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THE SIGNATURE OF FIBER BUNDLES

JAMES  A.  SCHÄFER

Abstract. Let V-+Z1+ A' be a locally trivial fiber bundle in the

category of oriented topological manifolds. It is shown that if the

identity component of the structure group G has finite index,

then (signature of Z)=(signature of X) • (signature of Y).

Let F—>-EJ?+B he a locally trivial fiber bundle such that

(1) E, F, B are closed, oriented topological manifolds.

(2) E, F, B are coherently oriented, that is, the orientation of Fand B

determine that of E.

In this situation, does it follow that a(E)=o(B)-cr(F), where <x( )

denotes the signature homomorphism?

That additional conditions are necessary is shown both by Kodaira [4]

and Atiyah [1] when they produce a locally trivial fibering of a complex

surface by a complex surface such that the total space has a nonzero

signature. In fact, in the smooth case, Atiyah produces a formula comput-

ing a(E) and showing the dependency on the fundamental group of B.

The approach of this paper is to look at the structure group G of the

bundle and determine conditions on G in order to obtain an affirmative

answer to the above question. If G is any topological group, let Y = G¡Ga,

where G0 is the connected component of the identity. The main result is the

Theorem. Let G be a locally compact, finite dimensional topological

group such that \Y\ is finite. If F-+E2+B is any oriented locally trivial

topological fiber bundle with structure group G, then oE=ctBcrF.

Remark 1. The theorem obviously remains valid if the structure

group of the bundle is not, a fortiori, G, but can be reduced to G.

Remark 2. The hypothesis that G he locally compact, finite dimen-

sional only exists to insure that G->T possesses a local cross section. Any

other hypothesis on G insuring this is equally valid. See [3], for instance.

Proposition 1.   lfY = (e), then oE—aB-aF.
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Proof. This is essentially the theorem of Chern-Hirzebruch and

Serre in [2]. One only needs to check that ttx(B) acts trivially on H*(F).

However this follows from the following two well-known facts.

(a) Let G be any group and BG the classifying space for G. If F is any

left G-space, then the action 6:tt1(Bg)xH9(F)—'H<'(F) in the bundle

EQxGF~*-Ba is given by 6i&, u)=y^(u) whereyeG is any representative

of 3aG7r0(G).

It follows that if G is connected, then the action is trivial.

(b) Let (B, £', G,p') be the associated principal bundle to F.+E1+B,

so that £=£' x GF. Consider the following diagram.

F—v E = E' x  GF -^B

II    ,  î        , Î      .
F—> E= E' x o0F^-* E'IG0 = È

Since G-+T has a local cross section, the columns are locally trivial fiber

bundles with structure group G and fiber T, where G acts on T via left

translation. If we extend the structure group to T, those columns become

principal T bundles. The middle row F-+£?L,B is a G0-bundle.

Since B and F are manifolds and Y is finite, it is obvious that all the

spaces involved are closed manifolds. Therefore we may apply Proposition

1 to the middle row and conclude a(E)=a(B)o(F).

Now since the two columns are principal T-bundles, i.e. finite covering

spaces, it is clear that in order to prove the theorem it is sufficient to

demonstrate the following result.

Theorem. Let X be a closed, connected, oriented topological manifold

and T a finite group acting on X without fixed points and preserving the

orientation. Then o(X)=\V\a(X¡Y).

Proof. In [6] there are constructed, for any oriented euclidian bundle

i over a sufficiently nice space, rational Pontrjagin classes, or equivalently

Hirzebruch classes, 1(c). These classes satisfy naturality and Whitney

formulas and are the rationalization of the ordinary Pontrjagin or

Hirzebruch classes if £ happens to be a vector bundle. Moreover if l(M)

denotes l(rM) for M an oriented topological manifold, then (l(M), [M]) =

a(M).
Now if Xl+XjT is a covering map, it is a local homeomorphism and so

induces a map dTf.TX-^-rx¡T which is an isomorphism on fibers i.e.,

■n*(rX¡V)=rX. Therefore by naturality of the /-classes, tt*1(X¡T)=1(X).
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But since X^X/Y is a finite covering, tt+ [X]=\T\-[XIY]. It follows that

a(X) = (l(X), [X]) = (tt*1(X¡Y), [X])

= (l(X¡Y),TT^[X]) = \Y\a(X¡Y).
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