set BT

represents the set that contains all the behaviors defined on
the union of all the sets of variables on T . Finally, we write
vars(b) and tags(b) =

S

x∈vars(b) tags(b(x)) to respectively
denote the domain of b and its associated set of tags. �

...

...

...

signals

two

O

I2

I1

two events

behavior

t0 t1 t2 t3 t4 t5 t6 t7 t8

one

Fig. 4. Behavior, events and signals.

For any behavior b defined on X ∈ X , we note b|X′ its
projection on a set of variables X ′ ⊂ X. In other words,
vars(b|X′) = X ′ and ∀x ∈ X ′, b|X′(x) = b(x). The projection
of b on the complementary of X ′ in X is denoted by b/X′ .
A signal can be seen, in fact, as an elastic with ordered marks

(its tags). If such an elastic is stretched, the marks remain in the

same order but new marks may be inserted between stretched
marks. If the elastic gets unstretched, the marks become closer
to each other, but they still remain in the same order. The same
holds for a set of elastics, i.e., a behavior.
Definition 3 (stretching): For a given set of observation points

T , a behavior b1 is less stretched than a behavior b2, noted
b1 ≤BT

b2, iff there exists a bijection f : tags(b1) → tags(b2)
following which b1 and b2 are isomorphic:
∀x ∈ vars(b1), f(tags(b1(x))) = tags(b2(x)),
∀x ∈ vars(b1) ∀t ∈ tags(b1(x)), b1(x)(t) = b2(x)(f(t)),
∀t1, t2 ∈ tags(b1), t1 ≤ t2 ⇔ f(t1) ≤ f(t2),

and such that ∀C ∈ CT , ∀t ∈ C t ≤ f(t). �

The stretching relation is a partial order on BT . It induces
an equivalence relation between behaviors.
Definition 4 (stretch-equivalence): For a given set of observa-
tion points T , two behaviors b1 and b2 are stretch-equivalent,
noted b1 ≶ b2, iff there exists a behavior b3 less stretched than
b1 and b2, i.e. b1 ≶ b2 iff ∃b3 b3 ≤BT

b1 and b3 ≤BT
b2. �

The class of equivalence of a behavior following the stretch-
relation forms a semi-lattice, which admits a minimal element.
We call strict behaviors those which are minimal for the stretch-
relation on T . For a given behavior b, the set of all behaviors
that are stretch-equivalent to b on T defines its stretch-closure
on T , noted b∗.
Definition 5 (stretch-closure of a behavior set): The stretch-
closure of a set of behaviors p on a given set T of observation
points is the set p∗, which includes all behaviors resulting from
the stretch-closure of each behavior b ∈ p, i.e. p∗ =

S

b∈p b∗. �
The stretch-closure allows us to define the following process
notion, which is a specific set of behaviors:
Definition 6 (process): For a given set of observation points

T , a process p is a stretch-closed set of behaviors, i.e. p ∈ P(B)
such that p = p∗. �

We write vars(p) to denote the set of variables of a process
p (we say equivalently that p is defined on vars(p)). Every non
empty process contains a subset p↓ ⊆ p of strict behaviors (for
each b1 ∈ p, there exists a unique b2 ∈ (p)↓ such that b2 ≶ b1).
The notions presented in this section are sufficient to ex-
press the semantics of SIGNAL basic concepts within the poly-
chronous model [37]. In the remainder of the paper, we also
use them to characterize some model properties.

2.2 An overview of the language

2.2.1 Basics

SIGNAL [37], [14] is a dataflow relational language that han-
dles unbounded series of typed values (xt)t∈N, called signals,
implicitly indexed by discrete time, and denoted as x. At any
logical instant t ∈ N, a signal may be present or absent: when
present, it holds some value; when absent, it holds no value
and is denoted by ⊥ in the semantic notation. There is a
particular type of signal called event. A signal of this type
always holds the value true when it is present. The set of
instants at which a signal x is present is referred to as its clock,
noted x̂. A process is a system of equations over signals that
specifies relations between values and clocks of the signals.
A program is a process. The whole SIGNAL language relies on
the six primitive constructs, presented below, which define el-
ementary processes. Unlike the LUSTRE and LUCID SYNCHRONE
languages in which a program expresses a functional dataflow
specification, in SIGNAL, a program implicitly expresses con-
straints on the involved signals, that must be satisfied by their

SUBMISSION FOR PUBLICATION TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

values on the one hand and by their clocks on the other hand
(see TABLE. 1).

• Instantaneous relations: y:= R(x1,...,xn) where
y, x1,...,xn are signals and R is a point-wise n-ary
relation/function extended canonically to signals. This
construct imposes y, x1,...,xn i) to be simultaneously
present, and ii) to hold values satisfying the equation
y:= R(x1,...,xn) whenever they occur. Its semantics is
the following set of behaviors:
{ b ∈ B|y,x1,...,xn

|

tags(b(y)) = tags(b(x1)) = ... = tags(b(xn)) = C ∈ C\∅
∀t ∈ C, b(y)(t) = [R]](b(x1)(t), ..., b(xn)(t)) }

where [[R]] is a point-wise interpretation of the relation R.

• Delay: y:= x $ 1 init c where y, x are signals and c is
an initialization constant. This construct imposes i) x and y
to be simultaneously present while ii) y must hold the value
carried by x on its previous occurrence. Its semantics is the
following set of behaviors:
{0|x,y} ∪ { b ∈ B|x,y | tags(b(y)) = tags(b(x)) = C ∈ C\∅,

b(y)(min(C)) = c,
∀t ∈ C\min(C), b(y)(t) = b(x)(predC (t)) }

• Undersampling: y:= x when c where y, x, c are signals
and c is of Boolean type. This construct imposes i) y to be
present only when x is present and c holds the value true,
while ii) y must hold the value carried by x at those logical
instants. Its semantics is the following set of behaviors:
{ b ∈ B|x,y,c |

tags(b(y)) = {t ∈ tags(b(x)) ∩ tags(b(c))|b(c)(t) = tt}
∀t ∈ tags(b(y)), b(y)(t) = b(x)(t) }

• Deterministic merging: z:= x default y where z, y, x
are signals. This construct imposes i) z to be present
when either x or y are present while ii) z must always
hold the value of x uppermost, otherwise it takes the
value of y. Its semantics is the following set of behaviors:
{ b ∈ B|s1,s2,s3

|

tags(b(s3)) = tags(b(s1)) ∪ tags(b(s2)) = C ∈ C
∀t ∈ C, b(s3)(t) = b(s1)(t) if t ∈ tags(b(s1)) else

b(s3)(t) = b(s2)(t) }

• Composition of processes: union of the equations defined in pro-
cesses, leading to the conjunction of the constraints associated
with these processes. For a given set of observation points T ,
the composition on T of processes p1 and p2, noted p1 | p2,
is a process p = ({b | b|vars(p1) ∈ p1, b|vars(p2) ∈ p2})∗ and
vars(p) = vars(p1) ∪ vars(p2).

• Restriction (or Hiding): local declarations in a process. The
restriction, noted p where x (or p/x for short), of a process p
defined onX ⊆ X to a process defined onX\{x}, is defined as
the following set of behaviors: ({b2 | ∃b1 ∈ p ∧ b2 = b1/{x}})

∗.
These constructs are expressive enough to derive new con-

structs of the language for comfort and structuring.

2.2.2 Clock calculus, endochrony and endo-isochrony

In SIGNAL, clocks are fundamentally the main means to ex-
press control-related properties, i.e. synchronizations between
signals. They are ordered according to the following relation: a
clock κ1 is said to be greater than a clock κ2, which is denoted
by κ1 ≥ κ2, if κ2 is included in κ1 in terms of sets of instants.
The set of clocks associated with this relation is a lattice.
Clock calculus. The purpose of the clock calculus [37] is, on

the one hand, to determine the existence of a greatest clock,
called master clock, from which all clocks of a program can
be extracted, and on the other hand, to verify the consistency
of synchronization relations between signals. Nonetheless, in
some programs, such a unique master clock may not exist.

TABLE 1

Clock constraints in primitive constructs.

constructs clock constraints
y := f(x1,...,xn) ŷ = x̂1 = ... = x̂n

y := x $1 init c ŷ = x̂

y := x when b
ŷ = x̂ ∩ [b],

[b] ∪ [¬b] = b̂ and [b] ∩ [¬b] = ∅
z := x default y ẑ = x̂ ∪ ŷ

p1 | p2 constraints(p1) ∩ constraints(p2)
p where x constraints(p)

In this case, there are several local master clocks (see Section
3.1.2). TABLE. 1 gives the clock properties associated with
primitive constructs of SIGNAL (here, [b] – resp. [¬b] – denotes
the set of instants where the Boolean expression b is present
and true – resp. false –). Such properties are automatically
inferred by the compiler from any program to be analyzed.
A specific option of the compiler enables to generate a file
containing these properties under the form of clock relations
defined in a SIGNAL program. Clock hierarchies can therefore
be extracted from such a program.
SIGNAL allows one to explicitly manipulate clocks through

some derived constructs such as the following ones (the equiv-
alent expressions are given with primitive operators):

• Sampling. y:= when b
def
≡ y := b when b. It expresses the

fact that event signal y occurs whenever the signal b is true.

• Clock union. y:= x1 ^+ x2
def
≡ y := ^x1 default ^x2. It

denotes the set of instants at which at least one signal xi
occurs. Clock intersection and difference are also defined.

• Synchronizer. x1 ^= x2
def
≡ (| x := ^x1 = ^x2 |)/x. It

means that x1 and x2 have the same clock or are synchronous.

Endochrony and endo-isochrony: key properties for pro-
gram distribution. The safe distribution of SIGNAL programs
is possible thanks to two fundamental notions, endochrony and
endo-isochrony, which have been formally defined in [37], [9].
In this paper, we only recall them informally and put them to
work on our case study introduced in Section 1.4.
An endochronous program p is a program that can be
executed in an environment, which only provides p with
the values of its inputs, without any information about their
status (present or absent). p is able to reconstruct a unique
synchronous behavior from any external (asynchronous) input
flow of values. It is insensitive to external propagation delays.
From the viewpoint of clocks, such a program holds a master
clock κ that plays the role of its activation clock. All the
other clocks of p are necessarily defined recursively from
κ. They are smaller than κ following the partial order ≥.
The global clock hierarchy in p therefore forms a tree where
the root node represents the master clock of p (see Section
3.1.1). Given any SIGNAL program p, the compiler is able to
check whether or not p is endochronous. An endochronous
program is deterministic: for the same functional input values it
yields the same functional output values whatever the external
propagation delays are. The elementary processes defined by
the instantaneous relations and delay primitive constructs are
examples of very simple endochronous programs. All signals
involved in these processes have the same clock, which is also
the master clock. On the contrary, the elementary processes de-
fined by the undersampling and merging primitive constructs
are not endochronous programs since there is no master clock
from which the clocks of involved signals can be inferred in

SUBMISSION FOR PUBLICATION TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

such a process. A more complex example of non endochronous
program is shown in Section 3.1.2.
The isochrony property [9] is used as a criterion under

which the synchronous composition of a pair of processes p1

and p2 is equivalent to their asynchronous composition (i.e.
involving "send/receive" like communications). It means that
the order of the messages exchanged synchronously by p1

and p2 is always preserved when exchanged asynchronously.
Thus, p1 and p2 can be safely deployed on GALS architectures.
So, isochrony is an interesting property when one needs to
describe asynchronous behavior while using the synchronous
(multi-clock) model. A very similar theoretical result can be
found in [41], where the authors address the functional equiv-
alence of asynchronous composition and synchronous compo-
sition with bounded and unbounded FIFO channels, within the
polychronous model. In our methodology, we rather consider
a more constructive version of isochrony, called Endo-isochrony.
Endo-isochrony [37] requires that both p1 and p2 are en-

dochronous each, as illustrated in Section 3.1.2; and imposes
to their communicating part (i.e. the process defined by the
restriction on their common variables) to be endochronous as
well. Endo-isochrony is a sufficient criterion but not necessary
to have a pair of isochronous processes. It is a stronger crite-
rion. However, its advantage is that it permits to deal with the
isochrony property of p1 and p2 using the compiler by checking
the endochrony of the different sub-parts of the composition,
hence making things more pragmatic. Endo-isochrony is illus-
trated in Section 3.1.2.

2.2.3 A rich tool-set for validation

The SIGNAL design environment, POLYCHRONY [14], offers a
compiler and a model-checker that support the trustworthy
and pragmatical design approaches for safety-critical systems.
Two kinds of functional properties are distinguished about
SIGNAL programs: invariant properties, e.g. consistency of clock
constraints, endochrony of a program, and dynamical proper-
ties, e.g., reachability, liveness (see Section 4.2). The compiler
itself statically addresses invariant properties. Dynamical prop-
erties are addressed by the SIGALI model checker [40], which
relies on the theory of polynomial dynamical systems. Roughly
speaking, a SIGNAL program is abstracted into a system of
polynomial equations representing a symbolic automaton over
the set Z/3Z = {−1, 0, 1}. This encodes all the possible status
of any Boolean signal: 1 for true, −1 for false, and 0 for
⊥. For a non-Boolean signal, only the fact that this signal
is present (whatever its value is) or absent is encoded. The
presence is denoted by 1, and the absence by 0. It must be
noted that this “translation” fully takes into account information
about Boolean variables (values and clocks), whereas for non-Boolean
signals, information on values are lost. Therefore, it is important
that a SIGNAL program that will be analyzed by SIGALI is
specified as much as possible using Boolean variables, since
reasoning capabilities capture only synchronization and logic
properties.
Finding a Boolean abstraction for a program is always pos-

sible. However, this abstraction may sometimes be not mean-
ingful enough to adequately capture the properties of interest.
Typically, some numerical properties require more powerful
abstraction domains such as intervals [22] or polyhedra (which
may lead to complex analyses). These possible extensions have
been studied previously in the SIGNAL compiler in order to
improve its analysis capability. Nevertheless, with SIGALI, the
Z/3Z ternary abstract encoding is necessary. In general, a good

way to obtain analyzable programs in this context consists in
defining Boolean signals, usable for characterizing the relevant
properties. In most cases, when such properties concern the
control of a program behavior, i.e. synchronization constraints,
one can easily find a direct Boolean encoding.

3 SPECIFICATION AND CORRECT DISTRIBUTION

3.1 Model of the FWS functionality

Given an application, its functionality is first described as a
hierarchical SIGNAL process p = p1 | ... | pn. Here, p1 and p2

denote the alarm notifier and manager processes (Section 3.1.1)
while p represents the FWS system (Section 3.1.2).

3.1.1 Alarm manager and notifier processes

FIG. 5 gives an excerpt of the models of the processes compos-
ing FWS. Both are defined in a very similar way. So, we only
present one of them: Alarm_Manager. The interface signals
alarm_in and alarm_out, at lines 3 and 4, are both declared
as arrays of alarms. In SIGNAL, the input and output signals
are introduced by the symbols “?” and “!” respectively. Here,
their dimension is some fixed integer constant n. The type of
an alarm, called alarm_type, is a structured type with two
fields: pres (resp. conf) of Boolean type that is true when an
alarm is "present" (resp. "confirmed") and false when an alarm
is "absent" (resp. "removed").
The body of the process is composed of five equations,
from line 5 to line 11. The local signals cnt, zcnt and
start_confirm are used to specify when the process con-
firms alarms in equations at lines 5 to 8. The signal cnt plays
the role of a counter of logical instants. It is set to k-1 whenever
its previous value zcnt becomes zero; otherwise its previous
value is decremented by one. The static parameter k at line
2 can be somehow seen as an initialization period value of
cnt. The signal start_confirm denotes the logical instants
at which a confirmation begins, described by equations at lines
8 and 9. It occurs when the counter value reaches some amount
of time denoted by delay within each cycle.
Note that the sub-process Alarm_Confirm, defined at line
15 and invoked at line 10, to produce the output alarm_out,
uses a derived construct of SIGNAL, referred to as array of
processes, that enables to describe instantaneous iterations [14].
From the above equations and according to TABLE. 1, we
can deduce the following system of clock constraints associated
with the process Alarm_Manager (for a signal s, we denote
by clk_s its associated clock):

clk_cnt = [zcnt = 0] ∪ clk_zcnt (lines 5 & 6)

clk_zcnt = clk_cnt (line 7)

clk_start_confirm = [zcnt = delay] (line 8)

clk_alarm_in = clk_start_confirm (line 9)

clk_alarm_out = clk_alarm_in (lines 10 & 19)

(1)

After reductions of the above system (1), we obtain the
following clock hierarchy:

clk_cnt ≡ clk_zcnt

[zcnt 6= delay] [zcnt = delay] ≡ clk_start_confirm ≡
clk_alarm_in ≡ clk_alarm_out

We can see that the master clock is the one of cnt, which
is the same for zcnt. The other clocks of the process are
defined following a partitioning of the values of zcnt w.r.t. the
value of delay. As a result, the process Alarm_Manager is

SUBMISSION FOR PUBLICATION TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

process Alarm_Manager =
{ integer k,delay }
(? [n] alarm_type alarm_in;

! [n] alarm_type alarm_out;)
(| cnt:= ((k-1) when (zcnt = 0))

default (zcnt - 1)
| zcnt:= cnt $ init 0
| start_confirm:= when(zcnt = delay)
| alarm_in ^= start_confirm
| alarm_out:= Alarm_Confirm(alarm_in)
|)

where
integer cnt, zcnt;
event start_confirm;
process Alarm_Confirm =
(? [n] alarm_type in;

! [n] alarm_type out;)
(| array i to n-1 of

out[i].conf := in[i].pres
end

|);
end;

process Alarm_Notifier =
{ integer k,delay }
(? [n] alarm_type alarm;
! event s_0,...,s_n-1;)

(| cnt:= ((k-1) when (zcnt = 0))
default (zcnt - 1)

| zcnt:= cnt $ init 0
| start_notif:= when (zcnt = delay)
| alarm ^= start_notif
| (s_0,...,s_n-1):= Alarm_Notif(alarm)
|)

where
integer cnt, zcnt;
event start_notif;
process Alarm_Notif =
(? [n] alarm_type alarm;

! event s_0,...,s_n-1;)
(| s0:= when alarm[0].conf
| ...
| s_n-1:= when alarm[n-1].conf
|);

end;

Fig. 5. Excerpt of the SIGNAL code of alarm manager (left) and notifier processes (right).

endochronous (hence deterministic). In a similar way, we prove
that the process Alarm_Notifier is also endochronous. More
generally, the SIGNAL compiler allows one to automatically
check the endochrony property of a process based on this
technique and to generate an associated simulation code.

3.1.2 Global model of the FWS system

1
2
3
4
5
6
7
8
9
10
11
12
13

process FW_System =
{ integer k1,k2,d1,d2 }
(? [n] alarm_type alarm;

! event s_0,...,s_n-1;)
(| tmp:= Alarm_Manager{k1,d1}(alarm)
| (s_0,...,s_n-1):=

Alarm_Notifier{k2,d2}(tmp)
|)

where
[n] alarm_type tmp;
process Alarm_Manager = ...;
process Alarm_Notifier = ...;

end;

Fig. 6. Excerpt of the SIGNAL code of FWS.

The process depicted by FIG.6 represents the FWS model.
It takes as input a collection of alarms represented by alarm
(line 3), and produces as outputs the signals denoted by s_0,
..., s_n-1. These outputs are generated by Alarm_Notifier.
The equations from lines 5 to 7 define the interaction be-

tween the concurrent processes in the FWS system: the in-
put of process Alarm_Notifier are the output of process
Alarm_Manager. This transfer of data is realized via the local
signal tmp. It means that the two processes must agree on the
set of specific instants at which this transfer is possible.
Let us analyze the clock properties induced by the definition

of process FW_System. We obtain the following two-rooted
clock hierarchy:

clk_cnt2 ≡ clk_zcnt2

[zcnt1 6= d1] [zcnt2 6= d2]

clk_cnt1 ≡ clk_zcnt1

...[zcnt1 = d2] [zcnt1 = d1]...

We clearly distinguish the clock trees associated with
Alarm_Manager and Alarm_Notifier. There is no master
clock because the clocks of the sub-processes (clk_cnt1 for
Alarm_Manager and clk_cnt2 for Alarm_Notifier) are
included in none of each other. However, they share com-
mon instants at which the alarm transfer is done between
the manager and the notifier processes. Such instants are
defined only when both zcnt in Alarm_Manager and zcnt in
Alarm_Notifier are respectively equal1 to d1 and d2. Such
a requirement appears under the form of a clock constraint
generated by the SIGNAL compiler. The corresponding code
which is automatically produced ("- force" option of the
compiler) from such a model contains exception messages that
are thrown whenever the clock constraints are not satisfied
during code execution.
In such a situation, it means that either the environment of
the two concurrent processes is able to guarantee that they
can synchronize at the required specific logical instants, and
the model will execute as expected; or it is not possible, and
the output of the whole system model is undefined whenever
the clocks of the two processes fail to agree. In SIGNAL,
the special construct called assert offers the way to define
assumptions in programs [14]. It could be used here to meet the
requirement on the concurrent execution of Alarm_Manager
and Alarm_Notifier processes.
On the other hand, one can think of another specification of
the FW_System model in which the confirmed alarm values
tmp are transferred via a "clock-less" memory, which is made
available whenever a process needs to make an access to this
memory. This is obtained very easily by introducing a new
equation in the body of FW_System, which defines a local
signal tmp_mem as follows: tmp_mem := (var tmp). Then,
instead of putting tmp as input for Alarm_Notifier at line 7
in FIG. 6, we consider tmp_mem. The var operator allows one
to memorize the value of tmp in tmp_mem [14]. The clock of
tmp_mem is the one of the context in which it is used, i.e., the
memorized value is available whenever required.
In this second version of the FW_System model, there is

1. Note that zcnt in Alarm_Manager and zcnt in
Alarm_Notifier are different instances; they have different
clocks and evolve according to two different logical time scales.

SUBMISSION FOR PUBLICATION TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

no longer clock constraints on the specific instants at which
the concurrent processes must exchange information. Their
associated master clocks are completely independent, with a
possible empty set of common instants. In this case, the com-
piler generates no clock constraints and automatically produces
a code without any exception message.
A very interesting feature of the FW_System model is that

it satisfies the endo-isochrony property: first, Alarm_Manager
and Alarm_Notifiermodels are both endochronous; second,
their communicating part which consists of the single signal
tmp (see FIG. 6) is trivially endochronous. Indeed, a single
signal yields a clock hierarchy with only one clock node, which
consequently forms a clock tree. The clock hierarchy associated
with FW_System typically illustrates the endo-isochrony of a
pair of processes. In particular, the synchronous communica-
tion between Alarm_Manager and Alarm_Notifier via tmp
can be equivalently replaced by an asynchronous communi-
cation while still preserving the semantics of the FW_System
model.
At this stage, some preliminary verification can be done on

the FW_System model in order to make sure that it conforms
to its expected specification requirements. Typically, one may
check the absence of null clocks in the defined model using
the compiler. The presence of such clocks denote a possible
absence of reactions during the execution of the program. This
is often undesirable for reactive systems.

3.2 Architecture model and manual distribution

The hardware architecture on which the previous application
functionality model will be mapped is now defined. For the
sake of simplicity, only processors are represented. Concretely,
each processor is graphically modeled as an empty box.
Afterwards, one can proceed to the mapping of the ap-

plication functionality on the hardware architecture in the
POLYCHRONY graphical user interface. A SIGNAL code can be
duplicated in different processor boxes; so, code replication is
allowed. From this mapping, a new description of the system
denoted by p′ = p′

1 | ... | p′
m is obtained, which reflects

the target hardware architecture (m denotes the number of
processors). FIG. 7 illustrates the distribution of the FWS model
on a two-processors architecture, i.e. m = 2.

Fig. 7. Graphical distributed model of the FWS system.

We can notice that the sub-processes p′
j may not ne necessar-

ily endochronous: after the mapping, p′
j can be obtained from

the composition of different sub-processes pi characterized by
different clock trees without a common root clock.

3.3 Automatic transformations

Let us consider the model p′ resulting from the mapping of the
application functionality on the processors. The main purpose

is to transform the process p′ so that: i) p′ fully preserves the
functional semantics of p and ii) the sub-processes p′

j become
endochronous and p′ itself becomes endo-isochronous.
So, each process p′

j is compiled modularly in the context of
p: from the clock hierarchy of p, the clock hierarchy of p′

j is
transformed in such a way that it becomes a clock tree, i.e.
p′

j becomes endochronous. For that, Boolean interface signals
are used (each root node in a clock hierarchy of a non en-
dochronous process is associated with a Boolean signal, and
all these signals are made synchronous). On the other hand,
some transformations are performed in order to render the
communication part endochronous between the endochronous
processes p′

j . For that, additional communicating signals are
inserted between processes, which enable each process p′

j to
receive all information it requires to execute. The result of these
transformations is carried out automatically on the graphical
representation of p′ within the POLYCHRONY editor. In the
obtained transformed process, denoted by p′′, the information
exchanges between processes are described by instantaneous
communications. Here again, possible verification techniques
can be applied to p′′ in order to ensure that it still preserves
the functional properties of p.
For our FWS system model, all the above transformations
are not necessarily required since FW_System is already endo-
isochronous as shown before. The only effect of these transfor-
mations is the automatic insertion of the communicating ports
on processor boxes and the connections between these ports.

4 DEPLOYMENT ON SPECIFIC PLATFORMS

In order to refine the descriptions obtained from the previous
steps of the methodology, a set of predefined components is
proposed, which is usable to instantiate various aspects of
the system: asynchronous communication mechanisms such
as the FIFO buffer modeled in this paper, execution supports
(e.g., tasks and processes), system-level primitives for task
management as well as for synchronization and inter-task
communication services (e.g. the APEX service models [23]).
These components have been modeled in SIGNAL and are
grouped in a library available in the POLYCHRONY platform.

4.1 Design of a library of components

We consider the FIFO queue presented in [21], to show
how asynchronous communication mechanisms can be defined
in SIGNAL, and proved to be correct. This queue is well
adapted as mechanism to model a message buffer on which
send/receive requests can be achieved by endo-isochronous
processes. In addition, in the architecture level, it will be easily
extended to model a bus. Compared to [21], here we give a
more complete presentation of the design and analysis. A first
model of FIFO queue is presented (basic_ FIFO); then, a
more constrained version (safe_ FIFO) is defined from the
first one and its key properties are checked.

4.1.1 A basic FIFO queue

We call basic FIFO, a message queue that works as follows.
On a write request, the incoming message is inserted in the
queue regardless of its size limit. When the queue was previ-
ously full, the oldest message is lost. The other messages are
shifted forward, and the incoming one is inserted in the queue.
On a read request, there is an outgoing message whatever the
queue status is. When it was previously empty, two situations
are distinguished: if there is not yet any written message,

SUBMISSION FOR PUBLICATION TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

process basic_FIFO =
{ type msg_type; integer size; msg_type def_msg; }
(? msg_type msg_in; event access_clock;

! msg_type msg_out; integer nbmsg; boolean OK_write, OK_read;)
(| nbmsg := ((prev_nbmsg + 1) when (^msg_in) when OK_write)

default ((prev_nbmsg-1) when (^msg_out) when OK_read) default prev_nbmsg
| prev_nbmsg := nbmsg$1 init 0
| OK_write := prev_nbmsg<size
| OK_read := prev_nbmsg>0
| queue := (msg_in window size) cell (^access_clock)
| msg_out := prev_msg_out when (not OK_read) when (^msg_out)

default queue[size - prev_nbmsg] when (^msg_out)
| prev_msg_out := msg_out $ 1 init def_msg
| nbmsg ^= access_clock
|)

where
integer prev_nbmsg; [size]msg_type queue; msg_type prev_msg_out;

end;

msg_in : ⊥ 4 6 ⊥ ⊥ ⊥ 5 7 8 ⊥ ⊥ ...
access_clock : t t t t t t t t t t t ...
msg_out : -1 ⊥ ⊥ 4 6 6 ⊥ ⊥ ⊥ 7 8 ...
nbmsg : 0 1 2 1 0 0 1 2 2 1 0 ...
OK_write : t t t f t t t t f f t ...
OK_read : f f t t t f f t t t t ...

Fig. 8. Model of the basic FIFO and an execution trace (msg_type, size and def_msg are respectively integer, 2 and −1).

an arbitrary message called default message is returned; else
the outgoing message is the message that has been read last.
Furthermore, for simplicity we suppose that simultaneous
write/read requests on the queue never occur.
The SIGNAL model corresponding to the basic FIFO is given

in FIG. 8. It is defined as a SIGNAL process, represented by the
keyword process (line 1). The static parameters msg_type,
size and def_msg, declared at line 2, respectively denote the
type of messages, the size limit of the queue, and the default
message value. The input signals msg_in and access_clock
(line 3), are respectively the incoming message (its presence
denotes a write request), and the queue access clock (i.e.
instants of read/write requests). The output signals (line 4),
are msg_out, nbmsg, OK_write and OK_read. They respec-
tively represent the outgoing message, the current number of
messages in the queue, and conditions for writing and reading.
Now, we can take a look at the meaning of the statements

in the process body. Let us begin with the equation at line
7; it defines the local signal prev_nbmsg, which denotes the
previous number of messages in the queue. This signal is used
in equations at lines 8 and 9 to define respectively when the
queue can be “safely” written (the size limit is not reached),
and read (there is at least one message received). This is the
meaning of the signals OK_write and OK_read.
The statement at lines 5 and 6 expresses how the current

number of messages is calculated. The previous value of this
number is incremented by one on a write request when the
queue was not full. It is decremented by one on a read
request when the queue was not empty. Otherwise, it remains
unchanged. The equation at line 14 states that the value of
nbmsg is defined whenever there is a request on the queue.
The equation at line 10 defines the message queue. The signal

queue is an array of dimension size that contains the size
latest values of msg_in (expressed by the window operator).
The cell operator makes the signal queue available when
access_clock is present. The semantics of these derived
constructs is as follows:

• Sliding windows. In y:= x window k init y_init, the
signal y is an array of size k ≥ 1 whose elements have the

same type as signal x; and y_init is an array of dimension
k′ ≥ k − 1, containing initialization values. This equation
defines a sliding windows on x, of constant size k such that:
(∀t ≥ 0)

`

(t + i ≥ k) ⇒ (yt[i] = xt−k+i+1) ∨
(1 ≤ t + i < k) ⇒ (yt[i] = y_init[t − k + i + 2])

´

• Memory. The expression y := x cell b init c enables to
memorize the values of the signal x. It is defined as:
(| y := x default (y $ 1 init c)
| y ^= x ^+ (when b) |)

The signal y takes the value of xwhen x is present. Otherwise,
when x is absent and the signal b is present and holds the
value true, y memorizes the latest value of x. When b is
present and true before the first occurrence of x, y is initialized
with the constant c. The clock of y is the union of x̂ and [b].

Finally, the statement at lines 11 and 12 means that on a read
request (i.e. at the clock ^msg_out), the outgoing message is
either the previous one if the FIFO is empty (defined at line
13), or the oldest message in the queue.

4.1.2 A safe FIFO queue

In the model depicted in FIG. 9, the interface is slightly different
from that of basic_FIFO. The new input signal get_mess
denotes a read request. The signal nbmsg is local.
The statement at line 9 defines the access clock as the
union of instants at which read/write requests occur. Equations
at lines 10 and 11 specify the safe access to the queue in
basic_FIFO. The process call at lines 12, 13 and 14 has the
local signal new_msg_in as input. This signal is defined only
when basic_FIFO was not full (line 10). The equation at line
11 expresses that on a read request, a message is enqueued
only when basic_FIFO was not empty. In the trace in FIG. 9,
the same parameters as for basic_FIFO are considered.
Through the above modeling approach, we observe that
modularity and reusability are key features of the SIGNAL pro-
gramming. They favor component-based design.
FIG. 10 shows the FWS model in which the communication

between Alarm_Manager and Alarm_Notifier is achieved
via the safe_FIFO model. Note the modification in the
Alarm_Notifier at line 27 where the new output signal
get_msg denotes read requests on safe_FIFO.

SUBMISSION FOR PUBLICATION TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

process safe_FIFO =
{ type msg_type;

integer size;
msg_type def_msg; }

(? msg_type msg_in;
event get_msg;

! msg_type msg_out;
boolean OK_write, OK_read;)

(| access_clock := msg_in ^+ get_msg
| new_msg_in := msg_in when OK_write
| msg_out ^= get_msg when OK_read
| (msg_out,nbmsg,OK_write,OK_read):=

basic_FIFO{msg_type,size,def_msg}
(new_msg_in,access_clock)

|)
where
use basic_FIFO; event access_clock;
integer nbmsg; msg_type new_msg_in;

end;

msg_in : ⊥ 4 6 ⊥ ⊥ ⊥ 5 7 ⊥ ...
get_msg : t ⊥ ⊥ t t t ⊥ ⊥ t ...
msg_out : ⊥ ⊥ ⊥ 4 6 ⊥ ⊥ ⊥ 5 ...
OK_write : t t t f t t t t f ...
OK_read : f f t t t f f t t ...

Fig. 9. Model of the safe FIFO with an execution trace.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

process FW_System =
{ integer k1,k2,d1,d2 }
(? [n] alarm_type alarm;

! event s_0,...,s_n-1;)
(| tmp:= Alarm_Manager{k1,d1}(alarm)
| (alarm_conf,OK_write,OK_read):=

safe_FIFO{[n] alarm_type,s,a_init}
(tmp, get_msg)

| (get_msg, s_0,...,s_n-1):=
Alarm_Notifier{k2,d2}(alarm_conf)

|)
where
use safe_FIFO; event get_msg;
[n] alarm_type tmp,alarm_conf;
boolean OK_write, OK_read;
constant integer s =...;
constant [n] alarm_type a_init =...;
process Alarm_Manager = ...;
process Alarm_Notifier =
{ integer k,delay }
(? [n] alarm_type alarm;

! event get_msg, s_0,...,s_n-1;)
(|cnt:= ((k-1) when (zcnt = 0))

default (zcnt - 1)
|zcnt:= cnt $ init 0
|start_notif:= when (zcnt = delay)
|get_msg := when start_notif
|(s_0,...,s_n-1):= Alarm_Notif(alarm)
|)

where
integer cnt, zcnt; event start_notif;
process Alarm_Notif =
(? [n] alarm_type alarm;

! event s_0,...,s_n-1;)
(| s0:= when alarm[0].conf
| ...
| s_n-1:= when alarm[n-1].conf
|);

end;
end;

Fig. 10. Excerpt of the FWS model including safe_FIFO.

4.2 Ensuring the reliability of components

4.2.1 Safety and fairness

To check the properties of the safe_FIFO process, we consider
an abstraction based on its state variables, i.e. signals defined by
delay or memory operators in the process. These signals feature
the dynamics of the system defined by the process. Here, the
state variables are nbmsg, queue and prev_msg_out (defined
in basic_FIFO). They entirely reflect the dynamics of the
equation system associated with safe_FIFO. Let us represent
the state of this system by σ. When the queue is full (resp.
empty), the value of σ is noted full (resp. empty); otherwise it
is equal to none. Let [[safe_FIFO]] denote the set of behaviors
associated with safe_FIFO and b a behavior that belongs to
this set, we address the following important properties of the
safe_FIFO in order to guarantee its robustness:

Property 1 (safe read requests): The safe_FIFO queue never
delivers an output message on a read request whenever it is
empty (and its state remains unchanged): ∀b ∈ [[safe_fifo]],
T = tags(b(get_msg)),

t ∈ T ∧ t 6= min(T) ∧ b(σ)(predT (t)) = empty
⇒ b(σ)(t) = b(σ)(predT (t)) = empty ∧

t /∈ tags(b(msg_out))
(2)

Property 2 (safe write requests): The safe_FIFO queue never
accepts an input message on a write request whenever it is full
(and its state remains unchanged): ∀b ∈ [[safe_fifo]], T =
tags(b(msg_in)),

t ∈ T ∧ t 6= min(T) ∧ b(σ)(predT (t)) = full
⇒ b(σ)(t) = b(σ)(predT (t)) = full ∧

t /∈ tags(b(new_msg_in))
(3)

We recall that the signal new_msg_in, which is defined in
the safe_FIFO process, at line 10, denotes incoming messages
that are effectively enqueued.
Property 3 (fair read requests): A message can always be read
from the safe_FIFO queue, whenever it is not empty: ∀b ∈
[[safe_fifo]], T = tags(b(get_msg)),

t ∈ T ∧ t 6= min(T) ∧ b(σ)(predT (t)) 6= empty
⇒ t ∈ tags(b(msg_out))

(4)

Property 4 (fair write requests): A message can always be
written in the safe_FIFO queue, whenever it is not full:
∀b ∈ [[safe_fifo]], T = tags(b(msg_in)),

t ∈ T ∧ t 6= min(T) ∧ b(σ)(predT (t)) 6= full
⇒ t ∈ tags(b(new_msg_in))

(5)

The values of σ, the state of the system corresponding
to safe_FIFO, can be defined by considering the signals
OK_write and OK_read. The definition of these signals is
itself based on the current number of enqueued messages,
represented by nbmsg. Thus, σ can be characterized, using
nbmsg, as follows: ∀b ∈ [[safe_FIFO]] ∀t ∈ tags(b),

b(σ)(t) = full ⇔ b(nb_msg)(t) = size
b(σ)(t) = empty ⇔ b(nb_msg)(t) = 0
b(σ)(t) = none ⇔ 0 < b(nb_msg)(t) < size

(6)

Since SIGALI does not address numerical properties, we must
also find a Boolean encoding (or abstraction) for nbmsg.

SUBMISSION FOR PUBLICATION TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

4.2.2 Abstraction and verification by model-checking

As shown in FIG. 11, a n-FIFO queue can be represented
by an automaton with (n + 1) states, where a state denotes
the current number of messages in the queue. For the sake
of simplicity, we consider a 2-FIFO queue since all possible
relevant configurations can be addressed. So, the result remains
valid for any bounded n-FIFO queue where n > 2.

ERR_empty ERR_full

...s0 s1 sn−1 sn

msg_out

msg_in

msg_out

msg_in

msg_out

msg_in

msg_out

msg_in

abstraction

s1 s2s0

msg_in msg_in

msg_outmsg_out

msg_inmsg_out

Fig. 11. Abstraction of a n-FIFO by a 2-FIFO with error states.

The automaton illustrated in FIG. 11 represents a behavior
abstraction of a n-FIFO queue by a 2-FIFO queue. It relies on
the behavioral isomorphism between both FIFO queues, which
can be trivially observed. A state sk (represented by a circle)
denotes that the queue contains k messages, i.e. ∀k ∈ {0, 1, 2}:

(nbmsg = k ⇒ sk = true) ∧ (nbmsg 6= k ⇒ sk = false)

The state s0 represents the initial state. Labels msg_in and
msg_out are respectively write and read requests. Two special
states (represented by rectangles) have also been added. They
characterize “illegal” accesses to the queue: ERR_empty is
reached on an attempt to read an empty queue, and ERR_full is
reached when overwriting a full queue. They are also encoded
by Boolean variables. Automata are very easy to specify in
SIGNAL. For instance the state s0 and its associated transitions
are defined as follows:

1
2
3
4

(|s0:= (true when prev_s1 when (^msg_out))
default (false when prev_s0 when
(msg_in ^+ msg_out)) default prev_s0

|prev_s0 := s0$1 init true |)

All the other states are specified in a similar way. It follows
the definitions of signals OK_write and OK_read below:

1
2
3
4

(|OK_write:= false when (prev_err_full or
prev_s2) default true

|OK_read:= false when (prev_err_empty or
prev_s0) default true |)

The first equation means that a write request is not autho-
rized when there are already two messages in the 2-FIFO queue
(prev_s2 is true), or when the queue has been overloaded
previously (prev_err_full is true); otherwise it can be ac-
cepted. In a same way, the other statement specifies when a
read request is legal.
The signals s0, s1, s2, ERR_empty, ERR_full, OK_write

and OK_read are synchronized with access_clock.
The reachability of "error" states (i.e. safety properties) is

concretely checked with SIGALI by considering the script given
in [21].
To verify properties 3 and 4, we consider observers, rep-

resented by Boolean state variables. We have to show that

these variables are always true. Let obs4 and obs3 denote
respectively the observers for Properties 4 and 3.

• Property 4 is described as follows:
– On a write request (denoted by the presence of
msg_in), when the queue is either in s0 or s1; the
signal obs4 carries the value true if the message is
actually written into the queue (i.e. new_msg_in is
present), else obs4 is false.

– Otherwise, obs4 keeps its previous value.
The corresponding SIGNAL code is:

1
2
3
4
5

(|actual_w:= true
when(^new_msg_in) default false

|obs4:= actual_w when(z_s0 or z_s1)
when(^msg_in) default z_obs4

|z_obs4 := obs4 $ 1 init true |)

The Boolean actual_w denotes the fact that a message is
actually inserted in the queue.

• In a similar way, Property 3 is encoded by the following
SIGNAL code:
1
2
3
4
5

(|actual_r := true
when(^msg_out) default false

|obs3 := actual_r when(z_s1 or z_s2)
when get_msg default z_obs3

|z_obs3 := obs3 $ 1 init true |)

Here also, all the new variables have the same clock as the
signal access_clock. Then, the fairness properties can be
checked as shown in [21].

4.2.3 Queueing order preservation

We have to prove that the safe_FIFO queue actually pre-
serves the arrival order of enqueued messages. The idea con-
sists in considering the flow of input messages in the call to
basic_FIFO at line 13 in FIG. 9. Such a flow corresponds to
that of signal new_msg_in. Indeed, only the values of this
signal are taken into account and read afterwards. We therefore
need to verify the following property:
Property 5 (order preservation):

• (E1): the order of values present in the input flow is preserved
by the definition of the message queue: ∀b ∈ [[safe_FIFO]]
∀v, v′ ∈ V s.t. ∃t, t′ with v = b(new_msg_in)(t), v′ =
b(new_msg_in)(t′) and for i, i′ the respective indices of
v and v′ in queue2, the following holds: t ≤ t′ ⇒ i ≤ i′.

• (E2): the order of values in the output flow is the same in the
message queue: ∀b ∈ [[safe_FIFO]] ∀v, v′ ∈ V t.q. ∃t, t′ with
v = b(msg_out)(t), v′ = b(msg_out)(t′) and i, i′ as above,
the following holds: i ≤ i′ ⇒ t ≤ t′. �

The order preservation property is specifically related to
the properties of specific SIGNAL constructs used in the FIFO
queue model. A proof of this property is in Appendix Section.

4.3 Use of safe_FIFO in architecture model

We have shown that the above FW_System model can be
safely described with asynchronous communication mecha-
nisms between its concurrent processes Alarm_Manager and
Alarm_Notifier. Now, let us imagine a deployment of this
system on a given architecture as illustrated in FIG. 3.
In this architecture, there are two processors Processor 1 and
Processor 2 that communicate via a bus called Bus. The main
feature of such an architecture that is taken into account in our

2. Here, the enqueued values are assumed to be inserted from right
to left in the array defined with the window operator.

SUBMISSION FOR PUBLICATION TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

models is clock constraint. Each of the three components holds
its own activation clock, which is different from those of others.
Let us denote by κp1, κb and κp2 the clocks corresponding
respectively to Processor 1, Bus and Processor 2.
The bus model considered here is obtained from the previous

safe_FIFO model on top of which a master clock is defined
(see FIG. 12). This clock κb is represented by ^cnt in the Bus
process. It enables to define the instants at which incoming
and outgoing transferred data are respectively accepted and
delivered by the bus. This is specified through the signal
enable_in_out at line 11. The static parameter rw_per
denotes the period at which a read/write request is accepted
by the bus. Its value belongs to the interval 0..k−1 (note that
k is also a static parameter in Bus).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

process Bus =
{ type msg_type; integer size;

msg_type def_msg; integer k, rw_per;}
(? integer msg_in;

event get_msg;
! integer msg_out;
boolean OK_write, OK_read;

(| cnt:= ((k-1) when (zcnt = 0))
default (zcnt - 1)

| zcnt:= cnt $ init 0
| enable_in_out:= when(zcnt = rw_per)
| msg_in ^+ get_msg ^=

when enable_in_out
| (msg_out, OK_write, OK_read):=

safe_FIFO{msg_type,size,def_msg}
(msg_in, get_msg)

|)
where

use safe_FIFO; integer cnt, zcnt;
event enable_in_out;

end;

Fig. 12. A bus model in SIGNAL.

On the other hand, we assume that the Alarm_Manager
and Alarm_Notifier processes run at the frequency of their
allocated processors: the master clock of Alarm_Manager is
the same as κp1 while the master clock of Alarm_Notifier
is the same as κp2. So, processor constraints are implicitly taken
into account by the Alarm_Manager and Alarm_Notifier
models, which consequently remain unchanged.
Finally, the overall model of the deployed system is close

to the one shown in FIG. 10, where safe_FIFO is replaced
by Bus. Its clock analysis by the compiler exhibits the clock
constraints that should be guaranteed by the program envi-
ronment in order to perform functional simulation.

5 ANALYSIS AND AUTOMATIC CODE GENERATION

5.1 Analysis of non functional properties

There are various ways to analyze non functional properties
of SIGNAL models after their deployment on a given platform.
For instance, performance evaluation is possible by using a
quantitative temporal interpretation of SIGNAL programs [36],
[23]. On the other hand, beyond the strict clock synchronization
problems that are usually solved by almost all compilers of
synchronous languages, more intricate synchronization issues
can arise in the design of distributed systems if one would like
to be able to widely explore architecture allocation possibilities.
This requires sophisticated tools to address such issues.

5.1.1 Clock synchronizability issues

Affine clocks have been introduced in the SIGNAL clock calculus
for this purpose [43], and more precisely in order to deal with
synchronizability issues in a more "relaxed" way than usually
in synchronous languages. Formally, an affine transformation of
parameters (n, φ, d) applied to a clock κ1 produces a clock
κ2 by inserting (n − 1) instants between any two successive
instants of κ1, and then counting on this fictional set of instants
each dth instant, starting with the φth. Clocks κ1 and κ2 are

said to be in (n, φ, d)-affine relation, noted as κ1
(n,φ,d)
→ κ2.

The following trace depicts κ1
(3,1,4)
→ κ2, where "t" denotes the

presence of a clock κi:

instants 0 1 2 3 4 5 6 7 8 9 ...
κ1: t ⊥ ⊥ t ⊥ ⊥ t ⊥ ⊥ t ...
κ2: ⊥ t ⊥ ⊥ ⊥ t ⊥ ⊥ ⊥ t ...

In affine clock systems, two different clocks are said to be
synchronizable if there is a dataflow preserving way to make
them actually synchronous.
To show how such a notion can help to address non-
trivial design decisions, let us consider the following allocation
choices needed by a designer:

• to allow for a coherent communication protocol in this
architecture, the following affine relations are assumed:

κp1
(1,φ1,d1)

→ κb and κb
(1,φ2,d2)

→ κp2;
• to satisfy some production-consumption rate which en-
ables the Alarm_Manager process to confirm a cer-
tain number of alarms before their notification by the
Alarm_Notifier process, an affine relation is assumed
between their respective clocks clk_cnt1 and clk_cnt2:

clk_cnt1
(1,φ3,d3)

→ clk_cnt2.

While the first constraint is related to the architecture, the
second one is purely functional.
Now, let us assume that only the clock clk_cnt1 of the

Alarm_Manager process is identical to the clock of its associ-
ated processor, i.e. κp1. So, the main question is which parameter
values in the affine relations allow the designer to guarantee the
synchronizability of the clocks clk_cnt2 and κp2 with respect to the
above architectural and functional constraints.
The answer is given by solving the following system:

(

φ1 + d1φ2 = φ3

d1d2 = d3
(7)

The above simple example shows how to practically solve a
typical synchronization problem in a polychronous design by
using the SIGNAL compiler. We believe that a great advantage
of this technique is that it enables to deal with large designs
via adequate clock abstractions: one only needs to capture the
relevant clock variables associated with system components
and the synchronization relations between these clocks (from
the full system specification). This will significantly reduce
the size of the system model to be analyzed. Of course, the
scalability limitation is that of our compiler [5].
More generally, formal verification tools, offering a support
to the analysis of multi-clock systems, significantly help design-
ers to adequately address several issues on the development
of distributed embedded systems. An example is the bounded
model-checking (BMC) technique, which has been applied to
multi-clock systems in [24]. This method is scalable and allows
one to check designs very fast thanks to SAT tools. It becomes
worthy when, e.g., the compiler does not scale. However, its
main inconvenient is that it only gives a partial guarantee

SUBMISSION FOR PUBLICATION TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

about proofs. So, BMC is clearly not sufficient alone but is a
good complement to the other verification tools.

5.1.2 Applicability to the design of specific systems

Integrated Modular Avionics. Integrated Modular Avionics
(IMA) [3] are typical distributed systems that can greatly ben-
efit from the synchronous multi-clock modeling. In particular,
the SIGNAL clock synchronizability analysis offers an interest-
ing basis to deal with the very challenging issue of finding
suitable resource allocation strategies in IMA architectures [7].
In such architectures [3]: i) time and memory resources are
divided into partitions, which are associated with different
functions at run-time; ii) partitions are composed of processes,
representing the execution units that communicate within the
same partition or with processes from other partitions. Parti-
tions are scheduled according to a static cyclic policy while
process scheduling is priority preemptive.
IMA-based implementation platforms assume the specific

ARINC 629 Data Bus [1] and the 659 Backplane Data Bus [2].
Both buses adopt cyclic time-triggered message scheduling. In
such a context, considering affine clocks can be significantly
worth to designers to address the consistency of, on the one
hand partition allocation to cyclic processors, and on the other
hand cyclic processor schedules with ARINC 629 and 659
buses. This can be carried out on an IMA-based design of the
FWS system, where processes are associated with partitions
[23] that execute on different processors communicating via
ARINC 629 and 659 buses. The system (7) enables to address
partition allocation and communication constraints.
Further important implementation platforms for which the

previous synchronizability analysis is very useful are those
achieving communications with the Avionics Full DupleX
Switched Ethernet (AFDX) technology [4] as in the Airbus
A380. AFDX is very interesting because it is faster than its
predecessors such as ARINC 629. It is based upon Ethernet and
TCP/IP general principles. It is not time-triggered unlike the
above two buses. Accordingly, with such a technology, dealing
with the correct synchronization for the safe communication is
more difficult. We believe that the polychronous model could
be used to describe partial clock relations that capture the main
synchronization points in an AFDX-based system. Then, the
available analysis tools and techniques can be again applied to
reason about the system behavior.
Large scale system-on-chip. The polychronous model is a

good solution to deal with the shortcomings of GALS design
frameworks in general, which adopt ad hoc methods where
synchronous components are encapsulated with wrappers and
communications are achieved by handshake. As illustrated in
this paper, it allows one to uniformly model both aspects and
formally validate the global system w.r.t. its correctness re-
quirements. In addition, its vision of the synchrony-asynchrony
link is suitable for large scale system-on-chip design [42].

5.2 Automatic code generation

After the non functional analysis of the deployed model of
the FWS system, we can now consider an automatic modular
code generation. Since, each “processor” is endochronous,
the associated code can be generated independently from the
other processors. The same holds for communications. This
generation is necessarily achieved in the form of clusters [15]. In
SIGNAL, a cluster denotes a group of statements that depend
on the same sub-set of input data. This type of code gener-
ation is particularly interesting in that it enables an efficient

execution for each processor. Indeed, the operating system
supported by a processor is solicited less often because of the
reduced number of commutations. The code corresponding to
clusters is generated in various C, C++ or Java. In the current
experimental implementation of the code generation process
in POLYCHRONY, the obtained code is mainly intended for
functional simulation of distributed applications.

6 DISCUSSIONS

All the design steps and analyses presented in our methodol-
ogy are achieved within the POLYCHRONY environment [14],
which provides the required tools, e.g. the SIGNAL compiler
and the SIGALI model-checker. Along this presentation, we
have stressed the advantages of our proposition for the reliable
design of distributed embedded systems.
First, compared to mainstream implementation approaches
that may rely for instance on C or Java programming, the
synchronous programming offers well adapted specification
concepts enabling a designer to safely describe systems. As
an example, let us consider the endochrony property. Given a
program p that satisfies such a property, p is able to read its
required input data at the appropriate instants, based on its
current state, from any asynchronous streams of input data.
There are straightforward conditions in the compilation of
SIGNAL programs, enabling to characterize this property of p:
when the resulting overall clock hierarchy of p yields a tree
of clocks. This property is not necessarily easy to achieve in
mainstream approaches. In such approaches, test mechanisms
for checking the availability of the input data required by a pro-
gram must be defined. Endochrony will be therefore obtained
by associating a given function in C or Java with an additional
piece of code conferring this function the ability to decide
alone which input data must be read during its execution.
There are further benefits of synchronous programming over
the use of synchronization mechanisms such as monitors in
a language like Java. In synchronous programs, the fact that
at any instant, an object, i.e. a signal, is written only once is
guaranteed by construction. So, one does not need to consider
some additional protection mechanism to enforce safe writes.
As a result, the risk to get errors related to the usage of
such delicate mechanisms is avoided. We can also mention
the important role that play the formal tools and techniques
provided by the synchronous technology for a trustworthy
validation of designs.
From a methodological point of view, an interesting feature
of our proposition is that it promotes correct-by-construction
design: there is no need to (thoroughly) check the correctness of
a system after design. This significantly reduces the validation
efforts, which can take about 70% of the overall design cost.
The abstract level at which the design is addressed (in the
synchronous approach) enables to deal with the inherent com-
plexity of distributed systems by leaving away the unnecessary
details. It therefore favors a rapid exploration of different
alternatives about system distribution so as to get relevant
feedback for an adequate design choice.
However, in order to take advantage of all the above features
of our approach in the design of real-life systems, the designer
must have some knowledge of synchronous programming. In
order to overcome this obstacle, there are currently significant
efforts to provide a very advanced user-friendly interface for
POLYCHRONY. The resulting new environment, referred to as
SME, is an Eclipse plugin. It aims to be accessible to a wide

SUBMISSION FOR PUBLICATION TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

audience and is available online for free at the same address
as POLYCHRONY. On the other hand, in the current status of
our approach, some expertise in the SIGNAL clock calculus
may be required to check the clock hierarchies, which serve
to characterize the correctness of a system distribution. An
important future improvement of our work is the automatic
application of the distribution criteria (endo-isochrony) on any
Signal model of a system so as to decide about its partitioning.
Finding a solution to this issue will save the designer from
analyzing possible complex clock hierarchies generated by the
compiler for the distribution. Finally, for real systems, we can
also mention another limitation of our approach, resulting
from the simplifications considered in the architecture model.
All physical components such as memory caches or hardware
accelerators and their specific characteristics are not taken
into account. Some abstractions of these components could be
studied, and taken into account to ameliorate the distribution
criteria.

7 CONCLUSIONS

In this paper, we presented how safety-critical distributed
embedded systems are practically designed using the poly-
chronous model, associated with the synchronous language
SIGNAL. This model enables to describe systems with com-
ponents that hold different activation clocks. We proposed
a methodology that ensures a correct-by-construction imple-
mentation of these systems from high-level models in POLY-
CHRONY, the development framework of SIGNAL. This has
been demonstrated on a case study from the avionic domain.
The endochrony and endo-isochrony properties of SIGNAL
specifications have been used as key notions to design the
distribution of applications on execution platforms. These
platforms contain asynchronous communication mechanisms,
which have been also modeled in SIGNAL and proved to
achieve message exchanges correctly. An important remark is
that the formal verification techniques and tools available in
POLYCHRONY are applicable at almost all design steps of our
methodology in order to check the correctness of intermediate
results. In particular, the analysis of non functional properties
of the deployed system model has been addressed by dealing
with clock synchronizability issues between the different multi-
rate parts of the system. Finally, a distributed code can be
automatically generated from this model.
A very interesting perspective to the presented work con-

cerns the automatic application of the identified design criteria
in SIGNAL to distribute a system. That is, given a system S,
how could the compiler automatically use the endo-isochrony
property to distinguish the different sub-parts S1, ..., Sn to be
mapped on different processors such that S = S1 | ... | Sn, and
how could it select the suitable communication mechanisms
from an existing library? It seems that the answer to these
questions, in particular to the former, requires to analyze the
combinatorics of the solution space of a system decomposition,
which can be a priori large.

REFERENCES

[1] Airlines Electronic Engineering Committee (AEEC). ARINC 629:
IMA Multi-transmitter Databus Parts 1-4, 1990.

[2] Airlines Electronic Engineering Committee (AEEC). ARINC 659:
Backplane Data Bus, December 1993.

[3] Airlines Electronic Engineering Committee (AEEC). ARINC Spec-
ification 653: Avionics Application Software Standard Interface,
Jan. 1997.

[4] Airlines Electronics Engineering Committee (AEEC). ARINC 664:
Aircraft Data Network, Part 7: Avionics Full-Duplex Switched
Ethernet (AFDX) Network, 2005.

[5] P. Amagbegnon, L. Besnard, and P. Le Guernic. Implementation of
the data-flow synchronous language SIGNAL. In In Conference on
Programming Language Design and Implementation (PLDI’95), pages
163–173. ACM Press, 1995.

[6] P. Aubry. Mises en œuvre distribuées de programmes synchrones. PhD
thesis, Université de Rennes I, IFSIC, France, 1997. (In french).

[7] N.C. Audsley and A.J. Wellings. Analysing APEX Applications.
In Real Time Systems Symp.(RTSS’96), Washington DC, USA, 1996.

[8] A. Benveniste. Safety critical embedded systems: the SACRES ap-
proach. In proceedings of Formal techniques in Real-Time and Fault
Tolerant Systems, FTRTFT’98 school, Lyngby, Denmark, Sep. 1998.

[9] A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony
to asynchrony. In International Conference on Concurrency Theory
(CONCUR’99), pages 162–177, London, UK, 1999. Springer-Verlag.

[10] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone. The synchronous languages twelve years later.
Proceedings of the IEEE, 91(1):64–83, January 2003.

[11] A. Benveniste, P. Caspi, P. Le Guernic, H. Marchand, J-P. Talpin,
and S. Tripakis. A protocol for loosely time-triggered architec-
tures. In Conf. on Embedded Software, EMSOFT’02, J. Sifakis and A.
Sangiovanni-Vincentelli, Eds, LNCS vol 2491, Springer Verlag, 2002.

[12] G. Berry and E. Sentovich. An implementation of constructive
synchronous programs in POLIS. Formal Methods in System Design,
17(2):135–161, 2000.

[13] G. Berry and E. Sentovich. Multiclock esterel. In 11th Conference
on Correct Hardware Design and Verification Methods (CHARME’01),
pages 110–125, 2001.

[14] L. Besnard, T. Gautier, and P. Le Guernic. SIGNAL reference
manual, 2007. www.irisa.fr/espresso/Polychrony.

[15] L. Besnard, T. Gautier, and J.-P. Talpin. Code generation strategies
in the POLYCHRONY environment. Research Report RR-6894,
INRIA, 2009.

[16] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and
P. Niebert. From simulink to SCADE/LUSTRE to TTA: a layered
approach for distributed embedded applications. In Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES’03).
San Diego, California, USA, pages 153–162, 2003.

[17] D. Chapiro. Globally Asynchronous Locally Synchronous Systems.
PhD thesis, Stanford University, 1984.

[18] B. Chéron. Transformations syntaxiques de Programmes SIGNAL. PhD
thesis, Université de Rennes I, France, September 1991. (In french).

[19] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems
(4th ed.): concepts and design. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2005.

[20] M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–
382, 1985.

[21] A. Gamatié and T. Gautier. The SIGNAL approach to the design
of system architectures. In IEEE Conference on Engineering of
Computer-Based Systems (ECBS’03), Huntsville USA, April 2003.

[22] A. Gamatié, T. Gautier, and P. Le Guernic. Towards static ananlysis
of SIGNAL programs using interval techniques. In Synchronous
Languages, Applications, and Programming (SLAP’06), March 2006.

[23] A. Gamatié, T. Gautier, P. Le Guernic, and J.-P. Talpin. Poly-
chronous design of embedded real-time applications. ACM Trans-
action on Software Engineering Methodology, 16(2):9, 2007.

[24] M. K. Ganai and A. Gupta. Efficient BMC for Multi-Clock Systems
with Clocked Specifications. In Conference on Asia South Pacific
design automation, pages 310–315, 2007.

[25] T. Gautier and P. Le Guernic. Code generation in the
SACRES project. In Safety-critical Systems Symp. (SSS’99). Hunt-
ingdon, UK, Feb. 1999.

[26] A. Girault. Sur la répartition de programmes synchrones. PhD thesis,
Institut National Polytech. de Grenoble, France, 1994. (In french).

[27] A. Girault. A survey of automatic distribution method for syn-
chronous programs. In F. Maraninchi, M. Pouzet, and V. Roy, ed-
itors, Synchronous Languages, Applications and Programs (SLAP’05),
ENTCS, Edinburgh, UK, April 2005. Elsevier Science.

[28] A. Girault and C. Ménier. Automatic production of globally
asynchronous locally synchronous systems. In A. Sangiovanni-
Vincentelli and J. Sifakis, editors, Workshop on Embedded Software
(EMSOFT’02), volume 2491 of LNCS, pages 266–281. Springer-
Verlag, 2002.

www.irisa.fr/espresso/Polychrony

SUBMISSION FOR PUBLICATION TO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 15

[29] A. Girault, X. Nicollin, and M. Pouzet. Automatic rate desyn-
chronization of embedded reactive programs. ACM Transaction
on Embedded Computing Systems, 5(3):687–717, August 2006.

[30] T. Grandpierre. Modélisation d’architectures parallèles hétérogènes
pour la génération automatique d’exécutifs distribués temps réel opti-
misés. PhD thesis, Université de Paris-Sud, Nov. 2000. (In french).

[31] T. Grandpierre and Y. Sorel. From algorithm and architecture
specifications to automatic generation of distributed real-time
executives: a seamless flow of graphs transformations. In MEM-
OCODE2003, Formal Methods and Models for Codesign Conference,
Mont Saint-Michel, France, June 2003.

[32] R. Gupta, S. Pande, K. Psarris, and V. Sarkar. Compilation tech-
niques for parallel systems. Parallel Computing, 25(13–14):1741–
1783, 1999.

[33] O. Hainque. Etude d’un environnement d’exécution temps-réel, dis-
tribué et tolérant aux pannes pour le modèle synchrone. PhD thesis,
École Nationale Supérieure des Télécom. - Paris, 2000. (In french).

[34] N. Halbwachs and S. Baghdadi. Synchronous modeling of asyn-
chronous systems. In EMSOFT’02, Grenoble, October 2002. LNCS
2491, Springer Verlag.

[35] N. Halbwachs and L. Mandel. Simulation and verification of
asynchronous systems by means of a synchronous model. In
Sixth International Conference on Application of Concurrency to System
Design, ACSD 2006, Turku, Finland, June 2006.

[36] A. Kountouris and P. Le Guernic. Profiling of SIGNAL programs
and its application in the timing evaluation of design implemen-
tations. In Proceedings of the IEE Colloq. on HW-SW Cosynthesis for
Reconfigurable Systems, pages 6/1–6/9, Bristol, UK, February 1996.

[37] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for Sys-
tem Design. Journal for Circuits, Systems and Computers, 12(3):261–
304, April 2003.

[38] N. Lopez, M. Simonot, and V. Donzeau-Gouge. A methodological
process for the design of a large system: two industrial case-
studies. Electronic Notes in Theoretical Computer Science, 66(2), 2002.

[39] O. Maffeïs. Ordonnancements de graphes de flots synchrones : appli-
cation à la mise en œuvre de SIGNAL. PhD thesis, Université de
Rennes I, IFSIC, France, January 1993. (In french).

[40] H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic.
Synthesis of discrete-event controllers based on the SIGNAL envi-
ronment. In Discrete Event Dynamic System: Theory and Applications,
10(4), pages 325–346, October 2000.

[41] M.R. Mousavi, P. Le Guernic, J.-P. Talpin, S.K. Shukla, and T. Bas-
ten. Modeling and validating globally asynchronous design in
synchronous frameworks. In DATE, pages 384–389, 2004.

[42] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, and W. Ficht-
ner. Globally-Asynchronous Locally-Synchronous Architectures
to Simplify the Design of On-chip Systems. In 12th IEEE Interna-
tional ASIC/SOC Conference, Washington DC, USA, 1999.

[43] I.M. Smarandache, T. Gautier, and P. Le Guernic. Validation of
mixed SIGNAL-ALPHA real-time systems through affine calculus
on clock synchronisation constraints. In World Congress on Formal
Methods (2), pages 1364–1383, 1999.

[44] A. Tanenbaum and M. van Steen. Distributed Systems: Principles
and Paradigms (2nd ed.). Prentice Hall, 2007.

[45] P. Veríssimo. On the role of time in distributed systems. In 6th
IEEE Workshop on Future Trends of Distributed Computer Systems
(FTDCS’97), 29-31 October 1997, Tunis, Tunisia, pages 316–323. IEEE
Computer Society, 1997.

APPENDIX

PROOF OF PROPERTY 5 (ORDER PRESERVATION)
Proof of (E1). The proof of this property mainly relies on the
semantics of the window operator (see Section 4.1.1). As a matter of
fact, the message queue represented by the signal queue is defined
by applying this operator to the signal msg_in (see equation 10
in FIG. 8). The flow associated with this signal contains the input

messages of the queue. The semantics of this operator is such that
every reading of value on the input flow leads to a sliding on
the left of the values already present in the defined array. The
new value is therefore inserted on the right. The following trace
illustrates such a scenario on a 2-sized queue. The symbol "⋆"
designates a given initialization value.

msg_in : ⊥ 1 2 ⊥ 3 4 ...
queue : [⋆, ⋆] [⋆, 1] [1, 2] [1, 2] [2, 3] [3, 4] ...

For the equation: queue := new_msg_in window size, the
semantics of the sliding window yields (for the sake of simplicity,
initial values are omitted): ∀t ≥ 0,

(t + i ≥ size) ⇒ (queuet[i] = new_msg_int−size+i+1).

Thanks to this semantics of the window operator, the values that
are taken into account in the flow associated with the input signal
msg_in are put in queue according to their occurrence order.
Thus, the property (E1) holds by definition.

Proof of (E2). The output flow is determined by the equation
defined at lines 11 and 12 in FIG. 8. In safe_FIFO, only the second
argument of the default operator has to be considered since the
first one is forbidden by Property 2. On a read request, we denote
by i the index of the message retrieved from the array queue. The
value of i is given by the difference between the maximal size (i.e.
size) of the message queue and the previous number of messages,
prev_nbmsg of the queue: ∀t ≥ 0 it = fifo_size− prev_nbmsgt.
Let us consider the following invariant: at any logical instant t,

the index it indicates the oldest message enqueued when the message
queue is not empty. We need to check that this invariant is always
preserved after any access to the queue.

1) Case 1: read at an instant k. When a message is read at an
instant k, the signal nbmsg is decremented by one (equation
at lines 5 and 6 in FIG. 8), i.e.: nbmsgk = prev_nbmsgk − 1.
At instant k + 1, we have: prev_nbmsgk+1 = nbmsgk. Thus,

ik+1 = fifo_size − prev_nbmsgk+1

= fifo_size − nbmsgk

= fifo_size − (prev_nbmsgk − 1)
= (fifo_size − prev_nbmsgk) + 1
= ik + 1

On the other hand, on each read request, the array repre-
sented by the signal queue remains unmodified. As a result,
the invariant is preserved since the oldest element in the
message queue becomes the one with index ik+1 in the array.

2) Case 2: write at an instant k. When a message is effectively
written in the message queue at an instant k, the signal
nbmsg is incremented by one (equation at lines 5 and 6 in
FIG. 8), i.e.: nbmsgk = prev_nbmsgk + 1. At instant k + 1,
we have: prev_nbmsgk+1 = nbmsgk. Thus, similarly to the
previous case, we obtain that: ik+1 = ik − 1.

Contrarily to Case 1, here the signal queue is modified. As a
matter of fact, the sliding window on the signal new_msg_in
will take into account the occurrence of this signal at instant
k. The elements that are already present in queue are shifted
according to the semantics of the window operator (i.e. a
shift of one cell towards lower indices of the array and
insertion of the new message in the cell with the highest
index value). Hence, the index ik+1 always corresponds to
the same message as the previous instant. So, the invariant
is preserved.

