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The signature of an air gun array: 
Computation from near-field measurements 
including interactions 

A. Ziolkowski,* G. Parkes,$ L. Hatton,$ and T. Haugland$ 

ABSTRACT 

We designed a system to enable the signature of an air 
gun array to be calculated at any point in the water from a 
number of simultaneous independent measurements of the 
near-held pressure held [subject of a patent application]. 
The number of these measurements must not be less than 
the number of guns in the array. 

The underlying assumption in our method is that the 
oscillating bubble produced by an air gun is small compared 
with the wavelengths of seismic interest. Each bubble thus 
behaves as a point source, both in the generation of seismic 
waves and in its response to incident seismic radiation pro- 
duced by other nearby bubbles. It follows that the intcr- 
action effects between the bubbles may be described in 
terms of spherical waves. 

The array of interacting guns is equivalent to a notional 
array of noninteracting guns whose combined seismic radia- 
tion is identical. The seismic signatures of the equivalent 
independent elements of this notional array can be deter- 
mined from the near-held measurements. The seismic radia- 
tion pattern emitted by the whole array can be computed 
from these signatures by linear superposition, with a spheri- 
cal correction applied. 

The method is tested by comparing far-field signatures 
computed in this way with field measurements made in 
deep water. The computed and measured signatures match 
each other very closely. By comparison, signatures com- 
puted neglecting this interaction are a poor match to the 
measurements. 

INTRODUCTION 

The signature of an air gun array is inconveniently long and 
oscillatory. Its spectrum is multipeaked and is not minimum phase. 
Yet, despite these obvious disadvantages, the air gun has become 
the most widely employed marine seismic source because of its 
renowned reliability and signature repeatability. 

To overcome the undesirable aspects of the signature of a single 
gun, arrays of guns of different sizes are normally used together 
to create a composite source whose signature characteristics are 
more desirable. The usual design aim for such an array is that it 
should generate a seismic wave whose signature in the vertical- 
downward direction is short and sharp (that is, with a large pri- 
mary-to-bubble ratio) and whose spectrum is smooth and broad 
over the frequency band of interest (and preferably minimum 
phase) (Giles and Johnston, 1973; Nooteboom, 1978; Brandsaeter 
et al, 1979). 

Although much progress has been made in trying to meet this 
aim, there is a chronic problem in determining the signature. 

Once the number of guns in an array is sufficient to create a 
signature whose spectrum is adequately broad and smooth, the 
dimensions of the array are not small compared with the wave- 
lengths of sound generated. This has two consequences for the 
seismic radiation pattern of the array. First, it forces the signature 
to vary with direction. Second, it causes the signature of the 
pressure wave to vary with distance; that is, in a given direction, 
the phase spectrum of the pressure wave is distance-dependent. 
It becomes independent of distance only in the “far field” of the 
array at distances greater than about D2/h, where D is the di- 
mension of the array and A is the wavelength of interest. 

Far-field measurements of the seismic radiation of an air gun 
array cannot normally be made on the continental shelf, because 
there is insufficient depth of water to prevent the measurements 
from being severely contaminated by sea-bottom reflections. The 
measurements must be made in deep water, and it is extremely 
difficult to determine the true relative positions of the array and 
measuring device with any precision. The measurement of the 
far-field radiation pattern is thus fraught with difficulties, ‘and it 
makes sense to try to calculate this signature from near-field 
measurements. 

If interactions between the air guns within an array were ne- 
gligible, it would be possible to superpose the signatures of in- 
dividual guns to calculate the far-field signature of the array. Since 
the dimensions of an air gun bubble are very small compared with 
a wavelength, the distance at which the phase spectrum of the 
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FIG. 1. Comparison of (a) signature measured 150 m below a seven- 
gun array with (b) signature computed by superposing individual 
gun signatures. Filter setting: out 360 Hz. 
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FIG. 2. Same signatures as in Figure 1, but with 40 Hz high-cut 
filter applied. (a) is measured signature, (b) is computed by simple 
superposition. 

radiated pressure wave becomes independent of range from the 
gun is very small, and measurement of this wave can be made 
very close to the gun. This approach has obvious attractions. 

However, interactions between the air guns are not negligible, 
especially at low frequencies. Superposition does not apply, and 
this approach fails to yield the correct signature. 

We offer a solution to this problem which takes the interactions 
into account. It requires measurements of the pressure field near 
each gun in the array, from which the signature may be calculated 
in any direction and at any distance. In particular, we may deter- 
mine the far-held radiation pattern of the array, as required. 

INTERACTION, SUPERPOSITION 
AND THE LAW OF CONSERVATION OF ENERGY 

We may superpose the wave fields of a number of sources, 
each acting independently, to obtain the resultant wave field of 
all the sources acting together, provided none of the sources is 
affected by the wave field produced by any of the others. That is, 
superposition applies if interaction between sources is negligible. 
Interaction is simply the wave field of one source affecting the 
way another source behaves, and vice versa. 

Figure la is a measured far-held signature of a seven-gun 
array in which the hydrophone is placed 150 m below the array 
in deep water. Figure lb is a calculated far-field signature equal 
to the superposition of individual far-held measurements of the 
seven guns in the array. The two signatures are not identical; 
therefore, superposition does not apply. There are obvious errors 
in the amplitude of the calculated signature; there are also im- 
portant errors in phase which are not very clearly recognized in 
this broadband display. 

Figures 2a and 2b show the same two signatures filtered with a 
40 Hz low-pass filter. The amplitude discrepancy is still as ap- 
parent, but the phase distortion is now more noticeable-the 
peak-to-bubble period of the calculated signature is clearly shorter 
than that of the measured one. 

Comparing Figures I and 2, we see that phase differences be- 
tween the calculated and measured signatures are more dis- 
cernible at low frequencies. This indicates that the superposition 
assumption breaks down at low frequencies. Or, conversely, 
interaction between air guns within the array is more important 
at low frequencies than at high frequencies. 

We may demonstrate the accuracy of this deduction by con- 
sidering the implications for the law of conservation of energy 
which arise when interaction between sources is ignored. 

Consider two point sources a distance D apart, and consider a 
point Q in the far field a distance r from both sources as shown in 
Figure 3. Let the pressure wave at Q radiated by the first source, 
acting independently, be pi (t), and let the corresponding wave 
from the second source be ~z(t). Since Q is in the far held, the 
particle velocity wave is in phase with the pressure wave (Ziol- 
kowski, 1980, Appendix 2) by definition, and we have 

u,(t) = M, i = 1 or 2, (1) 

where p is the density of the water, and c is the speed of sound. 
The energy radiated by either source on its own is 

c zz 

E, = 4ar’ U;(f) P,(ddl 
Jn (2) 

47rr2 x =- r pf(t)dt, i = 1 or 2. 
PC Jo - 
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(1) Assume there is no interaction between the sources 

In this case each source is unaffected by the other, and the ra- 
diated energy of the two sources together is equal to the sum of 
the two acting separately: 

E=E,+E*=e 2 c v =pf(t)dr 1 (3) 
P‘ ,=I 0 

We may apply the law of superposition to obtain the resultant 
wave incident at Q, which is 

Pa(r) = p,(r) + P*(t) = i p,(t). (4) 
1=1 

(2) Assume D is small compared with a wavelength A 

Then the two sources taken together are a point source which 
has no directivity pattern. The radiation has spherical symmetry 
at the frequencies of interest. We may again calculate the energy as: 

47Fr2 r 
E=- 

i 
p:,(t)& = 

PC 0 
5 [ [ !, P,(i)12dl. (5) 

Now the two expressions for the energy [equations (3) and (5)] 
are not the same. If for example p, (t) = pr (t), equation (3) would 
yield E = 2E,, which is consistent with the law of conservation 
of energy, while equation (5) would yield E = 4E,, which is not. 
It follows that if the two sources are far enough apart that inter- 
actions between them may be neglected, they must also be far 
enough apart to have a directivity pattern. The ~onstr~crive inter- 
ference at Q is compensated by destructive interference in other 
directions, such that the law of conservation of energy is obeyed. 
In order for this interference pattern to exist, the distance D must 
be of the order of a wavelength or larger. If D is less than A, we 
cannot assume superposition applies, because we would then 
violate the first law of thermodynamics, as we have shown above. 

We may therefore make the following observation. Interaction 
between sources is significant if the ratio of the distance between 
them to the wavelength, D/h, is less than I. Since A = c/f, it 
follows that interaction is more important at low frequencies than 
at high frequencies, as observed. 

THE THEORY OF INTERACTION BETWEEN BUBBLES 

Previous work 

The problem of interaction between the oscillating bubbles of 
an air gun has been examined many times, and the conclusions 
are always different. Ziolkowski (1970 p. 158), for example, 
said that it is not even a problem: “As long as bubbles from in- 
dividual guns are independent-at least three bubble diameters 
apart-the resultant waveform can be predicted by superposing 
the individual waveforms.” This remark was made out of sheer 
ignorance and is retracted here. The maximum bubble diameter 
is small compared with the shortest wavelength of interest (Ziol- 
kowski, 1970); three bubble diameters is still jiiirly small com- 
pared with the shortest wavelength of interest, so interaction be- 
tween bubbles with that separation will be significant at all 
frequencies. 

Giles and Johnston (1973) produced some not very clear evi- 
dence to reach roughly the same conclusion as Ziolkowski (1970). 
Their criterion for minimum gun separation to avoid significant 
interaction was accepted by Nooteboom (1978) who gave it a 
formula. It could be argued that everyone means something 
slightly different by the words “significant interaction.” How- 
ever, it seems what we have shown above is that no definition 

could be complete without including a reference to the frequency 
range of interest, and it is exactly that which is missing from the 
discussions of interaction in the three papers cited immediately 
above. 

Lugg (1979) did some very careful work to show that inter- 
action between two identical 120 inches3 (1.97 e) guns is just 
noticeable when the guns are 480 inches (12.2 m) apart. The re- 
sults shown by Lugg in his Figure 62 are measurements made 
with a wide filter setting which include the higher frequencies at 
which we would expect negligible interaction at such distances. 
The importance of the interaction would be even more noticeable 
if these high frequencies were filtered out. 

Safar (1976) discussed the interaction that can occur between 
identical bubbles which have small oscillations about an equilib- 
rium value. Such bubbles, which do not closely resemble the 
bubbles produced by air guns (Ziolkowski, 1977), can be modeled 
as damped linear oscillators. The interaction can then be treated 
as a change in the radiation impedance load seen by each oscillator. 
One key feature of Safar’s analysis is that the interaction is treated 

D- -i 0 : 

r r 

\ 

\ 
ii a 

FIG. 3. The sound wave generated by two point sources a dis- 
tance D apart, as seen at a point Q in the far field a distance r from 
each source. 
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FIG. 4. The signature seen at a hydrophone in the vicinity of an air gun array. The array of interacting bubbles behaves as if it were an equiva- 
lent array of independent, noninteracting notional bubbles in the same locations. 

as a modulation of hydrostatic pressure, which is exactly what 
we do here. 

A more general approach to the interaction problem was prc- 
sented by Sinclair and Bhattacharya (1980) who dealt with non- 
impulsive sources. Their analysis clearly indicated that inter- 
action is a frequency-dependent phenomenon and that it is the 
modulation of the hydrostatic pressure field which is responsible. 
They were not sure how to proceed with impulsive sources but 
concluded that “it is probable that the linear wave theory would 
be adequate to describe the coupling between sources. but that 
the non-linearity of the radiator itself (e.g., the air bubble) would 
have to be taken into account” (p. 331). We agree. 

Our approach 

Consider first a single air gun, consisting of a chamber of air at 
high pressure which is suddenly opened. The escaping air forms a 
bubble which expands very rapidly against the water. As it expands, 
the pressure in the bubble drops, and even drops to below the 
hydrostatic pressure of the water, because the inertia of the mov- 
ing water carries the expansion through this equilibrium position. 
The expansion then begins to slow down (because the pressure 
differential is now acting inward) and then finally stops. The 
bubble then collapses, overshooting the equilibrium position again 
while the internal pressure increases. The collapse of the bubble 
is halted by the rapid internal pressure build-up; at this point the 
oscillation is ready to begin again. 

The oscillating bubble is a seismic wave generator. Because 
the bubble diameter is always small compared with the seismic 
wavelengths, this wave has spherical symmetry at seismic fre- 
quencies. As shown in the Appendix, the phase spectrum of the 
pressure wave generated by the bubble is the same at all distances 

at which the linear elasticity theory (Hooke’s law) applies. The 
amplitude of the wave is inversely proportional to the distance. 
Thus, at a distance r the transmitted wave would be 

where the time origin has been chosen as if the wave had originated 
at a point 1 m from the center of the bubble, and r is in meters. 
The so-called “afterflow term” (Keller and Kolodner, 1956; 
Kramer et al, 1968) is absolutely negligible in the range where 
the linear wave theory applies (see the Appendix). 

The driving mechanism behind this oscillation is the pressure 
difference P,,(t) between the inside of the bubble P(r) and the 
hydrostatic pressure PH. The hydrostatic pressure remains virtually 
constant throughout the oscillation because the movement of the 
buoyant bubble towards the surface is very slow. Thus 

P<,(f) = P(t) - PH. (6) 

If Pd(t) is positive, it tends to make the bubble expand, or 
slow down the collapse. If Pd(t) is negative, it tends to make the 
bubble collapse, or slow down the expansion. 

Now let us consider IZ guns. If they were fired independently, 
the driving pressure at the ith gun would be 

P&(f) = P,(f) - p,4,, (7) 

When the guns are fired together, this behavior is modified. In 
particular, the pressure around each bubble is no longer con- 
stant. Sound waves from many directions impinge on each bubble, 
modifying its behavior. 

These sound waves are the radiation from the other bubbles, 
and they contain energy at seismic frequencies. At the ith bubble 
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there will be pressure differences between one side of the bubble Pii = f:(t) - PHI(f), (9) 
and the other, but at seismic frequencies these pressure differ- 
ences will not be discernible, because the bubble is small com- 

where primes indicate the change in behavior due to interaction. 

pared with the seismic wavelengths. At these wavelengths the 
The dynamics of the ith bubble are affected by the changes in 

bubble appears to be a point. The effect of this radiation field on 
water pressure. Therefore the rates of expansion and collapse of 

the bubble is simply to add a time-varying component to hydro- 
the bubble are different. The internal pressure f,(f), in the ab- 

static pressure. The water pressure at the ith bubble thus be- 
sence of any influence from other bubbles, is different from the 

comes time-variant: 
internal pressure P: (I) when this influence is taken into account. 
It follows that the seismic wave p:(t), generated by the ith bubble 

PHI(~) = PHi + m,(t), (8) under the influence of the other bubbles, will be different from 

where m,(f) is the modulating pressure field at the ith bubble. 
Thus the pressure in the water is the sum of hydrosfutic pressure 
and the d&mnic term m;(r). 

the wave p,(c) generated when the bubble is independent. Com- 
bining equations (8) and (9), we have 

The driving pressure in the bubble of the ith gun is the difference 
between the internal pressure and the pressure in the water 

PA;(r) = [P;(t) - m,(t)] - PH,. (10) 

Comparing equations (7) and (IO), we see that the modified 

FIG. 5. (a) The signature I m away from a 95 inches3 air gun at FIG. 6. (a) The signature I m away from a 50 inches3 air gun at 
2000 psig firing pressure. (b) The signature registered by the same 2000 psig firing pressure. (b) The signature registered by the same 
hydrophone in the same location when the full array is firing. The hydrophone in the same location when the full array is firing. The 
time scale is 50 msec per division. The amplitude scales are not time scale is 50 msec per division. The amplitude scales are not 
necessarily the same. necessarily the same. 
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FIG. 7. Geometry of the array, showing the positions of the near-tield hydrophones. The distance a = I m. 

bubble behaves as if it were an independent bubble, oscillating 
in water with constant pressure PHI, with its internal pressure vary- 
ing as 

P:(t) - rni(f)> 

with the net result that its signature becomes p:(t). 
We do not know what P,(t) or p: (t) are, of course. These are 

merely names given to modified internal pressure and radiated 
signature. The point is that we have described the interacting 
bubbles in such a way that they are now equivalent to independent 
“notional” bubbles with modified signatures p:(t). Since the 
bubbles do not change greatly in size under the influence of this 
interaction, they are all still small compared with the wavelengths 
of seismic radiation they radiate, and their radiation has spherical 
symmetry. If we place hydrophones in the radiation held of these 
bubbles, we can write the pressure field that they will see as 
follows: 

p,(t) = i L Pl(Gj), (11) 
i= I ‘rj 

t,, = t - 
'iJ - 1 

(12) 
c 

and rrj is the distance from the ith bubble to the jth hydrophone, as 
shown in Figure 4. 

If we know the geometry, that is the distances T,,, we can see 
from equation (I 1) that there are n weighted unknown signatures 

p:(t) which are combined, with phase delays, to yield the mea- 
surable signature Pj(t) at the jth hydrophone. If we have IZ such 
hydrophones, we may make n independent measurements to solve 
for the II unknowns 

Pl(r) = ,!, k P:Ctil)> j=l,2,...n. (13) 

In summary, we can solve the problem of interaction between 
oscillating bubbles, provided we make n independent measure- 
ments of the pressure wave field surrounding these bubbles and 
provided we place our hydrophones in the linear radiation held. 

SIGNATURE PREDICTION FROM NEAR-FIELD 
MEASUREMENTS 

We need n independent hydrophones, each of known sen- 
sitivity such that the received voltage at each hydrophone is 

h, 0) = s, 1 P, 0). (14) 

From the form of equation ( 13) it is clear that we can make life 
simple for ourselves if we put the hydrophones in the right places, 
that is, if we choose the r,, carefully. In particular, if we try to put 
one hydrophone very close to each gun, then the biggest term in 
the n-term summation at any hydrophone will be the wave gen- 
erated by the nearest gun since the amplitude varies inversely pro- 
portional to the distance from the gun. We can obviously exploit 
this information in our solution of equation (13). 

Figures 5 and 6 show the effect of interaction on the near-field 
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measurement of two guns in a subarray. In both cases the upper 
signature is an unfiltered measurement of the pressure signature 
P,(t) at 1 m from the gun, fired on its own; the lower signature is 
measured in the same place with all guns fired together. (The 
amplitude scale is not the same on all signatures.) The lower 
signature is the weighted sum of all the modified signatures 
PI (t), as given by equation (13). However, we note that as a result 
of our geometry (see Figure 7), the biggest contribution to the 
measured signature is the weighted signature from the nearest gun. 

Equations (13) may be solved iteratively (with such geometry), 
or by some linear inverse method, to obtain the n modified in- 
dependent signatures P: (t), given the n measurements. Once the 
signatures are known, equation (13) may be used in reverse, that 
is, to predict the signature at any point in the water. 

Figure 8 shows a comparison of a measured far-field signature 
of an air gun array with calculated signatures. Figure 8a is the 
prediction made from near-field measurements, described above, 
including interaction and assuming a sea surface reflection 
coefficient of - 1 .O; Figure 8b is the measured signature; Figure 
8c is the prediction made from far-field measurements of the 

a 

b 

C 

I I I 

0.0 0.1 0.2 

seconds 

FIG. 8. Comparison of (a) the far-field signature computed from 
near-field measurements taking the interactions into account, with 
(b) the signature measured 150 m below the full seven-gun array, 
and (c) the signature computed by simple superposition of the seven 
independent signatures, neglecting interaction. 

guns fired independently, with interaction ignored, that is, as- 
suming linear superposition applies. Clearly, linear superposition 
does not apply. The computation based on the interaction theory 
described above gives a result very close to the measurement. 
Figure 9 shows the same three signatures as in Figure 8, but they 
have all been filtered with a 40 Hz high-cut filter. Agreement be- 
tween measurement (b) and the calculation including interaction 
(a) is very close. The agreement between measurement (b) and 
the calculation neglecting interaction (c) is very poor. This rein- 
forces our contention that it is very important to include the 
interactions. 

There are two problems which can arise in making these pre- 
dictions. One concerns the relative velocity of the hydrophones 
and the bubbles in operation. The other concerns the wave propaga- 
tion through the water containing bubbles. 

The first problem is simple to understand, but it may not be so 
easy to solve. The gun array is towed through the water at about 
5 knots in normal operation. When the guns are fired, the bubbles 
oscillate in water through which the guns, gun harness, and 
hydrophones are towed. There will be some drag in the direction 
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FIG. 9. Same signatures as in Figure 8, but with 40 Hz low-pass 
filter applied. (a) Computed including interaction; (b) measured; (c) 
computed neglecting interaction. 
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of the boat, but the bubbles will tend to be left behind. Their 
buoyancy will also tend to make them rise. Thus, between the 
ith bubble and the jth hydrophone there will be a closing relative 
velocity at time t of v,-(t). The distance between the ith bubble 
and the jth hydrophone becomes 

rij - t . vij(t), 

such that the modified equations (13) become 

Pi(t) = i c ) & Pi(tij), j = 1, 2, . n. (15) 
t=l B Y 

In our computations we have ignored the velocity term, but it is 
clear from equation (15) that its importance is greatest when the 
hydrophone-bubble separation r’, is least. 

The second problem concerns the inhomogeneity of the water. 
The wave field generated by each gun must propagate through 
the water. But this water contains bubbles. Domenico (1981) 
showed that the influence of bubbles on the attenuation and 
velocity of propagating sound waves can be enormous. We have 
neglected such effects here. Are we justified in doing so? We 
believe we are. 

In his experiment, Domenico created air curtains in a pool of 
water through which the sound waves had to propagate. Our 
situation is different. There is an enormous body of water through 
which the sound wave may propagate, and because there are only 
a few bubbles, each of which is small compared with a wavelength, 
their influence on the waves can be only slight. We believe we 
may ignore the effect the bubbles have on the overall compressi- 
bility of the water. Our experimental results confirm this. 

CONCLUSIONS 

We present a theory of interactions between the bubbles pro- 
duced by an air gun array which shows that the array is equivalent 
to a notional array of noninteracting oscillating bubbles. Each 
of these notional bubbles emits a propagating spherical pressure 
wave whose amplitude decreases inversely with the distance 
and whose phase spectrum is invariant with distance. If there 
are n guns in the array, we need n independent measurements of 
the pressure field in order to determine the n notional source 
signatures. The measurements are best made in the near field. 

Once these rz signatures have been determined from the mea- 
surements, it is a simple matter to determine the pressure signa- 
ture at any point in the water. In particular, we may compute the 
far-field signature of the array in any direction. This is confirmed 
by experiment. The interaction theory therefore allows us to 
compute the full directivity response of the array from near-field 
measurements made in operation. Our method has thus made the 
conventional deep-water measurement of “the far field signature” 
redundant. 

In summary, we present a method which is a deterministic 
solution to the problem of finding the far-field signature of an air 
gun array in any direction. All it requires is an adequate number 
of measurements of the near-field pressure field. Because it is 
deterministic, our method places no special constraints on the 
required phase spectrum qf the outgoing wave. For example, there 
is now no need to throw away useful signal energy in order to 
ensure that the downward-traveling wave has a large primary:to- 
bubble ratio. This so-called desirable characteristic has been an 
industry requirement only because it has been necessary to resort 
to statistical techniques to find and extract the signature from the 
recorded data. No& we have a deterministic method, and we are 

free to design the array to generate a signal with the power spec- 
tral characteristics we desire, without regard to the phase. The 
issues involved in the design of such an array are, however, 
beyond the scope of this paper. 
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APPENDIX 
THE PRESSURE FIELD NEAR AN OSCILLATING BUBBLE 

A much-cited paper in the literature on the radiation from air 
guns is Keller and Kolodner (1956). They derived the expressions 
for the particle-velocity function and the pressure field around an 
oscillating bubble. using linear elasticity theory. Their expression 
for the pressure field contains two terms: a 1 /r term and a 1 /r4 

term. Throughout this paper we have used an expression for the 
pressure field which contains only the first term. The purpose of 
this appendix is to show that although this second “afterflaw” 
term does exist, it is absolutely negligible, has no place in the 
linear elasticity theory, and therefore had no business to be in- 
cluded by Keller and Kolodner (1956). 

First we show that this afterflow term is not consistent with the 
linear elasticity theory and Newton’s second law. Second, we 
show how Keller and Kolodner were able to make the mistake of 
including it in their analysis. 

Keller and Kolodner began with the wave equation 

C’Q,=$CJ, (A-1) 

in which 4 is velocity-potential, and c is the (constant) speed of 
sound in water. This equation is valid for a homogeneous linearly 
compressible fluid with a bulk modulus K and density p, such that 

K 
c2 = - 

P’ 
(A-2) 

Applying this equation to the radiation field around a spherical 
oscillating bubble, and assuming that there are only outgoing 
waves, they gave the solution 

dJ = + .f@l)> (A-3) 
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where 

r - u. 
t,=t-- 

c ’ (A-4) 

a() is the equilibrium radius of the bubble, r is the distance from 
the center of the bubble, and J‘is an unknown function. 

The particle velocity is extracted from the velocity potential as 
follows: 

II - $ ..f‘(t,) - &)> (A-5) 
rc 

where the prime indicates differentiation. (Strictly speaking, par- 
ticle velocity is minus the partial derivative of velocity potential 
with respect to distance. But we used this sign convention to 
maintain it the same as Keller and Kolodner’s.) At this point 
Keller and Kolodner used Bernoulli’s equation to relate the 
pressure field to the particle velocity. However, we can find the 
pressure directly using Newton’s second law. First we find the 
particle acceleration by differentiation of equation (A-5) with 
respect to time 

an@,) 
a(t,) = ~ 

at 

=- Jq,) -LS”(t). (A-6) 
rc 

Next we find pressure from particle acceleration using Newton’s 
second law: 

P(tr) = i - Pa(tr)dr 

= - fJ’(t,) + a constant. (A-7) 

As r tends to infinity, p(t,) tends to zero; therefore, the con- 
stant of integration in equation (A-7) is zero, and we have 

p(t,) = - %‘(tr). 
r 

(A-S) 

which is the formula we have used throughout. There is no 1 /r4 

term. 
Let us now follow the analysis used by Keller and Kolodner, 

continuing where we broke off [after equation (A-5)]. They re- 
lated particle velocity to pressure via Bernoulli’s equation: 

(A-9) 

which they write as 

The problem is that the wave equation and Bernoulli’s equation 
are not compatible. The wave equation, with constant speed of 
sound, is valid for linear elastic fluids in which the particle velocity 
is very small. The Bernoulli equation does not depend upon in- 
finitesimal deformations, and it is applicable in a much wider 
sense than the linear wave equation. Thus there must be a prob- 

lem in reconciling these two equations. The one thing they have 
in common is that they have both been derived using Newton’s 
second law. 

The first step that Keller and Kolodner took in this process of 
reconciliation was to make the approximation 

P(r, 4 c-7 ap (14 - = (A-l I) 
P ’ P 

implied by their version of Bernoulli’s equation. Equation (A- I 1) 
is valid only for incompre,s.sihle fluids, in which the speed of sound 
must be infinite. It is approximately valid for the linear elastic case. 
This approximation was never mentioned in their paper and is the 
source of all future difficulty. When they substituted for particle- 
velocity squared into equation (A- IO), they derived the following 
expression for pressure: 

P(r, 4 - = 
P 

- +t,, -$Jitd 

1 .r’(t,) --I + 2f(t,).f’(t2) 
(A-12) 

2c cr’ r’ 

from which they chose to retain the first two terms and drop the 
last two. They do not examine the relative magnitudes of the terms. 

In summary, we may make the following conclusion. Since the 
wave equation and Bernoulli’s equation are both based on New- 
ton’s second law, the solutions for the pressure wave and particle 
velocity function must be derivable from each other using New- 
ton’s second law, if the solutions are to be consistent. This must 
be true whatever level of approximation is used. If the linear 
elasticity theory is used, infinitesimal deformations are implied. 
That is, the particle velocity is very small compared with the 
speed of sound. It follows that particle velocity squared is ab- 
solutely negligible, and in the linear elasticity theory there is no 
room for the afterflow term. 

Let us look at the spectra of the radiated pressure and particle- 
velocity waves, for the linear elastic case. Define the Fourier trans- 
form F(u) of f(tr) as 

(A-13) 

After differentiation with respect to time, we have 

x .f’(t,) = f 2nTTj~F(~)e’~‘“‘r dv. (A- 14) 
-z 

We may take the Fourier transform of equation (A-5) to yield 
the spectrum of the particle-velocity function 

u(u)=-+[++y]F(u). (A-15) 

Since there are two terms in brackets which are 90 degrees out of 
phase, one of which is distance-dependent while the other is not, 
it follows that the phase spectrum of u (t, ) varies with distance r. 
On the other hand, if we take the Fourier transform of equation 
(A-8) to obtain the spectrum of the radiated pressure function, 
we find 

P(V) = - e 2TrivF(u), 
r 

(A-16) 

whose phase is invariant with distance I-. 


