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Abstract

Previous research has emphasized the portfolio balance effects of Federal Reserve bond

purchases, in which a reduced bond supply lowers term premia. In contrast, we find

that such purchases have important signaling effects that lower expected future short-

term interest rates. Our evidence comes from dynamic term structure models that

decompose declines in yields following Fed announcements into changes in risk premia

and expected short rates. To overcome problems in measuring term premia, we consider

unbiased model estimation and restricted risk price estimation. We also characterize the

estimation uncertainty regarding the relative importance of the signaling and portfolio

balance channels.
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1 Introduction

During the recent financial crisis and ensuing deep recession, the Federal Reserve reduced its

target for the federal funds rate—the traditional tool of U.S. monetary policy—essentially to

the lower bound of zero. In the face of deteriorating economic conditions and with no scope

for further cuts in short-term interest rates, the Fed initiated an unprecedented expansion of

its balance sheet by purchasing large amounts of Treasury debt and federal agency securities

of medium and long maturity.1 Other central banks in comparable circumstances have taken

broadly similar actions. Notably, the Bank of England also purchased longer-term debt during

the financial crisis, and the Bank of Japan, when confronted over a decade ago with stagnation

and near-zero short-term rates, purchased debt securities in its program of Quantitative Easing

(QE).2

The goal of the Fed’s large-scale asset purchases (LSAPs) of bonds was to put downward

pressure on longer-term yields in order to ease financial conditions and support economic

growth. Using a variety of approaches, several studies have concluded that the Fed’s LSAP

program was effective in lowering yields below levels that otherwise would have prevailed

(D’Amico and King, 2011; Gagnon et al., 2011; Hamilton and Wu, 2011; Krishnamurthy

and Vissing-Jorgensen, 2011). However, understanding the underlying mechanism and causes

for the declines in long-term interest rates remains an open question. Based on the usual

decomposition of long rates, there are two potential elements that central bank bond purchases

could affect: the term premium and the average level of short-term risk-free interest rates over

the maturity of the bond, also known as the risk-neutral rate. The term premium could have

fallen because the Fed’s LSAPs reduced the amount of longer-term bonds in private-sector

portfolios—which is loosely referred to as the portfolio balance channel. Alternatively, the

LSAP announcements could have led market participants to revise down their expectations

for future short-term interest rates, lengthening, for example, the expected period of a near-

zero federal funds rate target. Such a signaling channel for LSAPs would reduce yields by

lowering the average expected short-rate (or risk-neutral) component of long-term rates.

Much discussion of the financial market effects of the Fed’s bond purchases treats the

portfolio balance channel as the key channel for that impact. For example, Chairman Bernanke

(2010) described the effects of the Fed’s bond purchases in this way:

I see the evidence as most favorable to the view that such purchases work primarily

1The federal agency securities were debt or mortgage-backed securities that had explicit or implicit credit
protection from the U.S. government.

2The Fed’s actions led to a larger central bank balance sheet and higher bank reserves much like the Bank
of Japan’s QE; however, the Fed’s purchases were focused on longer-maturity assets.
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through the so-called portfolio balance channel, which holds that once short-term

interest rates have reached zero, the Federal Reserve’s purchases of longer-term

securities affect financial conditions by changing the quantity and mix of financial

assets held by the public. Specifically, the Fed’s strategy relies on the presumption

that different financial assets are not perfect substitutes in investors’ portfolios, so

that changes in the net supply of an asset available to investors affect its yield and

those of broadly similar assets.

As well as being highlighted by central bankers, the portfolio balance channel has also found

support among researchers in accounting for the effects of LSAPs. The most influential ev-

idence supporting a portfolio balance channel has come from event studies that examine

changes in asset prices following announcements of central bank bond purchases. Notably,

Gagnon et al. (2011), henceforth GRRS, examine changes in the ten-year Treasury yield and

Treasury yield term premium.3 They document that after eight key LSAP announcements,

the ten-year yield fell by a total of 91 basis points (bps), while their measure of the ten-year

term premium, which is based on the model of Kim and Wright (2005), fell by 71 bps. Based

largely on this evidence, the authors argue that the Fed’s LSAPs primarily lowered long-term

rates through a portfolio balance channel that reduced term premia.

In this paper, we reexamine the conclusion that the signaling of lower short rates through

LSAP announcements played a negligible role in lowering yields. As a first step, we provide

model-free evidence suggesting that the Fed’s actions lowered yields to a considerable extent by

changing policy expectations about the expected future path of the federal funds rate. Under a

market segmentation assumption that LSAPs primarily affected security-specific term premia

in Treasury markets, changes after LSAP announcements in spreads between Treasury yields

and money market and swap rates of comparable maturity illuminate the contribution of the

portfolio balance channel. Joyce et al. (2010), for example, argue that increases in spreads

between U.K. Treasury and swap yields following Bank of England QE announcements support

a portfolio balance channel. In contrast, in the U.S., we find that a large portion of the observed

yield changes was also reflected in lower money market and swap rates. This suggests that

the expectations component may make an important contribution to the declines in yields.

We next reconsider the GRRS results that are based on the Kim-Wright decompositions of

yields into term premia and risk-neutral rates using a conventional arbitrage-free dynamic term

structure model (DTSM). Although DTSMs are the workhorse model in empirical fixed income

finance, they have been very difficult to estimate and plagued by biased coefficient estimates

3Other event studies include Joyce et al. (2010), Neely (2010), Krishnamurthy and Vissing-Jorgensen (2011),
and Swanson (2011).
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as described by previous studies (e.g., Duffee and Stanton, 2004; Kim and Orphanides, 2005;

and Bauer et al., 2011, henceforth BRW). Therefore, to get better measures of the term

premium, we examine two alternative estimates of the DTSM. The first is obtained from a

novel estimation procedure—following BRW—that directly adjusts for the small-sample bias

in estimation of a maximally flexible DTSM. Since conventional biased DTSM estimates—

like the Kim-Wright model that GRRS rely on—overstate the speed of mean reversion of

the short rate, the model-implied forecast of the short rate is too close to the unconditional

mean. Consequently, too much of the variation in forward rates is attributed to the term

premium component. Intuitively then, conventional biased DTSM estimates understate the

importance of the signaling channel. Indeed, we find that an LSAP event study using term

premia obtained from DTSM estimates with reduced bias finds a much larger role for the

signaling channel. Our second estimation approach imposes restrictions on the risk pricing

as in Bauer (2011). Intuitively, under restricted risk pricing, the cross-sectional interest rate

dynamics, which are estimated very precisely, are being used to pin down the time series

parameters. This reduces both small-sample bias and statistical uncertainty, so that short

rate forecasts and term premium estimates are more reliable (Cochrane and Piazzesi, 2008;

Joslin et al., 2010; Bauer, 2011). Here, too, we find a more substantial role for the signaling

channel than is commonly acknowledged.

As a final contribution, we also quantify the statistical uncertainty surrounding the DTSM-

based estimates of the relative contributions of the portfolio balance and signaling channels.

In particular, we take into account the parameter uncertainty that underlies estimates of

the term premium and produce confidence intervals that reflect this estimation uncertainty.

Our confidence intervals reveal that definitive conclusions about the relative importance of

term premia and expectations effects of LSAP are difficult. Both of the extreme views of

“only term premia” and “only expectations” effects are statistically plausible. However, under

restrictions on the risk pricing in the DTSM, statistical uncertainty is reduced. Consequently,

our decompositions of the LSAP effects using DTSM estimates under restricted risk prices

not only point to a larger role of the signaling channel, but also allow much more precise

inference about the respective contribution of signaling and portfolio balance. Taken together,

our results indicate that an important effect of the LSAP announcements was to lower the

market’s expectation of the future policy path, or, equivalently, to lengthen the expected

duration of near-zero policy rates.

The paper is structured as follows. In Section 2, we describe the portfolio balance and

signaling channels for LSAP effects on yields and discuss the event study methodology that

we use to estimate the effects of the LSAPs. Section 3 presents model-free evidence on the
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importance of the signaling and portfolio balance channels. Section 4 describes the econometric

problems with existing term premium estimates and outlines our two approaches for obtaining

more appropriate decompositions of long rates. In Section 5, we present our model-based event

study results. Section 6 concludes.

2 Identifying portfolio balance and signaling channels

Here we describe the two key channels through which LSAPs can affect interest rate, and

discuss how their respective importance can be quantified, albeit imperfectly, through an

event study methodology.

2.1 Portfolio balance channel

In the standard asset-pricing model, changes in the supply of long-term bonds do not affect

bond prices. In particular, in a pricing model without frictions, bond premia are determined by

the risk characteristics of bonds and the risk aversion of investors, both of which are unaffected

by the quantity of bonds available to investors. In contrast, to explain the response of bond

yields to central bank purchases of bonds, researchers have focused their attention exactly

on the effect that a reduction in bond supply has on the risk premium that investors require

for holding those securities. The key avenue proposed for this effect is the portfolio balance

channel.4 As described by GRRS: (p. 6)

By purchasing a particular asset, a central bank reduces the amount of the security

that the private sector holds, displacing some investors and reducing the holdings

of others, while simultaneously increasing the amount of short-term, risk-free bank

reserves held by the private sector. In order for investors to be willing to make

those adjustments, the expected return on the purchased security has to fall.

The crucial departure from a frictionless model for the operation of a portfolio balance channel

is that bonds of different maturities are not perfect substitutes. Instead, there are “preferred-

habitat” investors that have maturity-specific demands for bonds and a less-than-perfect offset

to this effect from other “arbitrageurs” in the market.5 In this setting, the maturity structure

4Like most of the literature, we focus on the portfolio balance channel to account for term premia effects of
LSAPs. Some recent papers have also discussed a liquidity/market functioning channel through which LSAPs
could affect bond premia, including, for example, GRRS, Krishnamurthy and Vissing-Jorgensen (2011), and
Joyce et al. (2010). This channel appears most relevant for limited periods of market dislocation.

5For example, pension funds, other institutional investors, and foreign central banks might have a specific
need to hold Treasury securities. Recent work on theoretical underpinnings of the portfolio balance channel
includes Vayanos and Vila (2009) and Hamilton and Wu (2011).
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of outstanding debt can affect term premia.

Still, the precise portfolio balance effect of purchases on term premia in different markets

will vary depending on the interconnectedness of markets. To be concrete, consider the de-

composition of the ten-year Treasury yield, y10t , into a risk-neutral component,6 Y RN10
t , and

a term premium, Y TP 10
t :

y10t = Y RN10
t + Y TP 10

t (1)

= Y RN10
t + Y TP 10

risk,t + Y TP 10
instrument,t. (2)

The term premium is further decomposed in equation (2) into a maturity-specific term pre-

mium that reflects the pricing of interest risk and an idiosyncratic instrument-specific term

premium that captures, for example, demand and supply imbalances for that particular secu-

rity. Some researchers have focused on a fairly extreme market segmentation version of the

portfolio balance channel in which an absence of arbitrageurs leads essentially to a complete

disconnect between markets (Joyce et al., 2010). Changes in the bond supply then would have

direct price effects through Y TP 10
instrument,t, and because of market segmentation, the change

in the price of a given security would depend on how much of that security was purchased.

Alternatively, markets for securities of different maturities may be somewhat connected

because of the presence of arbitrageurs, though with some residual segmentation because of

maturity-specific demand and limits to arbitrage. In this case, researchers, including GRRS,

have emphasized that changes in the bond supply affect the aggregate amount of duration avail-

able in the market and the pricing of the associated interest rate risk term premia, Y TP 10
risk,t.

In this duration removal version of the portfolio balance channel, central bank purchases of

even a few specific bonds can affect the the risk pricing and term premia for a wide range of

securities. Notably, in the absence of further frictions, all fixed income securities (e.g., swaps

and Treasuries) of the same duration would be similarly affected. Furthermore, if the Fed were

to remove a given amount of duration risk from the market by purchasing ten-year securities

or by purchasing (a smaller amount of) 30-year securities, the effect through the duration

removal version of the portfolio balance channel would be the same. Thus, there are two ways

in which bond purchases can affect term premia in Treasury yields: First, with some lack

of substitutability between Treasuries and other assets, bond purchases can reduce Treasury-

specific premia. Second, by lowering aggregate duration risk it can reduce term premia in all

fixed-income securities.

6The risk-neutral yield equals the expected average risk-free rate over the lifetime of the bond plus a
negligible convexity term.
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2.2 Signaling channel

Despite the recent interest in the portfolio balance channel, which emphasizes the role of

quantities of securities in asset pricing, it runs counter to at least the past half century of

mainstream frictionless finance theory. That theory, which is based on the presence of per-

vasive, deep-pocketed arbitrageurs, has little or no role for financial market segmentation or

movements in idiosyncratic, security-specific term premia like Y TP 10
instrument,t. Moreover, the

duration removal version of the portfolio balance channel, and shifts in Y TP 10
risk,t, would also

seem unlikely in conventional models. This is because the scale of the Fed’s purchase of $1.725

trillion of debt securities is small relative to the size of bond portfolios. The U.S. fixed income

market is on the order of $30 trillion, and the global bond market—arguably, the relevant

one—is several times larger. In addition, other assets, such as equities, also bear interest rate

risk, thus the total amount of duration risk is even larger.

Instead, the traditional finance view of the Fed’s actions would focus on the new infor-

mation provided to investors about the future path of short-term interest rates. That is, the

potential signaling channel for central bank bond purchases to affect bond yields by changing

the risk-neutral component of interest rates. By late 2008, with the short-term interest rate

being essentially zero, many investors were wondering how long the Fed would leave its pol-

icy rate unchanged. The extended period language in the FOMC statement provided some

guidance, but the zero bound was terra incognita. In such a situation, the Fed’s unprece-

dented announcements of asset purchases with the goal of putting further downward pressure

on yields might well have had an important signaling component, in the sense of conveying

to market participants how bad the economic situation really was, and that extraordinarily

easy monetary policy was going to be in place for some time to come. In general, LSAP

announcements may signal to market participants that the central bank has changed its views

on current or future economic conditions. Alternatively, they may be thought to convey in-

formation about changes in the monetary policy reaction function or policy objectives, such

as the inflation target. In such cases, investors may alter their expectations of the future

path of the policy rate, perhaps by lengthening the expected period of near-zero short-term

interest rates. According to such a signaling channel, announcements of LSAPs would lower

the expectations component of long-term yields.

2.3 Event study methodology

The few studies, specifically GRRS and Krishnamurthy and Vissing-Jorgensen (2011) for the

U.S. and Joyce et al. (2010) for the U.K., to consider the relative contributions of the portfolio
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balance and signaling channels have used an event study methodology.7 This methodology

focuses on changes in asset prices over tight windows around discrete events. We also employ

such a methodology to assess the effects of LSAPs on fixed income markets.

In the portfolio balance channel described above, it is the quantity of asset purchases

that affects prices; however, forward-looking investors will in fact react to news of future

purchases. Therefore, as changes in the expected maturity structure of outstanding bonds are

priced in immediately, credible announcements of future LSAPs can have the immediate effect

of lowering the term premium component of long-term yields. In our event study, we focus on

the eight LSAP announcements that GRRS include in their “baseline” event set, which are

described in Table 1.

In calculating the yield responses to these announcements, there are two competing re-

quirements for the size of the event window so that price changes reflect the effects of the

announcements. First, the window should be large enough to encompass all of an announce-

ment’s effects. Second, the window should be short enough to exclude other events that might

significantly affect asset prices. Following GRRS, we use one-day changes in market rates to

estimate responses to the Fed’s LSAP announcements. (See GRRS for further discussion.) A

one-day window appears to be a workable compromise.8 First, for large, highly liquid markets

such as the Treasury bond market, and under the assumption of rational expectations, new

information in the announcement about economic fundamentals should quickly be reflected in

asset prices. Second, the LSAP announcements appear to be the dominant sources of news

for fixed income markets on the days under consideration. On these announcement days, the

majority of bond and money market movements appeared to be due to new information that

markets received about the Fed’s LSAP program.

Of course, if news about LSAPs is leaked or inferred prior to the official announcements,

then the event study will underestimate the full effect of the LSAPs. The inability to ac-

count for important pre-announcement LSAP news makes us wary of analyzing later LSAP

announcements after the eight examined. For example, expectations of a second round of asset

purchases (QE2) were incrementally formed before official confirmation in fall 2010, which is

a possible reason for why studies like Krishnamurthy and Vissing-Jorgensen (2011) find small

effects on financial markets in their event study of QE2. For the events we consider, one can

argue that markets mostly did not expect the Fed’s purchases ahead of the announcements.9

7GRRS also provide evidence on the portfolio balance channel from monthly time-series regressions of the
Kim-Wright term premium on variables capturing macroeconomic conditions and aggregate uncertainty, as
well as a measure of the supply of long-term Treasury securities. However, our experience with these regressions
suggests the results are sensitive to specification (see also Rudebusch, 2007).

8Our results are robust to using the two-day change following announcements.
9On the issue of the surprise component of monetary policy announcements during the recent LSAP period
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2.4 Changes in risk-neutral rates and the role of signaling

How can an event study can distinguish between the portfolio balance and signaling channels?

A simple view is that these two channels are associated with the changes in term premia and

risk neutral rates (measured, say, using a DTSM) after LSAP announcements. However, there

is an important subtlety in the empirical assessment of portfolio balance and signaling effects:

As a theoretical matter, the split between the portfolio balance and signaling channels is not

the same as the decomposition of the long rate into expectations and risk premium components.

In fact, because of secondary effects of the portfolio balance and signaling channels, estimated

changes of risk-neutral rates are likely a lower bound for the contribution of signaling to

changes in long-term interest rates.

To illustrate the mapping between the two channels and the long rate decomposition,

consider first a scenario in which the portfolio balance channel is working but there is no

signaling. In this case, LSAPs reduce term premia, which would act to boost future economic

growth.10 However, the improved economic outlook will also necessitate less conventional

monetary policy stimulus in the future since to achieve the optimal stance of monetary policy,

the more policymakers add of one type of stimulus, the less they need to add of the other.

Thus, the operation of a portfolio balance channel would cause LSAPs to increase risk-neutral

rates as well as reducing the term premium. We would measure higher policy expectations

despite the absence of any direct signaling effects. The changes in risk-neutral rates following

LSAP announcements will include both the direct signaling effects (presumably negative), as

well as the indirect portfolio balance effects on future policy expectations (positive). Hence,

this would mean that the true signaling effects on risk-neutral rates are likely larger than the

estimated decreases in risk-neutral rates.

Conversely, consider the case where there are no portfolio balance effects, but a signaling

channel is operational because LSAP announcements contain news about easier monetary

policy in the future. This news could take various forms, such as, (1) a longer period of near-

zero policy rate, (2) lower risks around a little-changed but more certain policy path, (3) higher

medium-term inflation and potentially lower real short-term interest rates, and (4) improved

prospects for real activity, including diminished prospects for Depression-like outcomes. Taken

together, it seems likely that this news, and the demonstration of the Fed’s commitment to act,

would reduce the likelihood of future large drops in asset prices and hence lower the risk premia

on financial assets. Indeed, although the effects of easier expected monetary policy on term

premia could in general go either way, during the previous Fed easing cycle from 2001 to 2003,

see Wright (2011).
10On this connection, see Rudebusch et al. (2007).
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lower risk-neutral rates were accompanied by lower term premia. Table 2 shows changes in the

actual, fitted, and risk-neutral ten-year yield, and in the corresponding yield term premium

(according to the Kim-Wright model) for those days with FOMC announcements during 2001

to 2003 when the risk-neutral rate decreased.11 That is, on days on which the average expected

future policy rate was revised downward by market participants—comparable to the potential

signaling effects of LSAP announcements—the term premium usually fell as well. Over all

such days, the cumulative change in the term premium was -21 bps, which has the same sign

and more than half the magnitude of the cumulative change in the risk-neutral yield (-35 bps).

Thus, during this episode, easing actions that lowered policy expectations at the same time

lowered term premia. Arguably, the signaling effect of LSAPs on term premia would be even

larger given the potential curtailment of extreme downside risk.

Both of these effects appear to work in the same direction of making the decomposition into

changes in risk-neutral rates and term premia a downwardly biased estimate for the importance

of the signaling channel. Conversely, the true portfolio balance effects are probably smaller

in magnitude than the estimated decrease in term premia. Therefore, the event study results

should be considered conservative ones, with the true signaling effects likely larger than the

estimated decreases in risk-neutral rates.

3 Model-free evidence

As a first step in evaluating the effects of an LSAP program on financial markets, it is in-

structive to consider model-free event-study evidence using data from futures, overnight index

swaps (OIS), and Treasury securities markets.

3.1 Market segmentation

What can we learn about changes in policy expectations from considering changes in money

market futures rates and OIS rates? Of course these interest rates also contain a term premium

and thus do not purely reflect the market’s expectations of future short rates. There are,

however, two reasons why changes in these market rates can reveal shifts in policy expectations.

First, at short maturities the term premium is likely small, so changes in near-term rates are

mostly driven by the expectations component. This argument can be used to interpret changes

11The data for actual (fitted) yields and the Kim-Wright decomposition of yields are both available at
http://www.federalreserve.gov/econresdata/researchdata.htm (accessed August 30, 2011). We only present
results for the Kim-Wright term premium since the qualitative conclusions are similar when we use our preferred
term premium measures.
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at the very short end of the term structure of interest rates (see, for example, GRRS, p. 24).

Second, if the portfolio balance effects of LSAPs operate only on instrument-specific premia

like Y TP 10
instrument,t, then the responses of futures and OIS rates mainly reflect the signaling

effects of the announcements. To study the effects of the Bank of England’s LSAP program,

Joyce et al. (2010) make exactly this market segmentation assumption, and draw inferences

about the importance of signaling and portfolio balance purely from observed interest rates in

OIS and bond markets. They assume that the asset purchases only affect the term premium

specific to government bonds and neither the instrument-specific term premium in OIS rates

(which were not part of the asset purchases), nor the general level of the term premium

Y TPrisk,t that reflects compensation for interest rate risk. Under the market segmentation

assumption, one can take changes in futures and OIS rates to be predominantly driven by

changing policy expectations. Correspondingly, changes in the spreads between these rates

and yields are likely due to changes in yield-specific term premia. If the identifying assumption

is violated, then the changes in the spreads reflect changes in both Y RNn
t and Y TP n

risk,t, and

thus constitute a lower bound for the contribution of term premium changes, and an upper

bound for the magnitude of shifts in policy expectations.

3.2 Money market futures

Money market futures are bets on the future value of a short-term interest rate, and they

are used by policymakers, academics, and practitioners to construct implied paths for future

policy rates. Federal funds futures settle based on the federal funds rate, and contracts for

maturities out to about six months are highly liquid. Eurodollar futures pay off according

to the three-month London interbank offered rate (LBOR), and the most liquid contracts

have quarterly maturities out to about four years. While LBOR and the fed funds rate do not

always move in lockstep, these two types of futures contracts are typically used in combination

to construct a policy path over all available horizons.

Consider how the futures-implied policy path has changed around key LSAP dates. Figure

1 shows the futures-implied policy paths around the first five LSAP events, based on futures

rates on the end of the previous day and on the end of the event day.12 On almost all days,

the policy paths appear to have shifted down significantly at horizons of one year and longer

12The policy paths are derived from the futures rates in the following way: Federal funds futures contracts
are used for the current quarter and two quarters beyond that. For longer horizons, we use Eurodollars futures.
The Eurodollars futures are adjusted by the difference between the last quarter of the federal funds futures
contracts and the overlapping Eurodollar contract. Beginning five months out, a constant term premium
adjustment of 1bp per month of additional maturity is applied.
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in response to the LSAP announcements.13

Table 3 displays the changes at specific horizons on all eight LSAP event days. Also shown

are total changes over all event days, as well as cumulative changes and standard deviations

of daily changes over the LSAP period. At the short end, the path has shifted down by

about 20-40 bps, while at longer horizons of one to three years the total decrease is around

50 bps. Because the decreases in short-term futures rates are arguably driven primarily by

expectations, these results indicate that markets revised their near-term policy expectations

downward around LSAP announcements by about 20-40 bps.14

The last three columns of the table show the changes in the average futures-implied policy

path over the next three years, the changes in the three-year yield, and the spread between

the yield and the futures-implied rate.15 With the exception of March 2009, every LSAP

announcement had a much larger effect on the futures-implied policy path than on yields.

Over all event days, the lower spread contributed around half of the decline in the three-year

yield. Under a market segmentation assumption, this evidence suggests that lower policy

expectations contributed 37 bps, or 46%, to the decrease in the three-year yield.

3.3 Overnight index swaps

In an overnight index swap (OIS), one party pays a fixed interest rate on the notional amount

and receives the overnight rate, i.e., the federal funds rate, over the entire maturity period.

Under absence of arbitrage, OIS rates reflect risk-adjusted expectations of the average policy

rate over the horizon corresponding to the maturity of the swap. Intuitively, while futures are

bets on the value of the short rate at a future point in time, OIS contracts are essentially bets

on the average value of the short rate over a certain horizon.

Table 4 shows the results of an event study analysis of changes in OIS rates with maturities

of one, two, five, and ten years, yields of the same maturities, and yield-OIS spreads. We

consider the same set of event dates as before.16 The response of yields to the Fed’s LSAP

13The FOMC statement for January 28, 2009, contrary to the other announcements, actually caused sizable
increases in yields and other market interest rates, as documented in GRRS and in our own results below.
Anecdotal evidence indicates that market participants were disappointed by the lack of concrete language
regarding the possibility and timing of purchases of longer-dated Treasury securities.

14One minor confounding factor is that on December 16, 2008, markets also were surprised by the target
rate decision—expectations were for a new target of 25 bps, however the Federal Open Market Committee
decided on a target range of 0-25 bps. Changes in short-term rates on this day reflect also reflect the effects
of conventional monetary policy.

15The yield data source is described below.
16OIS rates are taken from Bloomberg, and yields are zero-coupon yields from a smoothed yield curve data set

constructed as described in Gürkaynak et al. (2007)(henceforth GSW), which is available on the website of the
Federal Reserve Board of Governors (BOG). See http://www.federalreserve.gov/econresdata/researchdata.htm
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announcements is largely paralleled by an OIS rate response of similar magnitude. For certain

days and maturities, OIS rates respond even more strongly than yields, and at the ten-year

maturity the cumulative change of the OIS rate is larger than the yield change, with an

increasing OIS spread. In those instances where the OIS spread significantly decreased, its

relative contribution to the yield change is typically still much smaller than the contribution of

the OIS rate change. The March 2009 announcement is the only one that significantly lowered

spreads. On the other event days, yield-OIS spreads barely moved or increased, suggesting

that large decreases in term premia are unlikely.

Our evidence in this section is consistent with the finding of GRRS “that LSAPs had

widespread effects, beyond those on the securities targeted for purchase” (p. 20). Under a

market segmentation identifying assumption, the evidence that spreads moved much less than

OIS rates suggests a very important contribution of lower policy expectations to the decreases

in Treasury yields. Without this assumption, it just indicates that instrument-specific premia

in Treasuries did not move much around announcements.

We now turn to model-based evidence to address the question to which extent Treasuries

were affected by the LSAPs through downward shifts in the expected policy path and through

shifts in a their term premium.

4 Term premium estimation

A theoretically rigorous decomposition of interest rates into expectations and term premium

components requires a DTSM, which have generally proven difficult to estimate. Therefore, we

consider several different term premium estimates to overcome important bias and uncertainty

problems.

4.1 Econometric problems: bias and uncertainty

To estimate the term premium component in long-term interest rates, researchers typically

resort to DTSMs. Such models simultaneously capture the cross section and time series

dynamics of interest rates, and impose absence of arbitrage, which ensures that the two be

consistent with each other. Term premium estimates are obtained by forecasting the short rate

using the estimated time series model, and subtracting the average short rate forecast (i.e.,

the risk-neutral rate) from the actual interest rate. The very high persistence of interest rates,

however, causes major problems with estimating the time series dynamics. The parameter

(accessed July 29, 2011).
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estimates typically suffer from small-sample bias and large statistical uncertainty, which makes

the resulting estimated risk-neutral rates and term premia inherently unreliable.

The small-sample bias in conventional estimates of DTSMs stems from the fact that the

largest root in autoregressive models for persistent time series is generally underestimated.

Therefore the speed of mean reversion is overestimated, and the model-implied forecasts for

longer horizons are too close to the unconditional mean of the process. Consequently, risk-

neutral rates are too stable, and too much of the variation in long-term rates is attributed

to the term premium component.17 In the context of LSAP event studies, this bias works

in the direction of attributing too large a share of changes in long-term interest rates to the

term premium. Hence, the relative importance of the portfolio balance channel will be over-

estimated. Because of this concern, we reassess the question of interest using term premium

estimates that have smaller or no bias.

Large statistical uncertainty underlies any estimate of the term premium, due to both

specification and estimation uncertainty. The specification uncertainty is due to the fact that

different specifications of a DTSM, where each might seem plausible in itself, lead to quite

different economic implications.18 We address this issue in a pragmatic way by presenting

alternative estimates based on different specifications. The estimation uncertainty results from

the parameters governing the time series dynamics in a DTSM being estimated imprecisely

because of the high persistence of interest rates.19 Consequently, large statistical uncertainty

underlies short rate forecasts and term premia calculated from such parameter estimates.

Despite this fact, studies typically report only point estimates of term premia.20 In our event

study, we report interval estimates of changes in risk-neutral rates and of changes in the term

premium.

4.2 Alternative term premium estimates

We now briefly describe the alternative term premium estimates that we include in our event

study. Details are provided in Appendix A. The data used in the estimation of our models

consist of daily observations of interest rates from January 2, 1985, to December 30, 2009. We

include T-bill rates at maturities 3 and 6 months from the Federal Reserve H.15 release and

17This problem has been pointed out by Ball and Torous (1996) and discussed in numerous subsequent
studies, such as Duffee and Stanton (2004) and Kim and Orphanides (2005).

18This issue has been highlighted, for example, by Rudebusch et al. (2007) and Bauer (2011).
19The slow speed of mean reversion of interest rates makes it difficult to pin down the unconditional mean

and the persistence of the estimated process. See, among others, Kim and Orphanides (2005).
20Exceptions are the studies by Bauer (2011) and Joslin et al. (2010), who present measures of statistical

uncertainty around estimated risk-neutral rates and term premia.
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GSW zero-coupon yields at maturities of 1, 2, 3, 5, 7, and 10 years.

4.2.1 Kim-Wright

The term premium estimates used by GRRS are obtained from the model of Kim and Wright

(2005). What distinguishes their model from an unrestricted, i.e., maximally flexible affine

Gaussian DTSM is the inclusion of survey-based short rate forecasts and some slight restric-

tions on the risk pricing. While Kim and Orphanides (2005) argue that incorporating addi-

tional information from surveys might help alleviate the problems with DTSM estimation, it

is unclear to which extent bias and uncertainty are reduced. Survey expectations are problem-

atic because on the one hand they are available only at low frequencies (monthly/quarterly),

and on the other hand they might not represent rational forecasts of short rates (Piazzesi

and Schneider, 2008). In terms of risk price restrictions, the model imposes only very few

constraints, so the link between cross-sectional dynamics and time series dynamics is likely to

be weak.

4.2.2 Ordinary least squares

As a benchmark, we estimate a maximally flexible affine Gaussian DTSM. The risk factors

correspond to the first three principal components of yields. We use the normalization of

Joslin et al. (2011). The estimation is a two-step procedure: First, the parameters of the

vector autoregression (VAR) for the risk factors are estimated using ordinary least squares

(OLS). Second, we obtain estimates of the parameters governing the cross-sectional dynamics

using the minimum-chi-square method of Hamilton and Wu (2010). Because the model is

exactly identified, these are also the maximum likelihood (ML) estimates.

To account for the estimation uncertainty underlying the decompositions of long-term

interest rates, we obtain bootstrap distributions of the VAR parameters. We can thus calculate

risk-neutral rates and term premia for each bootstrap replication of the parameters, and

calculate confidence intervals for all objects of interest. Details on the estimation and the

bootstrap procedure are provided in Appendix B.1.

4.2.3 Median-unbiased

One way to deal with the small-sample bias in DTSM estimates is to directly correct the

estimates of the dynamic system for bias. Starting from the same model, we perform median-

unbiased estimation of the VAR parameters in the first step, and proceed with the second

step of finding cross-sectional parameters as before. Our methodology, which closely parallels
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the one laid out in BRW, is detailed in Appendix B.2. We also obtain bootstrap replications

of the VAR parameters.

The resulting estimates imply interest rate dynamics that are more persistent and short

rate forecasts that revert to the unconditional mean much more slowly than is implied by the

biased OLS estimates. Therefore, one would expect a larger contribution of the expectations

component to changes in long-term rates around LSAP announcements. Because this esti-

mation method only addresses the bias problem and not the uncertainty problem, confidence

intervals cannot be expected to be any tighter than for OLS.

4.2.4 Restricted risk prices

The no-arbitrage restriction can be a powerful remedy for both the bias and the uncertainty

problem if the risk pricing is restricted.21 The intuition is that cross-sectional dynamics are

precisely estimated and can help pin down the parameters governing the time series dynamics,

reducing both bias and uncertainty in these parameters and leading to more reliable estimates

of risk-neutral rates and term premia. There is a large set of possible restrictions on the risk

pricing in DTSMs, and alternative restrictions may lead to different economic implications.

To deal with these complications, we use a Bayesian framework parallel to the one suggested

in Bauer (2011) for estimating our DTSM with restricted risk prices. This allows us to select

those restrictions that are supported by the data and to deal with specification uncertainty by

means of Bayesian model averaging. Another advantage is that interval estimates naturally

fall out of the estimation procedure, because the Markov chain Monte Carlo (MCMC) sampler

that we use for estimation, described in Appendix C.2, produces posterior distributions for

any object of interest.

First we estimate a maximally flexible model where risk price restrictions are absent using

MCMC sampling. These estimates will be denoted by URP (Unrestricted Risk Prices). The

point estimates of the model parameters are almost identical to OLS.22 With regard to interval

estimation, there will however be some numerical differences, because the Bayesian credibility

intervals (which we will for simplicity also call confidence intervals) for URP are conceptually

different from the bootstrap confidence intervals for OLS. Because of potential differences

between OLS and URP we include the URP estimates as a point of reference.

The estimates under Restricted Risk Prices will be denoted by RRP. To be clear, here

parameters and the objects of interest such as term premium changes are estimated by means

21This has been argued for example by Cochrane and Piazzesi (2008), Bauer (2011), and Joslin et al. (2010).
22With uninformative priors the Bayesian posterior parameter means are the same as the OLS/maximum

likelihood estimates. In our case differences between the two sets of point estimates, which could result from
the priors and from approximation error, turn out to be negligibly small.
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of Bayesian model averaging, since in this setting the MCMC sampler provides draws across

model and parameter space. Because of the averaging over the set of restricted models, the

inference takes into account both estimation and model uncertainty.

Because of the risk price restrictions, and in light of the results in Bauer (2011), one would

expect a larger role for the expectations component in driving changes in long-term rates

around LSAP announcements, as well as tighter confidence intervals around point estimates,

i.e., more precise inference about the respective roles of the signaling and portfolio balance

channels.

5 Changes in policy expectations and term premia

We now turn to model-based event study results to assess the effects of the Fed’s LSAP

announcements on the term structure of interest rates. Here changes in Treasury yields around

LSAP events are decomposed into changes in risk-neutral rates, i.e., in policy expectations,

and term premia using the alternative DTSM estimates that were described above.

5.1 Cumulative changes in long-term yields

Let us first consider cumulative changes in long-term Treasury yields over the LSAP events,

and how they are decomposed into expectations and risk premium components. The results

are shown in Table 5. In addition to point estimates, we present 95% confidence intervals for

the changes in risk-neutral rates and premia. We decompose changes in the ten-year yield as

in GRRS, and also include results for the five-year yield. Cumulatively over these eight days,

the ten-year yield decreased by 89 bps, and the five-year yield decreased even more strongly

by 97 bps.23

The Kim-Wright decomposition of the change in the fitted ten-year yield of -102 bps

results in a decrease in the risk-neutral yield (YRN) of 31 bps and a decrease in the yield

term premium (YTP) of 71. Notably the cumulative change in the DTSM’s fitting error of

-13 bps is contained in the term premium, which is calculated as the difference between fitted

yield and YRN. This is not made explicit in the GRRS study, and the authors compare the

71 bps decrease in the term premium to the 91 bps decrease in the actual (constant-maturity)

ten-year yield. However, based on model-fitted results, the contribution of the term premium

is not −71
−91

≈ 78% but instead −71
−102

≈ 70%, with the risk-neutral component contributing 30%

23GRRS consider the constant-maturity ten-year yield, which decreased by 91 bps, whereas we focus through-
out on zero-coupon yields obtained from the GSW dataset.
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to the decrease. For the five-year yield the relative contributions of expectations and term

premium components are 32% and 68%.

The decomposition based on the OLS estimates leads to a slightly larger contribution of

the expectations component than for the Kim-Wright decomposition, particularly for the five-

year yield. For the ten-year yield the contributions are 35% and 65%, respectively, and for

the five-year yield they are 43% and 57%. The bootstrapped confidence intervals (CIs) reveal

the tremendous estimation uncertainty that underlies these point estimates. Based on these

estimates it is similarly plausible that the entire yield change was due to changes in the term

premium as it is plausible that yields were driven lower almost entirely by the expectations

component. While it remains unclear how much uncertainty underlies the Kim-Wright results,

these results make it seem likely that the -71 bps change in the Kim-Wright term premium is

a very uncertain point estimate.

The median-unbiased (MU) estimates imply a larger role for the expectations component,

which now accounts for about 50% of the yield change, both at the five-year and ten-year

maturity. The CIs are even wider than for the OLS estimates. Addressing the bias problem

in term premium estimation via direct bias correction increases the estimated contribution of

the signaling channel, but the inference is still very imprecise, since the uncertainty problem

remains.

The last two decompositions are for the URP and RRP estimates. The URP point esti-

mates are naturally very similar to the OLS results.24 The confidence intervals, being concep-

tually different as mentioned above, are more narrow for URP than for OLS and indicate that

both components contributed to the decrease in yields. However, there still is considerable

statistical uncertainty around the point estimates, due to the absence of parameter restric-

tions: The contribution of risk-neutral rates could plausibly be anywhere between −7
−94

≈ 7%

and −71
−94

≈ 76%.

Turning to the estimates under restricted risk prices, the point estimates for the five-year

yield closely correspond to the MU results, with a contribution of expectations that is slightly

larger than the contribution of the term premium. The split between changes in expectations

and premia here is 52% and 48%. For the ten-year yield the RRP decomposition is closer to

the OLS results than to the MU results, but nevertheless attributes more, if only by a little,

to the expectations component than Kim-Wright and OLS – the contributions here are 38%

and 62%. Importantly, the confidence intervals around the RRP estimates are much tighter

than for unrestricted DTSM estimates. They clearly indicate that both the expectations and

24Slight differences are due to the fact that the decompositions for URP are posterior means of the object
of interest, whereas for OLS the decompositions are calculated at the point estimates of the parameters.
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term premium components have played an important role in lowering yields. For the ten-year

yield the relative contribution of risk-neutral rates is estimated to be between −29
−94

≈ 30% and
−53
−94

≈ 56%.

5.2 Shifts in the forward curve and policy expectations

To understand these decompositions of yield changes and to get a more comprehensive per-

spective of the effects of the LSAP announcements on the term structure, it is useful to look

at forward rates and the expected policy path. We visualize the shift in the forward rate

curve in Figures 2 and 3. Based on our four alternative DTSM estimates, the graphs show

the cumulative change over the LSAP event days in instantaneous forward rates out to ten

years maturity, as well as cumulative changes in expected policy rates with 95% confidence

intervals.

The shift in forward rates, shown as a solid line, is common to all four decompositions

because fitted rates are essentially identical across DTSM estimates. The shift is hump-

shaped, with the largest decrease, about -110 bps, occurring at a horizon of three years. At

the short end the decrease is about -45 bps for the six-month horizon, and about -80 bps

for the twelve-month horizon. At the long end, forward rates decreased by approximately

-80 bps. The decreases at the short end are particularly interesting, because the size of the

term premium is presumably small at short horizons. Based on this argument most of the

drop in the six-month forward rate, and a significant portion of the drop in the one-year rate,

would be attributed to decreasing policy expectations. This is confirmed by our model-based

decompositions.

Figure 2 contrasts the OLS (left panel) and MU results (right panel). The decompositions

at the short end are very similar, with essentially all of the decrease in the six-month rate

and a sizable fraction of the decrease in other near-term rates attributed to the expectations

component. The difference between OLS and MU is most evident in the resulting decomposi-

tions of changes in long-term rates with horizons of five to ten years. Here, the OLS estimates

imply a rather small contribution for the expectations component, whereas under the MU

estimates around half of the decrease in forward rates is attributed to lower expectations. The

figure also visualizes the very large estimation uncertainty underlying these decompositions.

For either decomposition, at horizons longer than five years both the forward rate curve and

the zero line are within the confidence bands for the changes in expectations. Neither the “all

expectations” hypothesis—that these forward rates decreased solely because of lower policy

expectations—nor the “all term premia” hypothesis—that expectations did not change and

only term premia drove long rates lower—can be rejected.
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Figure 3 shows the decompositions resulting from the URP (left panel) and RRP estimates

(right panel). Again, the improved decomposition in the right panel leads to a larger role

for expectations than the conventional decomposition in the left panel. However, here the

main difference between the two is that under restricted risk prices, a larger share of the

decrease in short- and medium-term forward rates is attributed to lower expectations, whereas

decompositions of changes in long-term forward rates are rather similar. This exemplifies that

the economic implications for changes in term premia are different under our MU and RRP

estimates. In our view, this model uncertainty for term premium estimation underlines the

need to include more than one set of estimates to draw robust conclusions.

Figure 3 also visualizes how imposing risk price restrictions greatly increases the precision

of the inference. In the left panel, the confidence bands around the estimated downward shift

in expectations are quite large. They are almost as large as for OLS, and are slightly different

only because of conceptual and methodological differences between how they are constructed.

In the right panel however, for the RRP estimates, the confidence bands are comparably tight

and our conclusions about the role of expectations are a lot more precise. In a maximally

flexible DTSM, the estimation uncertainty is so large that we cannot really be sure about

the relative contribution of changes in policy expectations, but plausible restrictions on risk

prices lead to the conclusion that both components, expectations as well as premia, played an

important role for lowering rates around LSAP events.

5.3 Day-by-day results

To further drill down into how these shifts in the term structure came about, Tables 6 and 7

show the decompositions of yields changes on each of the eight event days, for the ten-year

and five-year yields, respectively. Here we only present point estimates. The tables each have

two panels: in the top panel we compare the Kim-Wright decompositions of daily changes to

the OLS and MU results, whereas in the bottom panel we compare Kim-Wright to the URP

and RRP results. In the bottom three rows of each panel we show total changes over the event

days (which correspond to the point estimates in Table 5), as well as cumulative changes and

standard deviations of daily changes over the LSAP period.

The tables show in detail how the event days differ from each other. The first three event

days, in 2008, show very similar decreases in yields and decompositions. The LSAP event on

January 28, 2009, is different in that rates increased due to markets being disappointed by

the lack of concrete announcements of Treasury purchases, as discussed earlier. On March

18, 2009, the most dramatic decrease occurred, with the long-term yield falling by half a

percentage point. Again, we see how this announcement seems to have had the largest impact
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on term premia. The last three days showed only minor movements, which when compared

to the standard deviations of daily changes are not significant.

The typical pattern is that the estimated contribution of risk-neutral rates to the changes

in yields is larger for MU/RRP than for OLS/URP. Notably, the RRP decompositions always

have the same signs as the Kim-Wright decompositions. The OLS and MU decompositions,

on the other hand, differ from Kim-Wright and RRP in that they imply decreases in the

risk-neutral yield on every day, due to the downward movement of the short-end of the term

structure. These differences in the daily decompositions between the MU and URP estimates

again exemplify the significant model uncertainty and the need to consider alternative speci-

fications to achieve robustness.

5.4 Summary of model-based evidence

The results in this section have shed more light on the question of why long-term yields

decreased around LSAP announcements, by presenting decompositions of rate changes into

expectations and term premium components. Previous findings in GRRS were based on the

Kim-Wright decomposition of long-term rates and seemed to show a large contribution of term

premium changes. In addition to the caveat that the decrease in the estimated term premium

also included a sizable pricing error component, there are two other important reasons why

these results need to be taken with a large grain of salt. First, in terms of point estimates the

decomposition of rate changes based on alternative DTSM estimates imply a larger contribu-

tion of the expectations component to rate changes around LSAP announcements than the

Kim-Wright decomposition. And second, putting confidence intervals around the estimated

changes in risk-neutral rates and term premia reveals that large changes in policy expecta-

tions around LSAP announcements are consistent with the data. Increasing the precision by

restricting the risk pricing of the DTSM leads to a statistically significant role for both the

expectations component and the term premium component in lowering yields.

In terms of quantitative conclusions, one would take away from the GRRS study that only

1− −71
−91

≈ 22% of the cumulative decrease in the ten-year yield around LSAP events was due

to changing policy expectations. Taking into account the pricing error, this already rises to

30%. Alternative model estimates and the resulting confidence intervals, however, suggest

that this is likely a lower bound and that a reasonable point estimate for the contribution of

the expectations component would have to be around 40-50%.
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6 Conclusion

In this paper we have challenged the conclusion of GRRS that the Fed’s LSAP program

has mostly worked through a portfolio balance channel. Evidence from different sources, both

model-free and based on DTSM estimates, points to a larger role of the signaling channel than

previous studies have acknowledged.25 Our results indicate that changes in the expectations

component of long-term interest rates were sizable. Furthermore, we argue that because of

secondary effects of signaling and portfolio balance, the relative contribution of expectations to

changes in interest rates are conservative estimates of the importance of the signaling channel.

Therefore, it appears that the Fed affected long rates not only by changing the risk pre-

mium in long-term interest rates, but instead to an important extent by altering the mar-

ket expectations of the future path of monetary policy. The plausible interpretation is that

through announcing and implementing LSAPs, the Fed signaled to market participants that

it would maintain an easy stance for monetary policy for a much longer time than previously

anticipated.
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Appendices

A Model specification

We use a discrete-time affine Gaussian DTSM. A vector of N pricing factors, Xt, follows a
first-order Gaussian VAR:

Xt+1 = µ+ ΦXt + Σεt+1, (3)

where εt
iid
∼ N(0, IN) and Σ is lower triangular. The short rate, rt, is an affine function of the

pricing factors:
rt = δ0 + δ′1Xt. (4)

The stochastic discount factor (SDF) is of the form

− log(Mt+1) = rt +
1

2
λ′

tλt + λ′

tεt+1,
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where the N -dimensional vector of risk prices is affine in the pricing factors,

Σλt = λ0 + λ1Xt,

for N -vector λ0 and N × N matrix λ1. Under these assumptions Xt follows a first-order
Gaussian VAR under the risk-neutral pricing measure Q,

Xt+1 = µQ + ΦQXt + ΣεQt+1, (5)

and the prices of risk determine how VAR parameters under the objective measure and the Q
measure are related:

µQ = µ− λ0 ΦQ = Φ− λ1. (6)

Furthermore bond prices are exponentially affine functions of the pricing factors:

Pm
t = eAm+BmXt ,

and the loadings Am = Am(µ
Q,ΦQ, δ0, δ1,Σ) and Bm = Bm(Φ

Q, δ1) follow the recursions

Am+1 = Am + (µQ)′Bm +
1

2
B′

mΣΣ
′Bm − δ0

Bm+1 = (ΦQ)′Bm − δ1

with starting values A0 = 0 and B0 = 0. Model-implied yields are determined by ymt =
−m−1 logPm

t = Am + BmXt, with Am = −m−1Am and Bm = −m−1Bm. Risk-neutral yields,
the yields that would prevail if investors were risk-neutral, can be calculated using

ỹmt = Ãm + B̃mXt, Ãm = −m−1Am(µ,Φ, δ0, δ1,Σ), B̃m = −m−1Bm(Φ, δ1).

Risk-neutral yields reflect policy expectations over the lifetime of the bond, m−1
∑m−1

h=0 Etrt+h,
plus a convexity term. The yield term premium is defined as the difference between actual
and risk-neutral yields, ytpmt = ymt − ỹmt .

Denote by Ŷt the vector of observed yields on day t. The number of observed yield ma-
turities is J = 8. We take the risk factors Xt to be the first N = 3 principal components of
observed yields. That is, if W denotes the N × J matrix with rows corresponding to the first
three eigenvectors of the covariance matrix of Ŷt, we have Xt = WŶt.

We parameterize the model using the canonical form of Joslin et al. (2011). Thus, the free
parameters of the model are rQ∞ = EQ(rt), the risk-neutral long-run mean of the short rate,
λQ, the eigenvalues of ΦQ, and the VAR parameters µ, Φ, and Σ. For the canonical model
this leaves 1 + 3 + 3 + 9 + 6 = 22 parameters to be estimated, apart from the measurement
error specification. To see how µQ, ΦQ, δ0 and δ1 are calculated from (W,λQ, rQ∞,Σ) refer to
Proposition 2 in Joslin et al. (2011).
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B Frequentist estimation

B.1 Ordinary least squares

First we use OLS to obtain the VAR parameters in (3). The mean-reversion matrix Φ is
estimated using a demeaned specification without intercept, and then the intercept vector
is calculated as µ = (IN − Φ)X̄ , where X̄ is the unconditional sample mean vector. The
innovation covariance matrix is estimated from the residuals in the usual way. Denote these
OLS estimates by µ̂, ˆPhi and Ω̂.

We obtain estimates of the cross-sectional parameters rQ∞ and λQ using the approach
of Hamilton & Wu (2010, henceforth HW). As cross-sectional measurements, Y 2

t in HW’s
notation, we use the fourth principal component of yields. Write the corresponding eigenvector
as the row vector W2, then we have Y 2

t = W2Ŷt. The reduced-form equations in the first step
of the HW approach are the VAR for Y 1

t = Xt and the single measurement equation, which
we write here as

Y 2
t = a+ bY 1

t + ut, (7)

for scalar a and row vector b, where ut is a measurement error. The reduced for parameters
are (µ,Φ,Ω, a, b, σ2

u), where σ
2
u = V ar(ut). The second step of the HW approach is to find the

structural parameters which result in a close match for the reduced-form parameters, to be
found by minimizing a chi-square distance statistic. A simplification is possible because we
have exact identification, where the number of reduced-form parameters equals the number of
structural parameters. Because the chi-square distance of the HW’s second step reaches ex-
actly zero, the weighting matrix is irrelevant and the problem separates into simpler, separate
analytical and numerical steps, particularly simple in our case. The parameters for the VAR
for Y 1

t are directly available, namely (µ̂, Φ̂, Ω̂), because these parameters are both reduced-
form and structural parameters. The parameters for the cross-sectional equation, a and b are
found by choosing rQ∞ and λQ so that the distance between the least squares estimates, (â, b̂),
and the model-implied values (W2Am,W2Bm), is small. Here the J-vector Am and the J ×N
matrix Bm contain the model-implied yield loadings. In addition to a dependence on Ω, Bm

is determined only by λQ, and Am depends both on rQ∞ and λQ. Therefore we can first search
over values for λQ to minimize the distance between b̂ and W2Bm – we use the Euclidean norm
as the distance metric – and then pick rQ∞ to minimize the distance between â and W2Am.
Denote the resulting estimates by r̂Q∞ and λ̂Q.

Because of OLS does most of the work in this estimation procedure, it is very fast even for
a daily model. We have 6245 observations and the estimation takes only seconds.

The table shows the OLS estimates in the left column. The estimated intercept and the
risk-neutral mean are scaled up by 100n, where n = 252 is the number of periods (business
days) per year. Thus these number correspond to annualized percentage points.

The estimated persistence is high: The largest eigenvalue of Φ̂, .999484, is close to one.
The half life calculated from Φ̂ of the level factor in response to a level shock is 4.6 years.
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OLS MU
µ · 100n -0.0276 0.0022 0.0076 -0.0223 0.0046 0.0073
Φ 0.9995 -0.0004 0.0251 0.9998 0.0000 0.0249

-0.0004 0.9982 -0.0168 -0.0003 0.9986 -0.0167
-0.0001 -0.0001 0.9876 -0.0001 -0.0002 0.9883

λ 0.999484 0.998266 0.987565 0.999770 0.998824 0.988035
rQ∞ · 100n 12.37 12.38
λQ 0.999774 0.998069 0.994425 0.999774 0.998069 0.994425

Note: Parameter estimates from frequentist estimation, obtained using OLS and MU. λ are the
eigenvalues of Φ, λQ are the eigenvalues of ΦQ.

B.2 Median-unbiased estimation

The intuition for our unbiased estimation procedure is to find parameters for the VAR that
yield a median of the OLS estimator equal to the OLS estimates from the data. We utilize the
inverse bootstrap procedure detailed in our paper Bauer et al. (2011). A residual bootstrap
is used for every attempted value of Φ to generate data and find the median of the OLS
estimator. In successive iterations, the attempted parameter values are adjusted using an
updating scheme based on stochastic approximation, until the median of the OLS estimator
on the generated data is sufficiently close Φ̂. Denote the resulting estimate by Φ̃unr, indicating
the unrestricted unbiased estimate.

In working with daily data, where the persistence is extremely high, our unbiased estima-
tion procedure can lead to estimates for Φ with eigenvalues that are either greater than one
or below but extremely close to one. This is unsatisfactory because it implies VAR dynam-
ics that are either explosive or display mean reversion that is so slow as to be unnoticeable.
Therefore we impose a restriction on our bias-corrected estimates, ensuring that the largest
eigenvalue does not exceed the largest eigenvalue under the pricing measure. This seems to us
a useful and intuitively appealing restriction, since from a finance perspective the far-ahead
real-world expectations (under the physical measure) should not be more variable than the
far-ahead risk-neutral expectations (under Q).26 To obtain our bias-corrected estimate of Φ
we thus shrink Φ̃unr toward Φ̂ using the adjustment procedure of Kilian (1998), until its largest
eigenvalue is smaller, in absolute value, than the largest eigenvalue of Φ̂. Denote the restricted
estimate by Φ̃. Of course this is not an unbiased estimate, but nevertheless an estimate with
smaller bias than Φ̂.

Based on our estimate Φ̃ we calculate the intercept µ̃ and the innovation covariance matrix
Ω̃, as well as the cross-sectional parameters r̃Q∞ and λ̃Q in analogous fashion as for OLS.

26This intuition is also built into other models in the DTSM literature, such as Christensen et al. (2011)
where the largest Q-eigenvalue is unity and the VAR is stationary, or Joslin et al. (2010) which explicitly
restrict the largest eigenvalue under the two measures to be equal.
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B.3 Bootstrap

In order to perform inference about changes in risk-neutral rates and term premia, we con-
struct a bootstrap distribution for the parameters of the DTSM. The focus is on the VAR
parameters, since these crucially affect the characteristics of risk-neutral rates and premia.
Because the cross-sectional parameters are estimated very precisely and re-estimating them
on each bootstrap sample would be computationally costly, we only produce bootstrap dis-
tributions for Φ, µ and Ω. As is evident from the estimation results, different values of the
VAR parameters essentially have no effect on the estimated values for the cross-sectional
parameters, so this simplification is completely innocuous.

By definition of the MU estimate, if we generate bootstrap samples (indexed by b =
1, . . . , B) using Φ̃unr, the OLS estimator has a median equal to Φ̂. The realizations of the
OLS estimator on these samples thus provide a bootstrap distribution around Φ̂, which is
conveniently obtained as a by-product of the unbiased estimation procedure. We denote these
bootstrap values by Φ̂b.

To obtain a bootstrap distribution around the MU estimate Φ̃ we shift the OLS bootstrap
distribution by the estimated bias. That is we set Φ̃b = Φ̂b + Φ̃− Φ̂, with the result that the
values of Φ̃b are centered around Φ̃.

To ensure that the resulting VAR dynamics are stationary for every bootstrap replication,
we again apply a stationarity adjustment similar to the one suggested by Kilian (1998). For
the MU bootstrap replications, we shrink non-stationary values of Φ̃b toward Φ̃. We also apply
such a stationarity adjustment if values of Φ̂b have non-stationary roots, in that case shrinking
toward Φ̂. These stationarity adjustments have no impact on the median.

For each value of Φ̂b and Φ̃b we calculate the corresponding estimates of µ and Ω as
described above.

In terms of computing time, these bootstrap distributions are very quick to obtain. They
naturally fall out of the median-unbiased estimation procedure. The only time-consuming
task is the stationarity adjustment, which however has very manageable computational cost.

Having available bootstrap distributions for the VAR parameters allows us to obtain boot-
strap distributions for every object of interest, for example for the ten-year risk-neutral rate at
a specific point in time, or for the cumulative changes in the ten-year yield term premium over
a set of days. While our methodology is in some respects ad hoc, it has the unique advantage
of enabling us to account in a relatively straight-forward and computationally efficient way
for the underlying estimation uncertainty of our inference about policy expectations and term
premia.

C Bayesian estimation

We employ Markov chain monte carlo (MCMC) methods to perform Bayesian estimation.27

Specifically, we obtain a sample from the joint posterior distribution of the model parameters
using a block-wise Metropolis-Hastings (MH) algorithm. Other papers that have used MCMC
methods for estimation of DTSMs include Ang et al. (2007), Ang et al. (2009) and Chib and

27On estimation of asset pricing models using MCMC see Johannes and Polson (2009).
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Ergashev (2009). Our methodology is heavily borrowing from Bauer (2011), where the focus
is specifically on restrictions on risk pricing.

First we estimate the canonical model, and then, in a second step, we estimate over-
identified models with zero restrictions on elements of λ0 and λ1. For this purpose it is
convenient to parameterize the model in terms of (λ0, λ1,Ω, r

Q
∞, λQ).

The prior for the elements of λ0 and λ1 is independent normal, with mean zero and standard
deviation .01. This prior cannot be too diffuse because that would affect the model selection
exercise in the direction of favoring parsimonious models (the Lindley-Bartlett paradox; see
Bartlett, 1957). In light of the magnitude of the frequentist estimates that we have obtained,
this prior is not overly informative.

The priors for Ω and rQ∞ are taken to be completely uninformative. The elements of λQ

are a priori assumed to be independent, uniformly distributed over the unit interval.
For the measurement equations we slightly deviate from our previous specification and

simply take all J yields individually as the measurements, as in Joslin et al. (2011). The
measurement errors are assumed to have equal variance, denoted by σ2

u. Notably, there are
only J − N independent linear combinations of these measurement errors, because N linear
combinations of yields, namely the first three principal components, are priced perfectly by
the model. We specify the prior for σ2

u to be uninformative.

C.1 Maximally-flexible model

Denote the parameters of the model as θ = (λ0, λ1,Ω, r
Q
∞, λQ, σ2

u). There are five blocks of
parameters which we draw successively in our MCMC algorithm.

The likelihood of the data factors into the likelihood of the risk factors, denoted by P (X|θ),
and the cross-sectional likelihood, written as P (Y |X, θ) – X stands for all observations of
Xt and Y stands for the data, i.e., all observations of Ŷt. The factor likelihood function
is simply the conditional likelihood function of a Gaussian VAR.28 It depends on the VAR
parameters, which in this parameterization are determined by (λ0, λ1,Ω, r

Q
∞, λQ). The cross-

sectional likelihood function depends on (Ω, rQ∞, λQ, σ2
u). Thus we have

P (Y |θ) = P (X|θ) · P (Y |X, θ)

= P (X|λ0, λ1,Ω, r
Q
∞, λQ) · P (Y |X,Ω, rQ∞, λQ, σ2

u).

Our sampler allows us to draw from the joint posterior distribution

P (θ|Y ) ∝ P (Y |θ) · P (θ),

where P (θ) denotes the joint prior over all model parameters, despite the fact that this dis-
tribution is only known up to a normalizing constant. This, of course, is the underlying idea
of essentially all MCMC algorithms employed in Bayesian statistics.

As starting values of the chain, we use OLS estimates for µ, Φ, and Ω, the sample mean
of all yields for rQ∞, the eigenvalues of Φ̂ for λQ, and a tenth of the standard deviation of all
yields for σu (since yield pricing errors have smaller variance than yields).

28We always condition on the first observation.
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We run the sampler for 50,000 iterations. We discard the first half as a burn-in sample and
then take every 50’th iteration of the remaining sample. This constitutes our MCMC sample
which approximately comes from the joint posterior distribution of the parameters.

To ensure that the MCMC chain has converged, we closely inspect trace plots and make
sure that our starting values have no impact on the results. In addition we calculate conver-
gence diagnostics of the type reviewed in Cowles and Carlin (1996).

C.1.1 Drawing (λ0, λ1)

Every element of λ0 and λ1 is drawn independently, iterating through them in random order,
using a random walk (RW) MH step. For the conditional posterior distribution of these
parameters we have

P (λ0, λ1|θ−, X, Y ) ∝ P (Y |θ,X)P (X|θ)P (θ)

∝ P (X|θ)P (θ),

where θ− denotes all parameters except for λ0 and λ1. The second line follows because the
likelihood of the data for given risk-neutral dynamics does not depend on the prices of risk, as
noted above. For each parameter, I use a univariate random walk proposal with t2-distributed
innovations that are multiplied by scale factors to tune the acceptance probabilities to be in
the range of 20%-50%. After obtaining the candidate draw, the restriction that the physical
dynamics are non-explosive is checked, and the draw is rejected if the restriction is violated.
Otherwise the acceptance probability for the draw is calculated as the minimum of one and
the ratio of the factor likelihood times the ratio of the priors for the new draw relative to the
old draw.

C.1.2 Drawing Ω

For the conditional posterior of Ω we have

P (Ω|θ−, X, Y ) ∝ P (Y |θ,X)P (X|θ)P (θ)

where θ− denotes all parameters except Ω. Since we need successive draws of Ω to be close to
each other—otherwise the acceptance probabilities will be too small—independence Metropolis
is not an option. Element-wise RW MH does not work particularly well either. A better
alternative in terms of efficiency and mixing properties is to draw the entire matrix Ω in one
step. I choose a proposal density for Ω that is Inverse-Wishart (IW) with mean equal to the
value of the previous draw and scale adjusted to tune the acceptance probability, which is
equal to

α(Ω(g−1),Ω(g)) = min

{

P (X|Ω(g), θ−)P (Ω(g), θ−)q(Ω
(g),Ω(g−1))

P (X|Ω(g−1), θ−)P (Ω(g−1), θ−)q(Ω(g−1),Ω(g))
, 1

}

,

where g is the iteration. Here q(A,B) denotes the transition density, which in this case is the
density of an IW distribution with mean A. The ratio of priors is equal to one since we assume
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an uninformative prior, unless the draw would imply non-stationary VAR dynamics, in which
case the prior ratio is zero. The reason that some draws of Ω can imply non-stationary VAR
dynamics is that in the JSZ normalization, the value of Ω matters for the mapping from rQ∞
and λQ into µQ and ΦQ, which together with λ0 and λ1 determine the VAR parameters.

C.1.3 Drawing rQ∞

Both factor likelihood and cross-sectional likelihood depend on rQ∞, thus

P (rQ∞|θ−, X, Y ) ∝ P (Y |θ,X)P (X|θ)P (θ),

where θ− denotes all parameters except rQ∞. We use a RW MH step, with proposal innovations
from a t-distribution with 2 degrees of freedom, multiplied by a scaling parameter to tune the
acceptance probabilities. The ratio of priors is equal to one, because we have a non-informative
prior, if the implied VAR dynamics are stationary and zero otherwise, in which case the prior
ratio is zero. The acceptance probability is equal to the minimum of one and the product of
prior ratio, the ratio of cross-sectional likelihoods, and the ratio of factor likelihoods.

C.1.4 Drawing λQ

Again both likelihoods depend on this parameter, so we have

P (λQ|θ−, X, Y ) ∝ P (Y |θ,X)P (X|θ)P (θ),

where θ− denotes all parameters except λQ. We draw all three elements in one step, using
a RW proposal with independent t-distributed innovations, each with 2 degrees of freedom
and multiplied to tune acceptance probabilities. The prior ratio is one if all three proposed
values are within the unit interval and the implied VAR dynamics are stationary, and zero
otherwise. We implement the requirement that the three elements of λQ are in descending
order by rejecting draws that would change this ordering. Again the acceptance probability
is equal to the minimum of one and the product of prior ratio, the ratio of cross-sectional
likelihoods, and the ratio of factor likelihoods.

C.1.5 Drawing σ2
u

In this block the conditional posterior distribution of σ2
u is known in close form. The problem

of drawing this error variance corresponds to drawing the error variance of a pooled regression.
The condition posterior distribution is inverse gamma, because an uninformative prior on this
parameter is conjugate.

C.2 Restricted risk prices

We closely follow the methodology laid out in Bauer (2011, Appendix C), where Gibbs variable
selection (Dellaportas et al., 2002) is applied to the context of DTSM estimation. Let λ denote
a vector stacking all elements of λ0 and λ1. For the purpose of model selection, we introduce a
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vector of indicator variables, γ, that describes which risk price parameters, i.e., which elements
of λ, are restricted to zero. The parameters of the model are now (γ, θ) = (γ, λ,Ω, rQ∞, λQ, σ2

u).
The goal of course is to sample from the joint posterior

P (γ, θ|Y ) ∝ P (Y |γ, θ)P (θ|γ)P (γ).

The likelihood P (Y |γ, θ) is the product of factor likelihood and cross-sectional likelihood, as
before. The difference is that here it is evaluated by treating those elements of λ as zero for
which the corresponding element in γ is zero. The priors for the parameters conditional on
the model indicator P (θ|γ) are specified as before. The prior for the model indicators P (γ) is
such that all elements are independent Bernoulli random variables with .5 prior probability.

The parameters Ω, rQ∞, λQ, and σ2
u are drawn exactly as in the estimation algorithm for the

URP model. What is different here is we sample the vector indicating the model specification,
γ, and the parameter vector γ, which all models have in common.

For each iteration g of the MCMC sampler, we draw the block (γ, λ) by drawing pairs
(γi, λi), going through the N +N2 = 12 risk price parameters in random order.

C.2.1 Drawing λi

For each pair we first draw λ
(g)
i conditional on γ

(g−1)
i and all other parameters. If the parameter

is currently included (unrestricted), i.e., if γi = 1, we draw from the conditional posterior. If
the parameter is currently restricted to zero (γi = 0) the data is not informative about the
parameter and we draw from a so-called pseudo-prior (Carlin and Chib, 1995; Dellaportas et
al., 2002). That is,

P (λi|λ−i, γi = 1, γ−i, θ−, X, Y ) ∝ P (X|θ, γ)P (λi|γi = 1) (8)

P (λi|λ−i, γi = 0, γ−i, θ−, X, Y ) ∝ P (λi|γi = 0), (9)

where θ− denotes all parameters in θ other than λ, and λ−i (γ−i) contains all elements of
λ (γ) other than λi (γi).

29 I assume prior conditional independence of the elements of λ
given γ, and the prior for each price of risk parameter, P (λi|γi = 1), is taken to be standard
normal. The conditional posterior in (8) is not known analytically and we use a RW MH
step to obtain the draws, with a fat-tailed RW proposal and scaling factor as before. For the
pseudo-prior P (λi|γi = 0) we use a normal distribution, with moments corresponding to the
marginal posterior moments from our estimation of the URP model.

C.2.2 Drawing γi

When we get to the second element of the pair, the indicator γi, the conditional posterior
distribution is known and we can directly sample from it without MH step. It is Bernoulli,
and the success probability is easily calculated based on the ratio:

q =
P (γi = 1|γ−i, θ, X, Y )

P (γi = 0|γ−i, θ, X, Y )
=

P (X|γi = 1, γ−i, θ)

P (X|γi = 0, γ−i, θ)

P (λi|γi = 1)

P (λi|γi = 0)

P (γi = 1, γ−i)

P (γi = 0, γ−i)
. (10)

29These conditional distributions parallel the ones in equations (9) and (10) of Dellaportas et al. (2002).
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The first factor in the numerator and the denominator is the factor likelihood. The second
factor in the numerator is the parameter prior, and in the denominator it is the pseudo-prior.
The third factor cancels out, since we use an independent, uninformative prior with prior
inclusion probability of each element of 0.5, putting equal weight on γi = 1 and γi = 0. The
conditional posterior probability for drawing γi = 1 is given by q/(q + 1).30

C.2.3 Bayesian model averaging

As output from the MCMC algorithm we have available a sample that comes approximately
from the joint posterior distribution of (γ, θ). When we want to calculate the posterior dis-
tribution of any object of interest, such as for the value of the ten-year term premium on a
certain day, we simply calculate it for every iteration of the MCMC sample. In each iteration
that we use from this sample – as before we discard the first half and then only use every 50’th
iteration – different elements might be restricted to zero. We are effectively sampling across
models and parameter values, that we are taking into account model uncertainty in our pos-
terior inference. This technique is called Bayesian model averaging: the model specification is
effectively averaged out, and the inference is not conditional on a specific model but instead
taking into account model uncertainty.

30A subtlety, which is ignored in the above notation, is that the joint prior P (γ, θ) imposes that the physical
dynamics resulting from any choice of γ and λ1 can never be explosive. This is easily implemented in the
algorithm: If including a previously excluded element would lead to explosive dynamics then we simply do not
include it, i.e., I set γi = 0, and vice versa.

33



Table 1: LSAP announcements

Date Announcement Description
25 November 2008 initial LSAP announcement Federal Reserve announces purchases of up

to $100 billion in agency debt and up to
$500 billion in agency MBS

1 December 2008 Chairman’s speech Chairman states that the Federal Reserve
“could purchase longer-term Treasury se-
curities [...] in substantial quantities”

16 December 2008 FOMC statement Statement indicates that the FOMC is con-
sidering expanding purchases of agency se-
curities and initiating purchases of Trea-
sury securities

28 January 2009 FOMC statement Statement indicates that the FOMC “is
prepared to purchase longer-term Treasury
securities.”

18 March 2009 FOMC statement Statement announces purchases “up to an
additional $750 billion of agency [MBS],”
$100 billion in agency debt, and $300 bil-
lion in Treasury securities.

12 August 2009 FOMC statement Statement drops “up to” language and an-
nounces slowing pace for purchases of Trea-
sury securities.

23 September 2009 FOMC statement Statement drops “up to” language for pur-
chases of agency MBS and announces grad-
ual slowing pace for purchases of agency
debt and MBS.

4 November 2009 FOMC statement Statement declares that the FOMC would
purchase “around $175 billion of agency
debt.”



Table 2: Changes around selected policy actions, 2001-2003

Change in Change in ten-year yield
Date FFR target Actual Fitted YRN YTP
01/31/2001 -50 -4 -3 -3 0
03/20/2001 -50 -3 -3 -2 -1
04/18/2001 -50 -6 -6 -5 -1
08/21/2001 -25 -3 -2 -2 -1
10/02/2001 -50 -2 -1 -2 1
11/06/2001 -50 -2 -2 -3 1
12/11/2001 -25 -3 -4 -2 -2
05/07/2002 0 0 -1 -1 0
06/26/2002 0 -12 -11 -4 -7
08/13/2002 0 -9 -8 -4 -5
09/24/2002 0 -1 -2 -1 -1
11/06/2002 -50 -3 -2 -3 1
05/06/2003 0 -8 -9 -3 -6
Cumulative -350 -56 -54 -35 -21

Note: Changes, in basis points, in fed funds rate (FFR) target, actual ten-year yield, fitted yield,
risk-neutral yield, and yield term premium based on the Kim-Wright estimates, on FOMC
announcement days with a negative change in the risk-neutral yield during the 2001-2003 easing
cycle.



Table 3: Changes in futures-implied policy paths around LSAP announcements

Date 1m 6m 1y 2y 3y avg. 3y 3y yld. diff.
11/25/2008 -5 -6 -10 -13 -22 -12 -18 -7
12/1/2008 1 -4 -7 -18 -21 -11 -16 -5
12/16/2008 -17 -16 -12 -11 -16 -12 -13 -1
1/28/2009 0 0 5 11 15 7 8 0
3/18/2009 -1 -4 -11 -10 -11 -8 -35 -27
8/12/2009 -1 -6 -8 -3 -1 -4 -1 3
9/23/2009 0 -3 -5 -6 -2 -4 -4 0
11/4/2009 0 -2 -1 1 5 1 0 -1
Total -23 -40 -49 -49 -53 -43 -80 -37
Cum. changes -33 -27 28 107 122 62 24 -38
Std. dev. 1 2 5 8 9 6 7 4

Note: Changes, in basis points, of futures-implied policy paths at fixed horizons. Paths are linearly
interpolated if no futures contract is available for required horizon. The last three columns show
the change of the average policy path over the next three years, the change in the three-year zero
coupon yield, and the difference between the yield change and the change in the average policy
path. Also shown are cumulative changes and standard deviations of daily changes over the period
11/24/08-12/30/09.

Table 4: Changes in yields, OIS rates, and spreads around LSAP announcements

OIS rates yields yield-OIS spreads
Date 1y 2y 5y 10y 1y 2y 5y 10y 1y 2y 5y 10y
11/25/2008 -7 -14 -25 -28 -9 -14 -22 -21 -2 -1 2 7
12/1/2008 -5 -13 -21 -19 -6 -12 -21 -22 -1 1 -1 -2
12/16/2008 -17 -15 -29 -32 -8 -11 -16 -17 9 5 12 14
1/28/2009 4 6 11 14 -1 5 10 12 -4 -1 -1 -2
3/18/2009 -5 -12 -27 -38 -17 -26 -47 -52 -12 -14 -20 -14
8/12/2009 -2 -1 -2 1 0 -1 1 6 1 0 3 5
9/23/2009 -3 -5 -6 -5 -2 -4 -4 -2 1 1 3 3
11/4/2009 -2 -3 1 5 -1 -1 3 7 1 2 2 2
Total -37 -58 -97 -102 -45 -65 -97 -89 -8 -7 0 14
Cum. changes -22 -8 19 59 -45 2 31 16 -23 10 11 -43
Std. dev. 3 5 8 10 4 6 8 9 2 3 3 4

Note: Changes, in basis points, in OIS rates, zero-coupon yields, and yield-OIS spreads around
LSAP announcements. Also shown are cumulative changes and standard deviations of daily
changes over the period 11/24/08-12/30/09.



Table 5: Decomposition of LSAP effect on long-term yields

ten-year yield five-year yield
yield YRN YTP yield YRN YTP

actual -89 -97
Kim-Wright -102 -31 -71 -94 -30 -64
OLS -93 -33 -60 -93 -40 -53
OLS UB -90 -3 -85 -9
OLS LB 9 -102 0 -94
MU -93 -46 -47 -93 -48 -46
MU UB -141 48 -112 19
MU LB 0 -93 -3 -90
URP -94 -31 -62 -93 -39 -53
URP UB -71 -23 -69 -24
URP LB -7 -86 -14 -78
RRP -94 -36 -58 -93 -48 -44
RRP UB -53 -40 -59 -33
RRP LB -29 -65 -41 -51

Note: Alternative decompositions of yield changes, in basis points, on announcement days. The
first line shows actual yield changes, the following lines show changes in fitted yields, risk-neutral
yields (YRN) and yield term premia (YTP) for alternative DTSM estimates. Also shown are upper
bounds (UB) and lower bounds (LB) for the change in the term premium, based on bootstrap
confidence intervals (for OLS and MU) or quantiles of posterior distributions (for RP and RRP).



Table 6: Ten-year yield, decompositions of day-by-day changes

Kim-Wright OLS MU
Date act. yld. YRN YTP yld. YRN YTP yld. YRN YTP

11/25/2008 -21 -24 -7 -17 -23 -6 -17 -23 -8 -15
12/1/2008 -22 -24 -7 -17 -22 -5 -17 -22 -7 -15
12/16/2008 -17 -18 -7 -12 -17 -5 -13 -17 -6 -11
1/28/2009 12 12 3 9 13 -2 15 13 -2 15
3/18/2009 -52 -56 -16 -40 -53 -7 -46 -53 -10 -43
8/12/2009 6 4 1 3 5 -3 8 5 -4 8
9/23/2009 -2 -2 -1 -1 -2 -3 1 -2 -4 3
11/4/2009 7 7 2 5 7 -3 10 7 -4 11

Total -89 -102 -31 -71 -93 -33 -60 -93 -46 -47

Cum. changes 16 24 -7 31 30 -10 40 30 -12 42
Std. dev. 9 9 3 7 9 4 9 9 5 9

Kim-Wright URP RRP
Date act. yld. YRN YTP yld. YRN YTP yld. YRN YTP

11/25/2008 -21 -24 -7 -17 -23 -6 -17 -23 -9 -14
12/1/2008 -22 -24 -7 -17 -22 -6 -17 -22 -9 -14
12/16/2008 -17 -18 -7 -12 -17 -5 -13 -17 -7 -10
1/28/2009 12 12 3 9 13 -1 14 13 5 8
3/18/2009 -52 -56 -16 -40 -54 -9 -44 -54 -21 -32
8/12/2009 6 4 1 3 5 -2 7 5 2 3
9/23/2009 -2 -2 -1 -1 -2 -3 1 -2 -1 -1
11/4/2009 7 7 2 5 7 -2 9 7 2 4

Total -89 -102 -31 -71 -94 -34 -60 -94 -37 -56

Cum. changes 16 24 -7 31 30 -7 37 30 10 20
Std. dev. 9 9 3 7 9 3 8 9 4 6

Note: Decompositions of yield changes, in basis points, on each LSAP announcement day. The first
column shows actual yield changes, the following columns show changes in fitted yields, risk-neutral
yields (YRN) and yield term premia (YTP) for alternative DTSM estimates. Also shown are total
changes over all events, as well as cumulative changes and standard deviations of daily changes over
the period 11/24/08 - 12/30/09.



Table 7: Five-year yield, decompositions of day-by-day changes

Kim-Wright OLS MU
Date act. yld. YRN YTP yld. YRN YTP yld. YRN YTP

11/25/2008 -22 -22 -7 -15 -21 -7 -15 -21 -8 -13
12/1/2008 -21 -21 -6 -15 -21 -6 -15 -21 -7 -14
12/16/2008 -16 -16 -6 -10 -16 -5 -11 -16 -6 -10
1/28/2009 10 9 3 7 9 -2 12 9 -3 12
3/18/2009 -47 -47 -13 -34 -46 -8 -39 -46 -9 -37
8/12/2009 1 2 0 2 2 -4 6 2 -4 7
9/23/2009 -4 -3 -1 -2 -3 -4 1 -3 -5 1
11/4/2009 3 4 1 3 4 -4 8 4 -5 8

Total -97 -94 -30 -64 -93 -40 -53 -93 -48 -46

Cum. changes 31 20 -10 29 19 -14 33 19 -16 35
Std. dev. 8 8 3 6 8 5 7 8 5 7

Kim-Wright URP RRP
Date act. yld. YRN YTP yld. YRN YTP yld. YRN YTP

11/25/2008 -22 -22 -7 -15 -21 -7 -14 -21 -11 -10
12/1/2008 -21 -21 -6 -15 -21 -6 -14 -21 -10 -10
12/16/2008 -16 -16 -6 -10 -16 -6 -11 -16 -9 -8
1/28/2009 10 9 3 7 9 -1 10 9 5 5
3/18/2009 -47 -47 -13 -34 -46 -10 -36 -46 -24 -22
8/12/2009 1 2 0 2 2 -3 5 2 1 1
9/23/2009 -4 -3 -1 -2 -3 -4 0 -3 -2 -1
11/4/2009 3 4 1 3 4 -3 7 4 1 2

Total -97 -94 -30 -64 -93 -40 -53 -93 -49 -44

Cum. changes 31 20 -10 29 19 -11 30 19 7 24
Std. dev. 8 8 3 6 8 4 7 8 4 5

Note: See Table 6.



Figure 1: Shifts of futures-implied policy paths around key LSAP dates
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Note: Policy paths before and after five key LSAP announcements that are implied by market rates
of federal funds futures and Eurodollar futures. For details on calculation refer to main text.



Figure 2: Shift of forward curve and policy path: OLS vs. MU
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Note: Cumulative changes, in basis points, on announcement days in fitted forward rates (solid
line) and policy expectations (dashed line) together with 95% confidence intervals for changes in
expectations (dotted lines). Left panel shows decomposition based on OLS estimates, right panel
for MU estimates.



Figure 3: Shift of forward curve and policy path: URP vs. RRP
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Note: Cumulative changes, in basis points, on announcement days in fitted forward rates (solid
line) and policy expectations (dashed line) together with 95% confidence intervals for changes in
expectations (dotted lines). Left panel shows decomposition based on URP estimates, right panel
for RRP estimates.


