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Abstract. The motivation for this work was a calculation by Oshanin of the
image of the signature homomorphism from the special unitary cobordism

ring into the integers. Here we compute this image for symplectic cobor-

dism. This is accomplished by proving two divisibility theorems and then

giving examples to show the theorems are the best possible.

I. Introduction. If G equals any of the stable groups O, SO, Spin, U, SU or

Sp we let ß* denote its associated cobordism ring, BG its classifying space

and MG its Thorn spectrum. For any oriented manifold M we denote its

signature by t(M) (see e.g., Vick [23, p. 166]). For G = SO, U, SU or Sp

there is a homomorphism t: ß£ -» Z, the integers, defined by t[M] = t(M).

Conner and Floyd [1] showed that Image(T: ñ|^-> Z) ç 2Z for k i- 0 (4)

while Image(T: ßfg17 -> Z) g 2Z. Oshanin [13] proved a divisibility theorem

and provided examples of SiZ-manifolds of minimal signature to show

ImageíV: ßgf+4-^Z) = 16Z,

Image(T:Bf¿U8->Z) = 2Z,

Image(T:ßf6li^Z) = Z.

We will use a similar plan of attack to show

Imagefj: ß|£+4-> Z) = 16Z,   Image(r: ß,^+8 -> Z) = 4Z,

Image(r: ßf£t+16 -» Z) = 2Z,   Image(r: ßffA -> Z) = Z.

Nigel Ray [14] has computed ß* for ai < 20 and David Segal [18] has

shown that there exists [Af ] E £2ff with [Af] = [RP(2)]16 in ß^2 (RP(2) is the
real projective plane). Hence the top tangential Stiefel-Whitney number of Af

is

w32(t)[M] = W32(t)[RP(2)]16= w2(t)[RP(2)] = 1

(from [10, p. 53]) so Af has odd signature. Also, there is a forgetful

homomorphism ß|p -» ß^ giving an upper bound on the size of Image(r:
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254 L. P. JONES

ß|p -» Z). Using the above we can form the following list (see §V for details).

4k 8 12 16 20 24 28 32

Image(T: ßf£ -» Z) 16Z 4Z 16Z 2Z 16Zor

32Z

2Z

4Zor

8Z

16Zor

32Z

Note that since Image(r: ßff -» Z) = Z there is a containment relation

Image(r: ß$ -> Z) ç Image(T: ^+32-> Z)

suggesting the possibility of periodic behavior like that in the SU case. In

what follows we will provide examples of symplectic manifolds in dimensions

20, 24 and 28 with signatures 16, 4 and 16 respectively. We will prove the

following theorems.

Theorem II. If[M] is in ñf^+16, then t[M] is even.

Theorem III. If[M] is in 0&+8» then r[M] = 0 (4).

Floyd [3] has defined a subalgebra P c ß*. We prove

Theorem I. If[M] is in P4k+2, then w4k+2(r)[M] = 0.

Floyd [3] proved that Image(ñs$, -> ß£) Ç P* so that if [Af] E ßffk+16 then

w32*+i6(t)[A/] = w32k+X6(T)[Nf = w4k+2(r)[N], some N E P4k+2. This yields

>"32*+16(T)[M] - 0

so M has even signature, establishing Theorem II. Theorem III also follows

from Theorem I, but not so easily!

The background material for the proof of Theorem III is given in the next

section. The proof is in §IV while §V gives the examples necessary to show

that the theorems are the best possible. §VI contains results on the signature

of Spin manifolds.

The first five sections contain results of a thesis written under Professor

Peter Landweber. §VI was also written under his guidance. His knowledge

and encouragement were greatly appreciated. The author wishes to thank

Professor Raphael Zahler for a series of informative meetings while the

author and Professor Landweber were geographically separated. Finally, the

author is indebted to the referee, Nigel Ray, for carefully reading the original

version of this paper and making many suggestions about clarifying and

condensing the exposition and to Ulrich Korshorke for his helpful

conversations. Details of calculations may be found in the author's thesis.

II. Notation and background. Here we give notation and references used in

§§III and IV. We will use the following universal characteristic classes.
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Class Name

w¡ E 77' (BO; Z/2Z) Stiefel- Whitney

pso e ¡¡At ̂ BS0. zj i j)    Pontrjagin

pfp E 7T4' (BSp; Z) Symplectic Pontrjagin

c¡EH2i(BU;Z) Chern

For an exponent sequence R = (ai,, ..., nk) we define the degree of 7Î as

\R\ = "2jnj and have characteristic classes

sR E 77l*l (BO; Z/2Z) a (Z/2Z)[w„ w2, w3,... ],

s«0 E 774l*l (BSO; Z/2Z) = Z[ \ ][pxS0,pï0,p3S0,...],

'S* E TT4I*I (7?Sp; Z) » Z[pf,p|P,pf,... ].

These may be defined in terms of symmetrized monomials as described in

Milnor [10, pp. 186-190], using the fact the cohomology groups mentioned

are built up from symmetric functions. (For example, w¡ = s'A| where A, =

(0,..., 0, 1).) An exponent sequence R = («,,..., nk) corresponds to a

partition

1 12 2 k k

Here we perpetuate the convention of Floyd [3] that an element of the

cohomology of BG is written with the same symbol as its Thorn image in the

cohomology of Af(7. The characteristic numbers he obtains are normal

numbers and we will use jÄ[Af], s£0[M] and 'SR[M] to mean normal

numbers.

Floyd [3, p. 77], describes the Hopf algebra A' = the (Z/2Z)-vector space

with basis {sR). We let S, T, T+, Pk and P be as in Floyd [3, p. 78], so there

are inclusions and identifications as follows

S cT cA' 2* H*(BO; Z/2Z).

We will write ° for the Hopf algebra product of Floyd [3]. For a given

manifold we will denote its tangent and normal bundles by t and v respec-

tively.

HI. The proof of Theorem I. The original proof that w4k+2 vanishes

tangen tially on P4k+2 used the Landweber-Novikov operations (Landweber

[9] and Novikov [11]) in unoriented cobordism and the Wu relations (Stong

[19, p. 100] and Hsiang [6]). Floyd [3] asserts every element of P4k+2 is a Wall

manifold (i.e., any Stiefel-Whitney number containing w2 is 0). Landweber

independently verified this result. Using Sq = 1 + Sql + Sq2 + • • • and

v = 1 + vx + v2 + • • • for the total Steenrod square and Wu class we can

show
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Sq^Ak + °2w4k = ™4k+2 + wÎ™4k

using the identity

VW=   2   (¡- k + '- lU-,wt+t,     k<i,

from Hsiang [6]. The left-hand side is 0 tangentially by Wu (Stong [19, p.

100]) and the right-hand side reduces to w4k+2 on P4k+2. Thus w4k+2(r)[M] -

0. In fact, Stong informed the author that w4k+2 = (v2k+xY and v2k+x is

divisible by wx.

TV. The proof of Theorem III. Here we show that Image(T: ß^+g -> Z) E

4Z. Let ft' = [R \R = (0, n2, 0, n6, 0, nx4, 0,..., 0, n^.J) and let % be the
set of all elements of ft' of degree n. We then prove Theorem III by proving

the following lemmas.

Lemma A. If[M] E ß?pÄ+8, then t[M] = 2Re<Si. 'SR[M] mod 4.

Lemma   B.   2ZRe<n-sR   vanishes   on   P4k+2.   In   fact,   w2„(t)[M] =

VR^JR[M],any[M]EÜ°,.

Lemma C. Let ft be some set of exponent sequences which all have the same

degree 4k + 2. If 2Re<SisR vanishes on P4k+2, then 2Reea'SR[M] = 0 (4),

any [M] E ß&+8.

The reader is referred to Hirzebruch [5, Chapter 1], for the definition and

important properties of multiplicative sequences.

Proof of Lemma A. Using the results of Floyd and Segal will require

writing the signature mod 4 of [A/] E ßfj^+g in terms of the normal numbers

'SR[M]. The signature is often computed using the ¿-polynomials of the

Hirzebruch signature theorem. We write L/°(t) for the &th polynomial. They

are in the form

—rr (an integral polynomial in tangential Pontrjagin classes)

and may be thought of as polynomails with coefficients in Z(2) = integers

localized at 2 ([5, p. 13]). Changing to normal Pontrjagin numbers does not

change this last fact. From the relationship (pSp)2 = pso of Stong [20, p. 426],

it follows that the signature of a 4£-dimensional symplectic manifold can be

written as a linear combination over Z(2) of the characteristic numbers

'SR[M]. This polynomial will be denoted Lkp(v). The polynomial is in the

form

¿*P(")[^] - ¿ ( /?kmR 'S*\.M]\      m* e Z-

In the case of a  16A: + 8-dimension symplectic manifold the numbers
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THE SIGNATURE OF SYMPLECTIC MANIFOLDS 257

'SR[M] are all even (Segal [18]) so any 'SR[M] with an even coefficient will

contribute a multiple of 4. Hence the mBs which are odd must be precisely

found. In particular, we need an explicit expression for the polynomial

Lkp(v)mod 2, that is, with the coefficients reduced mod 2. For an example,

^«-¿(T^tt)-^«)2

while

l_
45

L|P(„) = JL (17 's** + 20 'S2*' )

sothatL?(v)mod2='S\

To obtain an explicit expression for Lkp(v)mod 2 we turn to the series

00 ■ilk

Q(z)=l+^(-l)k-x-^Bkzk

which generates the L-polynomials (Bk = kth Bernoulli number). For a

rational number r with r = 2*2 • 3e' • 5*5 • ... let vp(r) = ep.

SUBLEMMA.

/   2^
V2\\Jky.Bk

= 0,    k = 2',
> 0,    otherwise.

Proof. From Milnor [10, p. 284], the denominator of Bk (in lowest terms) is

square free and divisible by 6 so that v2(Bk) = — 1. For a prime p,

',(*!)-
k_

P \.f if
([4, p. 342])

where  [x] = the  greatest  integer  in  x.  Then  v2((2')\) = [2'/2] + [2'/4]

+ • • • + [272'] = 2'-1 + 2'~2 + • • . + 1 = 2' - 1.
Since this gives the largest possible value we have

k = 2l,

k^2'.

Then

'ims-)-u-l-"m,)i'>t l'A
This shows the natural map Z(2)[[z]] -»(Z/2Z)[[z]] sends Q(z) to the series

Q(z)mod2=l + z + z2 + z4+--- +z2t+---.

For T and v the tangent and normal bundles of some symplectic manifold we

have

-n2PS° « = 0Sp(r)) = (PSPW-') = (Psp(r)),-2
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so LSp(v)mod 2 is the multiplicative sequence generated by the series

(1 + z + z2 + z4 + z8 + • • • + z2* + • • • )~'

= 1 + z2 + z6 + z14 + • • • + z2*"2 +-1+2 z

If we have a power series R (z) = 1 + b¡z' over Z/2Z then the coefficient of

'SR in the resulting multiplicative sequence is bx'b22.bp where R =

(«„ n2,..., nk). Here we have R(z) = 1 + 2z2*~2 so the coefficient of 'SR

is 1 if and only if R E ft'. Hence

¿Sp(")mod2= 1 +   2    '5Ä
ReST

and t[M] for [Af] E ß?gt+8 is determined mod 4 by 2Äe^ 'S*[Af ].   □

For example,

l+'Sa2 'S^J 'S**+ 'S3AJ

LfP(,)mod2        Lf"(»0m„d2 ¿gP(')„,od2

Proof of Lemma B. We will use the following fact.

Sublemma. //[Af ] E ß?, r/ie/i s2*[Af ]2 = sR[M], sR'[M]2 = 0 if R' * 2R.

Proof. From Switzer [22, p. 383], we have

SR[MXN]=      2      sRi[M]-s*i[N]
R'i + RÍ^R'

so that

sR'[M]=      2      sR'[M]-sRí[M].
R'l+Ri-R'

Then the only terms which do not cancel mod 2 are those with R[ = R2.

Let Lso(v) be the multiplicative sequence derived from (Q(z))~x. It gives

t[M] in terms of sR0[M^s. Also, let Lso(v)mod2 be derived from

(öCOmod^"1- 1 + Z + Z3 + Z7 + - • • + Z2*"1 + - • • .

We see that Lso(i>)mod2 = 1 + ^Re^0[M] where

ft" = {R\R = («„ 0, n3, 0,..., 0, «7, 0,..., «2*_„ 0,... )}.

Applying the cohomology mod 2 reduction map

p2:H*(—,Z)^H*(-;Z/2Z)

we can deduce

O  (¿(,Jy "2."*) ) = í (°-2ni A2n2,0 • • • 0¿nk)

from the fact p2(p^°) = (w2„)2. Then s* will appear in p2Lso(r) iff R =

(0, «2, 0,..., 0, n6, 0,..., 0, w2*_2, 0,... ) with each entry even. Hence
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THE SIGNATURE OF SYMPLECTIC MANIFOLDS 259

p2L*»=l+    2   S™
«eft'

For closed manifold Af there exists an oriented manifold N with [N] =

[A/]2 in ßö. If dim Af = 2ai, then dim N = 4n and we have

L„S°(r)[N] = r[N] = w4n(r)[N]    mod 2

= w4„(t)[M]2=w2„(t)[M]

so p2L„s°(t)[N] = w2„(t)[A/]. Recall that L™(t)[N] = L?°(v)[N] and the

polynomials are the same elements of H*(N, Z). Combining the above facts

we have

»2n(T)[M]=P2Lns°(T)[N] = p2Lns°(r)[N]=   2   *2R[N]
Re€t¿,

=   2   s2R[M]2=   2   J*[M],   as claimed.

If 2ai = 4ac + 2 and [Af] G 7^+2 we must have 2Ä ea-4t+2sR[Af] = 0 since

w4k+2(r)[M] = 0 by Theorem I.   □

Proof of Lemma C. Since 'SR[M] = 0 (2) for [Af] G ß^+8, \R\=4k +

2, we may define a pairing

A'4k+2®ü%k+s^Z/2Z

by sR <g> [Af ] H> G 'S*[Af ])mod2. Using Floyd [3], we can prove that

'S*>° 'SR[M] =0(4),       [Af]Gßf£,   |T*| = 2fc-2,

as a corollary of his (3.5), p. 85, using the same proof as (3.6). Floyd himself

shows

'S"*' 0 'SR[M] = o ^       |-M-j E ßs^   \R\ = 2k- n.

Since 16aV + 8 = S(2k + 1) we conclude that T+ ° A' vanishes under this

pairing so we really have a pairing

(A'/T+ o A\k+2® 8&+8 -» Z/2Z. (*)

But

{A'/T+oA\®PH^Z/2Z (**)

is a dual pairing. Thus if2Re^sR vanishes under (**) it vanishes under (*)

also so that 2Äeft£ 'S*[Af] = 0 (2) or 2Re9,'SR[M] - 0 (4), as claimed.

D
Combining these results we conclude

Image(T:Qf&+8->Z)c¡4Z.

V. Construction of examples. In this section we demonstrate the existence of

symplectic manifolds in dimensions 20, 24 and 28 with signatures 16,4 and 16
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respectively. Generators given by Ray [14] are Usted which provide the

necessary examples in lower dimensions.

Stong [20] gives a method for constructing numerous symplectic manifolds.

Let N = CP(2kx - 1) x • • • X CP(2ks - 1), i even, and £, be the canoni-

cal bundle over CP(2k¡ — 1) pulled back over N. If a¡ E c,(§) and a = ax

+ • • • + as E H2(N; Z) then the symplectic manifold dual to (-¿J2y will be

denoted here by nj(kx,..., kf). Note that

dim nj(kx.ks) = 4(kx + • • • + ks) - 2s - 4/.

The symplectic Pontrjagin numbers of such a manifold can be mechanically

computed.

Even these manifolds, however, are not adequate for providing all the

generators for ß^ or even finding manifolds of minimal signature. We must

then try to divide existing cobordism classes by integers. We use .fifOtheory

(real /f-theory) to see when this may be done. There is a generalized

Hurewicz map (Ray [15, p. 284]) called the Sp Hattori-Stong map

ko

ßSp -* KO¿MS?),       [ 15, p. 293 ]

and we use the notation of Ray [15, pp. 284 and 288], for KOj(MSp).

Kochman [8] and Okita [12] show that ko is split monic in dimensions < 30.

Hence, in these dimensions if ko[M] is divisible by an integer n then [AÍ]/«

exists in ß|p. In particular, if ko[M] = 0 (2), [Af]/2 exists in ß|p.

Ray [14] lists generators for Q% k = 1, 2, 3, 4, and we list the ones we need

in this notation below.

dim [Af] ko[M]mod2 r[M]

4 2xx = «,(1, 1, 1,1) x - 16

8 2x2 = nx(2,2) xo'x 4

12 xxx2 yo\ + xo2 - 16

2x3 = «,(2,3) x(o'x)2 0

16       \{x\ + xxx3) y(o'xf + xo'3    2

Further calculations (in the author's thesis) have shown that

ko(±n2(2,6))       = x(o\)4+ xo'xo'3
V 10 /mod 2

and that t(t¿ «2(2, 6)) = 0. Also, dim n2(2, 6) = 20.

In dimension 20,

(2xx){\(x22 + xxx3)) + (x2)(2x3) = xxx¡ + 3x\x3

has signature -32 and fco-image even, so Image(r:S2|g —*Z)= 16Z. In dimension

24, the manifold
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THE SIGNATURE OF SYMPLECTIC MANIFOLDS 261

(2x2)J 2 (xj + xxx3)j + (2x3)(xxx2) = xl + 3xxx2x3

has signature 8 and fco-image even, so Image(T: ß2J -» Z) = 4Z.

Direct computation shows no example of an [Af] E ßfp can be constructed

out of classes from Ray [14]. We do, however, have the manifold

(*i*2)( \ (xl + xxx3)) + (xxx2)(xi) + (2x3)(x\) + {xl)(i-6n2(2, 6))

which has signature  —96 and fco-image even so Image(r: ß2p-»Z) =

16Z. Thus we have shown that Theorems II and III are the best possible.

VI. The spin case. We can compute Image(r: ß^"1 -» Z) quite easily using

results from the literature. Rohlin [16] has shown that Image(r: ßj"" -» Z) =

16Z. Also, the quaterionic projective plan HP (2) is a Spin manifold and its

signature is 1 so that Image(r: ß|pin -* Z) = Z. Finally, Stong [21] proved

that the forgetful homomorphism

ßf^^ßfrVTorsion

is epic. From Oshanin's results on the signature of SU manifolds we then

have the following list.

Image(r: Qgft4-» Z) = 16Z,      Image^: ß|pin -* Z) = Z.
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