
 

 

 

 

©2016 

Lynne C. Trabachino 

ALL RIGHTS RESERVED



 

 

 

 

THE SIGNIFICANCE OF CONVECTIVE CLOUD MICROPHYSICS FOR 

CLIMATE MODEL SIMULATIONS OF RAINFALL IN THE WEST AFRICAN 

SAHEL AT SEASONAL TIME SCALES 

by 

LYNNE C. TRABACHINO 

A dissertation submitted to the 

Graduate School – New Brunswick 

Rutgers, The State University of New Jersey 

In partial fulfillment of the requirements 

For the degree of 

Doctor of Philosophy 

Graduate Program in Atmospheric Science 

Written under the direction of 

Mark A. Miller 

And approved by 

_____________________________________ 

_____________________________________ 

_____________________________________ 

_____________________________________ 

_____________________________________ 

New Brunswick, New Jersey 

October, 2016



 

 

ii 

 

ABSTRACT OF THE DISSERTATION 

The Significance of Convective Cloud Microphysics for Climate Model 

Simulations of Rainfall in the West African Sahel at Seasonal Time Scales 

by LYNNE C. TRABACHINO 

 

Dissertation Director: 

Mark A. Miller 

 

 

 

This study uses a non-traditional method to substantiate the underlying influence 

of the parameterization of subgrid-scale convective processes on the capability of 

the latest generation of global climate models to simulate the seasonal cycle of 

rainfall associated with the West African monsoon and establish a direct connection 

between the treatment of convective rainfall and overall model performance on 

seasonal time scales.  To establish the degree to which convective parameterizations 
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may influence model simulations at seasonal scales more definitively, a single 

column of grid-scale output was extract from an emissions scenario experiment for 

two coupled models and compared to the observed evolution of rainfall, surface 

meteorology, the thermodynamic state of the atmosphere, clouds and radiation, 

obtained during 2006 in Niamey, Niger.  Overall both models demonstrated a 

remarkable capability to comprehensively capture the seasonal cycle of the West 

African monsoon in the vicinity of Niamey.  However, the results confirm that 

deficiencies in subgrid-scale physics can be a significant source of error with regards 

to the timing of simulated rainfall at seasonal scales and, in some models dominate 

non-local sources of error.  Comparison of the performance of each model and their 

respective convective parameterizations indicated that the capability to simulate 

the seasonal cycle of rainfall in the Sahel with realistic timing appears to be more 

sensitive to a realistic representation of convective precipitation microphysics than 

to a realistic representation of the organization of convective structures.   The 

perspective gained from this study sheds a more positive light on the present 

capabilities of coupled models to simulate convection in the Sahel and suggests 

that resolution of the long-standing disagreement in rainfall projections among 
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different coupled models may be more within reach than previously advocated by 

performance evaluations based on traditional methods.    
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Chapter 1:  Introduction 

 

1.1  GCM Performance: Capabilities and Challenges 

The ability to take the appropriate actions today to mitigate the potentially 

devastating consequences of anthropogenic influences on Earth’s climate system 

hinges on the level of confidence associated with global climate models (GCMs) 

used to make projections of future climate change.  There is considerable confidence 

that GCMs make reliable projections of future climate change at continental scales, 

but significantly less confidence at regional scales (Randall et al., 2007; Flato et 

al., 2013).  GCMs have consistently and univocally predicted climate warming in 

response to increased greenhouse gas emissions, although they have yet to converge 

with respect to the magnitude and timing of the predicted warming (IPCC, 2013).  

These uncertainties present major issues for policy makers. Accordingly, research 

in atmospheric science is at present largely focused on assisting model developers 

with the key task of improving GCMs. 

A major source of confidence in future projections of climate change is the 

demonstrated ability of GCMs to simulate observed features of the current climate.  
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The ongoing effort to improve GCMs over the last few decades has steadily 

progressed with respect to certain aspects of the observed climate, yet remains 

grid-locked with respect to others.  For example, GCMs have continually 

demonstrated improved capabilities simulating mean climate features (e.g., the 

large-scale distributions of temperature, precipitation, winds, and radiation) and 

many patterns of climate variability (e.g., some major monsoon circulations, 

seasonal temperature shifts, storm tracks and rain belts, and the Northern and 

Southern annular modes), yet face long-standing issues simulating tropical 

precipitation, the El Niño-Southern Oscillation, and many smaller-scale structures 

(Randall et al., 2007). The poor representation of cloud processes has repeatedly 

been attached to the limited progress with respect to these and many other long-

standing issues with GCM performance (Jakob, 2010).  Therefore, the task of 

improving GCMs for the purpose of increased confidence in making reliable 

projections of future climate change at small scales, and the magnitude and timing 

of projected climate change at large scales, primarily translates to the task of 

improving the representation of clouds and convective processes in GCMs.   

There are a number of ways to upgrade the atmospheric component of a 

present-day GCM formulation, although most upgrades do not guarantee an 
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improved representation of cloud 

processes.  Upgrades to atmospheric 

models typically made while retaining 

the current basic architecture of the 

formulation (depicted in Figure 1.1) 

include: increasing spatial resolution, 

increasing complexity through the 

addition of previously unrepresented processes; and the improvement of the 

physical basis of existing parameterizations.  Increasing spatial resolution and 

adding complexity to the model formulation by including more processes do not 

entirely address the fundamental challenges faced representing a majority of cloud 

processes, and in many circumstances do little to improve or even adversely affect 

certain aspects of model performance (Illingworth and Bony, 2009). Improving the 

physical basis of parameterizations is certainly the most direct route to improving 

the representation of cloud processes, but the last few decades have proven this 

approach to be difficult and slow to facilitate progress in overall model 

performance. A few alternative architectures have been explored to improve the 

representation of model clouds, including: global cloud-resolving models (Satoh et 



4 

 

 

 

al., 2008) and super-parameterizations (Grabowski, 2001; Randall et al., 2003). 

Alternative architectures are too computationally demanding for routine 

application yet still too coarse to resolve most cloud processes at current operating 

resolutions (Siebesma et al., 2009). Over the course of the last decade, a consensus 

is forming that the improvement of the physical basis of existing parameterizations 

is the most promising way to improve the representation of cloud processes in 

GCMs (Stephens, 2005; Illingworth and Bony, 2009; Jakob, 2010). 

While there is no shortage of important research questions that would 

contribute to the improvement of existing parameterizations in GCMs, it is not the 

intention of this work to focus on any single issue in particular. The persistence of 

these issues after decades of research suggests that perhaps the responses to the 

increasing pressure to improve model clouds can be made more effective by 

enhancing the process by which the representation of clouds is improved in GCMs.     

1.2 Weak Links in the GCM Development Cycle 

The GCM development cycle, schematized in Figure 2, may most basically be 

described as an iterative process between two well developed sets of activities that 

essentially occur in isolation (Jakob, 2010). In the first set of activities (represented 
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by the yellow rectangles in the top half of Figure 2.1), GCMs are subjected to 

overall performance assessments.  Overall performance assessments  

are accomplished by comparing grid-scale model output of select climatological 

variables to global or regional observational datasets acquired primarily from 

space-based remote sensors.  It is from these assessments that model errors and 

improved capabilities are identified and held in comparison to one another.  In the 

second set of activities (represented by the yellow rectangles in the bottom half of 

Figure 2), individual parameterizations are improved upon through participation 
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in offline process studies.  Process studies are performed locally, so that detailed 

observations of relevant variables for a particular process of interest may be 

obtained.  These studies serve to improve understanding of the specific physical 

mechanisms relevant to a given process and enable the development of 

parameterizations that are more physically realistic. The GCM development cycle 

as a whole is most efficient when process studies are selected to directly address 

the specific aspects of model formulations that are most responsible for overall 

performance errors.  In practice, problems identified by overall performance 

assessments cannot be definitively linked to the underlying deficiencies in the model 

formulation.  Without definitive guidance about what to fix in the existing 

formulation, the development of the next generation of models is driven by other 

motivations.  However rational these motivations may be, they often do not address 

the underlying deficiencies responsible for many of the performance problems 

identified in the previous model version (Jakob, 2010).  As a result, performance 

issues may persist through multiple development cycles, despite the many 

improvements incorporated into the formulations with each new generation of 

models.  The capability of GCMs to adequately simulate Sub-Saharan Sahelian 

rainfall is one example of a very critical performance issue that has lacked a 
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connection to specific deficiencies in underlying model physics and has resultantly 

persisted through numerous model development cycles over recent decades. 

1.3 Rainfall Predictions in the Sahel 

There is high confidence that African ecosystems are already being affected by 

climate change, and future impacts are expected to be substantial (Niang et al., 

2014).  In particular, the Sahel has been identified as a hotspot of climate change 

(Diffenbaugh and Giorgi, 2012) where unprecedented temperature changes are 

projected to emerge in the later 2030s to early 2040s (Mora et al., 2103).  Projected 

rainfall change over sub-Saharan Africa in the mid- and late 21st century is, 

however, highly uncertain because climate modelers have yet to establish a 

consensus with regard to the magnitude and direction of change (Cook and Vizy 

2006; Biasutti et al., 2008; Druyan, 2011; Fontaine et al., 2011; Roehrig et al., 2013, 

Christensen et al., 2013).  Lack of confidence in projected rainfall hinders effective 

decision making in efforts to plan and implement adaptation strategies for this 

highly vulnerable region. 

  Intercomparison of coupled GCM simulations indicated no consensus 

among the models with regards to the future of the West African Monsoon (WAM) 

system (Cook and Vizy, 2006; Roehrig et al.,2013).  An evaluation of the capability 
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of models from the fifth phase of the Coupled Model Intercomparison Project 

(CMIP5) to simulate the main features of the WAM indicates that the latest 

generation of models cannot be relied upon for anticipated climate changes in West 

Africa, especially with regard to precipitation (Roehrig et al., 2013).  At present, 

low confidence in future projections is partially based on the limited success of 

CMIP3 and CMIP5 GCMs to simulate the main drivers of the West African 

monsoon system, such as the observed correlation between Sahel rainfall and basin-

wide area-averaged SST variability (Christensen et al., 2013) and partially 

attributed to non-specific deficiencies in the representation of clouds and 

convection in GCMs (Niang et al., 2012).  As is the case for many other GCM 

performance issues, what the specific deficiencies are and how to identify them 

remains unclear.  

1.4 Connecting Grid-Scale Performance with Local Sources of Error 

By design, traditional model evaluation techniques do not lend their results to 

interpretation at scales beyond that which they directly evaluate.  Overall 

performance assessments (i.e., evaluations of grid-scale climatological mean 

quantities) evaluate the spatial distributions of a desired quantity and it relations 

to other variables identified as large-scale controls through observations.  These 
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studies can therefore identify non-local sources of error in models that don’t 

simulate the observed relationship between a given quantity and its known 

controls.  For example, model inter-comparison studies that evaluate the capability 

of models to simulate the known features of the WAM in the present-day climate 

provide valuable information with regards to possible non-local sources of error in 

the simulation of rainfall in the Sahel, such as SST variability (Niang et al., 2014).  

While local sources of error are comingled with non-local sources of error, it is not 

possible to isolate their subgrid-scale origins without a comprehensive assessment 

of the model physics. 

Model physics is typically evaluated by process studies, which evaluate the 

physical integrity of parameterization schemes offline, using comprehensive 

datasets made available by field studies in a single location.  Unfortunately, this 

approach is not ideally suited for diagnosing local sources of large-scale performance 

issues because the model physics is not being tested in the same environment that 

the large-scale performance issues were originally identified (i.e., within the coupled 

GCM).   While deficient representation of subgrid-scale processes may be diagnosed 

based on the nature of physical inconsistencies identified by the evaluation, there 

is no direct way to translate the relevance of these errors with respect to overall 
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performance, when the parameterization is operating within the GCM.  There is 

currently no alternative approach to model evaluation that is focused on bridging 

this gap.  

Miller et al. (2012) evaluated the seasonal cycle of precipitation and column-

integrated cloud-related quantities simulated by four coupled GCMs by comparing 

standard model output sub-sampled from CMIP3 standard model output to 

observations from the Radiative Atmospheric Divergence using Atmospheric 

Radiation Measurement (ARM) Mobile Facility, Geostationary Earth Radiation 

Budget (GERB) data, and African Monsoon Multidisciplinary Analysis (AMMA) 

stations (RADAGAST) experiment during 2006 in Niamey Niger.  Although the 

results of this evaluation were not ultimately applied to diagnose local sources of 

error in the simulation of Sahelian rainfall, this study identified a unique window 

through which performance evaluations using standard model output could be 

interpreted in terms of the convective parameterizations employed by each GCM.  

Expanding this technique with the more fully comprehensive set of observations 

available from RADAGAST would enable a ‘grid-scale process study’, from which 

local sources of error may be diagnosed based on inconsistencies identified by the 

evaluation of grid-scale model output.   
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 1.5 Goals and Outline 

The resolution of long-standing issues with GCM performance, such as those 

associated with rainfall in the Sahel, may be greatly benefitted by a better 

understanding of local sources of error.  This study uses a non-traditional 

method to substantiate the underlying influence of the parameterization 

of subgrid-scale convective processes on the capability of GCMs to 

simulate the seasonal cycle of rainfall associated with the WAM and 

establish a direct connection between the treatment of convective 

rainfall and overall model performance on seasonal time scales.  Standard 

model output extracted from CMIP5 emission scenarios of two GCMs will be 

evaluated during the present period in terms their capability to capture the 

seasonal cycles and inter-relationships between rainfall, near-surface meteorology, 

the thermodynamic environment, clouds, and the surface energy balance as 

observed during the RADGAST experiment in 2006.  This unique approach 

effectively applies the diagnostic technique of a process study to seasonal-scale 

model output so that convective parameterizations may be evaluated natively, 

while operating within their respective GCMs.  Not only is this method better 

suited to diagnose local sources of error than traditional methods, it’s 
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comprehensiveness offers a new perspective on the capability of GCMs to simulate 

the present-day Sahelian climate. 

Chapter 2 describes the sources of observations and model output, and the 

methodology used for direct comparison.  Chapter 4 provides as overview of the 

observations from RADAGAST during 2006.  In Chapter 5, the performance of 

two CMIP5 models is evaluated by direct comparison to the observations presented 

in Chapter 4.  Chapter 6 provides a summary of major finding and discusses the 

limitations of the method applied in this study.  
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Chapter 2:  Data and Methods 

 

2.1 Observations 

2.1.1 The RADAGAST Experiment 

The RADAGAST experiment coordinated surface-based measurements from the 

AMF-1 deployment in Niamey, Niger (13°29’N, 2°10’E) with space-based 

measurements from Meteosat-8, a geostationary satellite positioned over 0° 

longitude, collected over the entire seasonal cycle during 2006.  The basic 

measurement geometry of each component is illustrated in Figure 2.1.  Meteosat-8 

holds the GERB broadband 

radiometer, which provided 

measurements of radiative fluxes 

at the top of the atmosphere, 

and a multichannel Spinning 

Enhanced Visible and Infrared 

Imager (SEVIRI), which was 

used to derive observations of 

cloud cover.  The GERB 
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radiometer is described by Harries et al. (2005) and the SEVIRI imager is described 

by Schmetz et al. (2002).  The AMF-1 provided measurements at the surface 

(including the surface energy balance and surface meteorology) and of the column 

directly above (including the atmospheric state, cloud properties and aerosol 

properties).  A full description of the AMF-1 suite of sensors can be found in 

Mather and Voyles (2013) or Miller and Slingo (2007).   

2.1.2 AMF-1 Instrumentation and Primary Measurements  

The AMF-1 Surface Meteorology System (MET) contains a suite of conventional 

in-situ sensors that provide measurements of barometric pressure, temperature, 

relative humidity, wind speed and wind direction at 1-min resolution.  There were 

three sources of rainfall measurements at the Niamey Airport site.  One-minute 

mean precipitation rate was recorded by the AMF-1 optical rain gauge (ORG) and 

the AMF-1 Present Weather Detector (PWD).  A tipping bucket rain gauge 

(TBRG) provided cumulative rainfall totals every 5-minutes.  

Vertical profiles of atmospheric temperature and humidity were available 

from radiosondes and a 12-channel microwave radiometer profiler (MWRP).  

Radiosondes were launched four times daily from the Niamey Airport site, 

providing in-situ measurements of atmospheric pressure, temperature, and relative 
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humidity through the extent of the troposphere, sampling every 10 seconds.  The 

MWRP provides vertical profiles of atmospheric temperature and water vapor 

density at 47 levels from the surface to 10 km at 20-second temporal resolution in 

all weather conditions except precipitation.   

Observations of vertically integrated water vapor (IWV) and the liquid 

water path (LWP) in the atmospheric column over the site were derived from 

measurements made by the AMF-1 2-channel microwave radiometer (MWR).  The 

MWR detects atmospheric emissions at 23.8 and 31.4 GHz from water vapor and 

liquid water directly overhead every 20 seconds with a field of view of 5.9 degrees.  

IWV and LWP are derived by a statistical algorithm that uses monthly linear 

regression coefficients determined specifically for Niamey based on a priori data 

from radiosonde soundings (Liljegren, 1999).  Uncertainties in the LWP and IWV 

measurements are ~10 g m-2 and 2%, respectively (Revercomb et al, 2003). 

Three active remote sensors were utilized to detect cloud boundaries at the 

AMF-1 site: The W-Band ARM Cloud Radar (WACR), the Micropulse Lidar 

(MPL), and a laser ceilometer (CEIL).  The WACR measures backscatter from 

signals emitted every 6 seconds at 95 GHz to a range of 18 km with a range 

resolution of 42 meters.  The MPL emits 532-nm signals every 30 seconds and 
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measures backscatter to 18 km with a range resolution of 30 m.  Using a 905-nm 

pulse emitted every 15 seconds, the CEIL detects backscatter from up to 7.5 km 

with a range resolution of 15 m.     

The AMF-1 Eddy correlation flux measurement system (ECOR) provides 

observations of surface latent and sensible heat fluxes every half-hour.  ECOR 

contains two instruments, a fast-response, three-dimensional sonic anemometer, 

and an open-path infrared gas analyzer (IRGA).  The sonic anemometer measures 

three orthogonal wind components and the speed of sound, which is used to derive 

atmospheric temperature.  The IRGA measures water vapor density.  All three 

direct measurements are made at a rate of 10 Hz.  Half-hourly observations of 

latent and sensible heat fluxes are derived from the direct measurements using the 

eddy covariance technique.  Based on the measurement accuracies of the three 

wind components, the speed of sound, and water vapor density, the expected 

uncertainties in the latent and sensible heat fluxes are 5% and 6% respectively 

(Cook and Pekour, 2008).  

Upwelling and downwelling irradiances were observed at the surface by the 

Surface Broadband Solar and Infrared Radiation Station (SIRS) (Stoffel, 2005; 

Augustine et al., 2000).  Shortwave (295 – 3000 nm) and irradiances were measured 
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by normal incidence pyheliometers and pyranometers at 1-min intervals, and 

longwave (3.5 - 50µm) irradiances were measured at 1 minute intervals by Eppley 

precision infrared radiometers. 
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Table 2.1 summarizes the instrument data streams available from the ARM 

data archive that contain the above mentioned measurements that were utilized in 

this study. 

2.2 Climate Models 

This study utilizes standard model output from CMIP5 representative 

concentration pathway (RCP) 4.5 to evaluate the present-day capabilities of two 

GCMs: National Oceanic and Atmospheric Administration Geophysical Fluid 

Dynamics Laboratory Global Coupled Model 3 (GFDL-CM3) and National 

Aeronautics and Space Administration Goddard Institute for Space Studies 

General Circulation ModelE2 (GISS-E2-R).  These two models were specifically 

chosen based on the availability of documentation related to the formulation of 

each, and the differences in their respective parameterizations of convection.  The 

formulations of the atmospheric components of GFDL-CM3 and GISS-E2-R are 

described in Donner at al., (2011) and Schmidt et al. (2014), respectively.  

Information stated here regarding the representation of convective processes was 

sourced from the above-mentioned documents and references therein, source code 

made available by the developing institutions, and personal communications with 

model developers.  Although both models take the same fundamental mass-flux 
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approach to simulate convection, the complexity and physical basis with which 

various subgrid-scale convective structures and processes are represented in each 

model is quite different.  A brief description of the formulation of each model as it 

pertains to simulated rainfall in the Sahel is given below to highlight some of these 

major differences. 

2.2.1 GISS-E2-R 

Rainfall simulated by GISS-E2-R originates from the moist convection 

parameterization and the stratiform cloud parameterization.  Moist convection is 

represented in a single column of grid cells by two entraining updrafts and multiple 

downdrafts.  Convective precipitation originates from convective condensate based 

on updraft speeds and the assumption of a Marshall-Palmer particle size 

distribution.  Within a single grid cell, detrained convective condensate is 

ultimately transferred to the large-scale cloud routine (a Sundqvist-type prognostic 

cloud water scheme.) which produces precipitation only after evaporating all cloud 

water until a threshold relative humidity is reached.  Further details with regards 

to these parameterizations can be found in Del Genio and Yao (1993), Del Genio 

et al. (1996), Gregory (2001), Schmidt et al. (2006), Del Genio et al. (2007), and 

Kim et al. (2011,2012).   
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2.2.2 GFDL-CM3 

In the Sahel, rainfall in GFDL-CM3 originates entirely from the convective 

parameterization.  In contrast to GISS-E2-R, the convective structures in GFDL-

CM3 are represented with more realism, but microphysical processes associated 

with convective rainfall receive limited treatment. Shallow and deep convection are 

represented separately.  Deep convection is represented by deep updrafts, mesoscale 

updrafts, and mesoscale downdrafts.  Precipitation from mesoscale updrafts is 

determined as exactly one-half of the sum of condensate formed in mesoscale 

updrafts and condensate transferred from convective updrafts.   Further details on 

the convective parameterization can be found in Donner (1993), Donner et al. 

(2001) and Wilcox and Donner (2007).  

2.3 Observations Corresponding to Standard Model Output 

2.3.1 2-D Atmospheric Fields 

It was recognized during the RADAGAST experiment that uncertainty arises from 

sampling issues associated with bringing together point measurements from the 

surface and area-averaged measurements from space to calculate the radiative flux 

divergence over Niamey (Settle et al., 2008).  This uncertainty was minimized by 

analyzing continuous measurements as daily averages and limiting the scope of the 
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analysis to the cross-atmosphere 

radiative flux divergence (Slingo et al., 

2008).  An analogous issue arises when 

measurements from the surface are used 

to evaluate grid-scale GCM output.  

Figure 2.2 provides a map of northern 

Africa (top), and an enlargement of the 

region surrounding Niamey, Niger 

where the AMF-1 was deployed 

(bottom).  Also indicated by the green 

box in the enlargement is the footprint 

of the single column of grid cells from 

standard model output that includes 

Niamey.  The uniformity of the surface in this region has the very beneficial effect 

of diminishing spatial variability and the observed surface meteorological and 

radiative properties were determined to reflect regional aspects of the West African 

monsoon, making such measurements from the AMF during RADAGAST suitable 

for the evaluation of GCMs in terms of their ability to simulate the monsoon 
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circulation (Miller et al., 2009).  The applicability of column-integrated 

measurements of the radiatively active constituents of the atmosphere (i.e., water 

vapor, clouds, and aerosols) and measurements of the vertical structure of 

cloudiness and the thermodynamic environment within the atmosphere are 

relatively less certain (Miller et al., 2012). However, it is promising that daily-

averaged measurements of aerosol optical thickness were found to be highly 

correlated between the main site in Niamey and the auxiliary site 50 km away 

(Miller et al., 2009) and results that rely on cloud mask data to determine clear 

and cloudy conditions showed essentially no sensitivity as to which cloud mask was 

used (Slingo et al., 2009).  Limitation of the proposed analysis to monthly-averaged 

quantities further supports the applicability of column-integrated quantities.  

2.3.2 Thermodynamic Profiles 

In this study we combine measurements from a ground-based profiling microwave 

radiometer and collocated radiosondes to generate atmospheric temperature and 

humidity observations that are tailored to the thermodynamic profiling 

requirements of atmospheric model development applications.    To establish the 

suitability of microwave radiometry for such application, the thermodynamic 

profiling capability of a 12-channel microwave radiometer was evaluated against 
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collocated radiosonde observations for extended time periods in a variety of 

climatological regimes, including continental and marine environments in the sub-

tropics and mid-latitudes.  For the purpose of representing a vertical column of 

grid cells in an atmospheric model, in each of the climatological regimes studied, 

thermodynamic profiles derived from radiometric retrievals were achievable with 

an accuracy similar to that of radiosondes.  To demonstrate the utility of combined 

profiles for model development applications, a high-resolution data product was 

generated using radiometric retrievals to fill in the gaps between radiosonde 

soundings and applied to evaluate thermodynamic profiles from a similar high-

resolution data product that was generated using model output to fill in the gaps 

between radiosonde soundings.  A full description of this methodology is given in 

Chapter 3. 
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Chapter 3: High Resolution Thermodynamic 

Profiles for Atmospheric Model Development 

 

 

 

Atmospheric temperature and humidity measurements that are used to develop, 

evaluate, and initialize the atmospheric community's entire hierarchy of models are 

almost exclusively acquired by radiosondes. However, the spatial and temporal 

characteristics of radiosonde observations are poorly suited for modeling 

applications, which would benefit most from zenith volumetric measurements that 

are representative of atmospheric grid cell volumes.  Atmospheric models can have 

50 to 200 vertical layers and physics time steps on the order of minutes to an hour.  

Radiosonde soundings are a series of point measurements, collected over the course 

of a couple of hours as the balloon ascends through the atmosphere.  Limited by 

cost, equipment, and staffing, it is not routinely feasible to launch more than two 

radiosondes per day for extended periods of time.  Observations that are more 

representative of a vertical column of model grid cells may be derived from 

measurements made by zenith-pointing ground-based remote sensors, including 
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microwave radiometers, infrared radiometers, and LIDARs.  While relatively coarse 

vertical resolution does not restrict the utility of these measurements for modeling 

applications, vertical range limitations and operability constraints are more 

problematic, to varying degrees.  With no alternative measurement technique 

capable of all-weather thermodynamic profiling throughout the depth of the 

atmosphere, radiosondes remain of crucial importance.   

 Exclusive reliance on radiosondes for observations of thermodynamic profiles 

limits the efficiency of the model development process, particularly with respect to 

the improvement of the representation of clouds and convection.  The lack of 

thermodynamic measurements that are directly comparable to model output on 

time scales appropriate for cloud and convective processes compounds the difficulty 

of effectively diagnosing model deficiencies. Although the use of radiosondes will 

be necessary for the foreseeable future, the atmospheric community could benefit 

greatly by incorporating remote sensor measurements to more closely achieve the 

thermodynamic profiling requirements of modeling applications.  

 Ground-based microwave radiometry is a well-established technique for 

thermodynamic profiling of the troposphere (Hogg et al., 1983; Solheim et al., 

1998a; Westwater 1993; Westwater et al., 2005).  Commercially available 
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microwave profilers are capable of long-term, unattended, daytime/nighttime 

equivalent operation in all weather conditions except moderate to heavy 

precipitation, and may be used to derive near-continuous vertical profiles of 

temperature and humidity with vertical resolution on the order of hundreds of 

meters from the surface to 10 km.  These attributes make ground-based microwave 

profilers uniquely appealing for modeling applications, for which high temporal 

resolution is desired and moderate vertical resolution is acceptable (Liljegren et al., 

2001).     

 Capable of observing both non-dramatic and rapidly changing 

thermodynamic variations in the lower troposphere (Güldner and Spänkuch, 2001; 

Knupp et al., 2009), radiometric profiles can be used to fill in the gaps between 

radiosonde launches.  Although vertical resolution degrades linearly with height in 

the boundary layer and more rapidly above (Cimini et al., 2006; Cadeddu et al., 

2013), evaluations of a 12-channel profiling microwave radiometer conducted in 

Lindenberg, Germany (Güldner and Spänkuch, 2001), and in Lamont, Oklahoma, 

and Barrow, Alaska (Liljegren et al., 2001) show that thermodynamic profiles 

acquired from radiometric retrievals and radiosonde observations are of similar 

accuracy when applied to represent the atmospheric volumes defined by weather 
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forecast model grid cells (Ware et al., 2003).   Based on these studies, the primary 

utilization of radiometric retrievals has been for data assimilation purposes with 

the goal of improving short-term forecasts from numerical weather prediction 

models. 

 It has been recognized that measurements from microwave profilers may be 

of similar benefit when used to drive single column models and cloud resolving 

model simulations during model development field studies (Liljegren et al., 2001). 

The Atmospheric Radiation Measurement (ARM) Program has operated a 12-

channel microwave radiometer profiler (MWRP) as part of its first ARM Mobile 

Facility (AMF1) since 2005.  The AMF1 is a portable atmospheric laboratory that 

includes a suite of remote and in situ sensors designed to collect data in under-

sampled climatologically important regions which may be used by the atmospheric 

community to evaluate climate and process models (Miller and Slingo, 2007; 

Mather and Voyles, 2013).  The extensive dataset available from the AMF1 

MWRP presents a unique opportunity to investigate the application of radiometric 

retrievals to atmospheric model evaluations.   

 In this study we present a practical method for obtaining adaptable, high-

resolution thermodynamic profiles that are suitable for application in atmospheric 
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model evaluations by combining measurements from a ground-based profiling 

microwave radiometer with co-located radiosonde observations.  First, to establish 

the use of microwave radiometry for this purpose, data are used from six AMF1 

deployments to show that accurate radiometric retrievals are attainable in climate 

regimes most relevant to atmospheric model development. We then use combined 

radiometric retrievals and radiosonde observations from a single AMF1 deployment 

to evaluate a model-based radiosonde-related data product to demonstrate the 

advantages of adequate high-resolution thermodynamic profiles for atmospheric 

model development. 

3.1 Methods 

This study utilizes data from the six AMF1 deployment locations summarized in 

Table 3.1.  The deployments varied in duration from six to 19 months, collectively 

providing 66 months of data between 2005 and 2013.  Clear and cloudy conditions 

in polluted and clean air masses are represented in a diverse set of climatologies 

from under-sampled regions throughout the Northern Hemisphere. 
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 The AMF1 was first deployed in 2005 at Point Reyes National Seashore 

(PYE) on the northern coast of California for a period of six months.  PYE is 

characterized by the frequent presence of marine stratocumulus clouds and drizzle 

that are typical for marine west coast climates.   For the calendar year of 2006 the 

AMF1 was deployed in Niamey, Niger (NIM) in the West African Sahel.  NIM is 

located in a semi-arid region dominated by the West African Monsoon and subject 

to one of the largest moisture gradients on Earth.  In 2007 the AMF1 was in the 

mountainous Black Forest region of Germany (FKB) for a period of nine months.  

This region receives a significant amount of orographic precipitation.  For 8 months 

in 2008 the AMF1 was in Shouxian, China (HFE), located outside a rural town 

surrounded by farmland.  During 2009 and 2010 the AMF1 was deployed on 

Graciosa Island in the Azores (GRW).  Located on the border between the 

subtropics and mid-latitudes, GRW represents a unique remote marine 
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environment.  For a period of 12 months during 2012 and 2013 the AMF1 was 

deployed in Cape Cod, Massachusetts (PVC). 

 The AMF1 deployment history provides an ideal dataset for the purposes 

of this study.  NIM, PYE, and GRW are located in regions with environmental 

conditions that present challenges for the operation of remote sensors, and 

climatologies that are critical to the development of atmospheric models.  The 

characterization of the capabilities of profiling microwave radiometers in these 

three locations is crucial for establishing the utility of the sensor for atmospheric 

model evaluation.  The mid-latitude deployments in HFE, FKB, and PVC 

represent climatologies where profiling radiometers have been most frequently used, 

and therefore serve as a good comparison of the AMF1 MWRP performance 

capabilities to that of other studies.   

 The AMF1 MWRP, Radiometrics Corp. TP/WVP-3000, uses a tunable 

frequency synthesizer in the receiver to sequentially measure atmospheric radiance 

[W·m-2·sr-1·μm-1] expressed as brightness temperatures [K] at 5 K-Band and 7 

V-Band frequencies between 20 and 60 GHz (Solheim et al., 1998a).  In this 

frequency range, atmospheric emission is dominated by water vapor, atmospheric 

oxygen, and cloud liquid water.  The K-Band (water vapor sensing) frequencies 
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(22.035, 22.235, 23.835, 26.235, 30.0) and V-Band (temperature sensing) 

frequencies (51.25, 52.28, 53.85, 54.94, 56.66, 57.29, and 58.8 GHz) were selected 

based on eigenvalue analysis (Solheim et al., 1998b).  The calibration of the water 

vapor channels is monitored monthly and updated when necessary using the 

tipping curve calibration method (Liljegren, 2000; Han and Westwater, 2003).  

Temperature sensing channels are calibrated every three to four months with liquid 

nitrogen (LN2).  The radiometric accuracy of observed brightness temperatures is 

0.5 K, although it can be 1 - 2 K in the transparent oxygen channels where the 

LN2 calibration is less accurate (Cadeddu et al., 2013).  Measurement is impeded 

when liquid water on the antenna radome results in artificially high brightness 

temperatures.  A blower system is used to minimize the accumulation of liquid 

water on the radome and a rain sensor provides a flag for potentially contaminated 

data.  Additional sources of error include artificially high brightness temperature 

measurements resulting from observations in directions that are within 15° of the 

solar zenith angle and "spikes" caused by radio frequency interference. 

 Vertical profiles of temperature and humidity are derived from brightness 

temperature measurements using a statistical inversion method that is based on 

historical radiosonde data specific to each deployment location and a radiative 
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transfer model.   The microwave radiative transfer model (Schroeder and 

Westwater, 1991) uses the Rosenkranz (1998) absorption model for oxygen and 

water vapor, modified for a narrower half-width of the 22 GHz water vapor line 

(Liljegren et al., 2005, Garnache and Fisher, 2003) and for the MT-CKD water 

vapor continuum (Mlawer et al., 2003).    Due to the exponential nature of the 

weighting functions in the retrieval algorithm (Askne and Westwater, 1986), 

vertical resolution of retrieved profiles based strictly on information provided by 

the brightness temperature measurements is relatively coarse: 100 m (500 m) for 

temperature (water vapor density) achieved within the first kilometer, and 

degrades rapidly above (Cadeddu et al., 2013).  However, the fine vertical 

resolution contributed by historical radiosonde data allows for thermodynamic 

profiles to be provided approximately every 20 seconds for 47 vertical layers from 

the surface to 10 km, with 100-m resolution from the surface to 1 km and 250-m 

resolution from 1 to 10 km. 

3.2 Comparison with radiosondes 

 Utility for profiling radiometers in atmospheric modeling evaluation is 

founded upon the suitability of radiometric retrievals for combination with 

radiosonde observations.  This suitability specifically translates to the capability 
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to retrieve thermodynamic profiles at high temporal resolution for extended periods 

of time with minimal interruption and consistent accuracy that is comparable to 

radiosonde observations in a diverse set of relevant climate regimes.  In the 

following we test the performance and quantify the accuracy of thermodynamic 

profiles derived from measurements made by the AMF1 MWRP during the six 

deployments identified in Table 3.1. 

 The number of profile comparisons for each deployment is summarized in 

Table 3.2. All available data was used from the entire length of each deployment, 

however, the number of profile comparisons was impacted by the availability of 

both radiosonde observations and radiometric retrievals, and particular site 

climatology.  MWRP hardware malfunctions were responsible for significant 

periods of missing radiometric 

retrievals, collectively reducing 

the number of total available 

comparisons by ~1000.  Dew-

blower malfunctions eliminated 

~30 days in PYE and ~100 days 

in GRW.  Failed surface 
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meteorology sensors eliminated ~60 additional days in GRW.  Especially humid 

and/or precipitating conditions further reduced the number of available 

comparisons at each site to varying degrees. Systematic filtering for these 

conditions accounted for the loss of 1 % of available comparisons in NIM, 5 % in 

HFE, 16% in PVC and FKB, and 20% in PYE and GRW. 

 Vertical profiles of temperature and humidity derived from measurements 

made by the AMF1 MWRP were evaluated against co-located SONDE 

observations.  For each profile comparison, SONDE observations were linearly 

interpolated to match the vertical resolution of the MWRP, and the first available 

single radiometric retrieval within a half-hour of the SONDE launch time was 

selected.  Statistics of the discrepancies between the MWRP and SONDE (defined 

as MWRP - SONDE) observations approximate the accuracy of radiometric 

retrievals at each deployment location.      

   The mean discrepancies (biases) and root-mean-square discrepancies (RMS 

errors) between the MWRP and SONDE are presented in Fig. A1 for each AMF1 

deployment.  Radiosonde errors typically assigned by the National Centers for 

Environmental Prediction (NCEP) when assimilating radiosonde observations into 

numerical weather models (www.emc.ncep.noaa.gov/gmb/bkistler) are plotted 
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against the MWRP RMS errors for comparison (black lines).  These errors serve 

as an expression of the uncertainty that arises when using point measurements 

from radiosondes to represent grid cell average values in atmospheric models. 

 For temperature profiles, the MWRP exhibits a small positive bias near the 

surface and a negative bias 

above 2 km that is relatively 

larger in magnitude and peaks 

near 7 km (Fig. 3.1-a).   In 

terms of surface rainfall 

occurrence, the driest 

locations, NIM and HFE, 

exhibited the smallest biases, 

both within 1 K to 10 km.  

FKB and PYE had the largest 

biases, with magnitudes of ~2 

K near the surface and ~3 K 

aloft.  MWRP RMS errors in 

temperature (Fig. 3.1-b) 
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range between 1 and 2 K from the surface to approximately 4 km and degrade to 

a maximum value between 1.5 and  4 K at about 7 km. Some notable exceptions 

to the general trend were found at NIM, PYE, and GRW.  For NIM, RMS errors 

did not degrade to a maximum value near 7 km, but were maintained within 2 K 

throughout the profile.  RMS errors at PYE follow a trend similar to that of the 

other sites except near a height of 0.5 km, where RMS errors of about 3 K are 

uncharacteristically large.  To a height of 6 km, RMS errors at GRW are similar 

in magnitude to NIM, but then degrade continuously with height to about 6 K at 

10 km.    

 For water vapor density profiles, the MWRP has a negative bias (Fig. 3.1-

c) near the surface and a positive bias aloft at drier locations (NIM, HFE, and 

FKB), while the three wetter locations shown the opposite trend, although all are 

within 2 g·m-3.  RMS errors in water vapor density were remarkably consistent 

among the six locations.  Near the surface errors are about 1 g·m-3, then reach a 

maximum value that is less than 2.5 g·m-3 before 2 km, and then continuously 

decrease with height.  For all sites, MWRP RMS errors are roughly equivalent to 

or less than radiosonde errors at all sites from the surface to 10 km.  The only 
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notable exception to the general trend was found at FKB, where RMS errors are 

maintained within about 1 g·m-3 from the surface to 10 km. 

Example vertical profiles of temperature from the MWRP and SONDE are 

compared for each of the AMF1 deployment locations in Table 3.1.  
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Disagreement between the MWRP (solid lines) and SONDE (dashed lines) profiles 

is almost exclusively associated with the presence of temperature inversions.  While 

weak surface inversions are captured by the MWRP relatively well (Fig. 3.2-a) and 

3.2-c), discrepancies arise in proportion to the magnitude of the inversion strength 

for all inversions above 0.5 km (Figs. 3.2-a to 3.2-f).  This suggests that the range 

in temperature RMS errors among the different climatological regimes is primarily 

due to the height, strength, and persistence of temperature inversions at each site, 

and is consistent with the decreasing vertical resolution of the MWRP and the 

RMS temperature errors presented in Fig. 3.1.  At PYE, for example, the strong 

temperature inversion near 0.5 km (Fig. 3.2-e) was persistent throughout the length 

of the deployment and can be directly associated with the peak in temperature 

RMS errors for PYE near 0.5 km (Fig. 3.1-b).   The discrepancy between the 

MWRP and SONDE above 8 km at GRW (Fig. 3.2-f) is not associated with a 

temperature inversion, however is a consistent problem given the high temperature 

RMS errors found in this portion of the profile at RW (Fig. 3.1-b).  This is most 

likely the result of an issue with the regression coefficients in the retrieval algorithm 

generated from historical radiosonde data, but would need to be investigated.         
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 Example vertical profiles of water vapor density from the MWRP and 

SONDE are compared for each of the AMF1 deployment locations in Fig. 3.3.   

Disagreement between the MWRP and SONDE is very much the result of the 

coarse vertical resolution of the MWRP and sharp moisture gradients in the lower 

portions of the atmosphere.  As was found with the temperature profiles, the 

general trend of water vapor density with height is well represented in observations 

from the MWRP, within the realm of possibility given the limited vertical 

resolution of the radiometric retrievals. 
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 Our findings establish a unique potential for ground-based microwave 

radiometry to provide sufficiently reliable and accurate thermodynamic profiles 

with spatial and temporal resolutions that are appropriate for atmospheric 

modeling applications.  Radiometric retrievals from the MWRP were evaluated 

against co-located SONDE observation for extended time periods using data from 

six AMF1 deployment locations that represent the marine and continental 

environments in the sub-tropics and mid-latitudes.  Overall, RMS errors in 

temperature ranged 1 - 2 K from the surface to about 4 km and 1 - 4 K to 10 km 

and RMS errors in water vapor density were within 2.5 g·m-3 from the surface to 

10 km.  These errors are similar to the uncertainty that NCEP assigns to point 

measurements from radiosondes when they are used to represent grid cell average 

values in weather prediction models.       

 MWRP RMS errors in temperature and humidity at HFE, FKB, and PVC 

were equivalent to or slightly larger than reported by Güldner and Spänkuch 

(2001), Liljegren et al. (2001), and Cimini et al. (2006) using a similar retrieval 

method with an identical radiometer in similar mid-latitude climatologies.  Larger 

errors may be accounted for by the longer duration (greater than six months) of 

each AMF1 deployment in comparison to the much shorter time periods (three to 
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six months) utilized by prior studies.  The longer deployment periods in the present 

study encompass a broader range of operating conditions within each climate 

regime.  In addition, calibration of the MWRP was most likely better maintained 

during prior studies due to closer monitoring of the instrument.  The variability of 

RMS errors in temperature among each AMF1 deployment site was also slightly 

larger than reported by Westwater et al. (2000) for four different North American 

environments, although the current dataset included a more diverse set of 

climatologies.     

 For the purpose of meeting the thermodynamic profiling requirements of 

atmospheric modeling applications, the performance of the MWRP at NIM, PYE, 

and GRW is generally promising, yet exposes some challenges.  MWRP RMS errors 

in temperature and humidity at these locations were equal to or smaller than those 

from HFE, FKB, and PVC.  In NIM, the MWRP operated almost continuously 

without interruption for a period of twelve months.  However, in the marine 

environments of PYE and GRW, although interruptions from rainfall were general 

brief, three instances involving hardware malfunctions primarily associated with 

the dew blower caused substantial gaps in data availability from periods ranging 

for about one month to nearly three months.  Close monitoring and mitigation 
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plans for anticipated hardware complications would have to be in place to acquire 

long-term continuous datasets in marine environments. 

Having demonstrated the profiling capabilities of the MWRP in a diverse 

set of climatologies that are specifically relevant to atmospheric modeling 

development, we conclude that thermodynamic profiles derived from measurements 

made by the MWRP are best exploited for atmospheric modeling applications when 

used in combination with radiosonde soundings.  

3.3 Model evaluation using combined profiles 

 Radiosondes and radiometers have a complementary set of advantages with 

respect to modeling applications that enables a uniquely effective synergy between 

the two instruments that is readily adaptable to the specific thermodynamic 

profiling requirements of model evaluations.  To illustrate this potential, 

radiometric retrievals and radiosonde observations are used in combination to 

validate the Merged Sounding (MERGESONDE) Value-Added Product (VAP) 

(Troyan, 2012) (referred to hereafter as MSecmwf), a model-based radiosonde-related 

data product.  MSecmwf profiles are typically used as input for higher order VAPs, 

but have also been used for research applications requiring thermodynamic profiles 
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at high temporal resolution to study the relationships between thermodynamics, 

clouds, and precipitation in West Africa (Kollias et al., 2009). 

  

 MSecmwf provides thermodynamic profiles for 266 levels from the surface to 

20 km at 1-min temporal resolution by merging radiosonde observations with 

hourly ECMWF model output.  As illustrated in Fig.3.4, the merge algorithm first 

interpolates radiosonde observations and model output onto separate, but common 

profile grids.  The profiles are merged based on the temporal proximity to the 

nearest radiosonde observation using a double-sigmoid weighting function to 

determine the weight each profile contributes to the merged product.  Radiosonde 

observations are given a 100% weight at the time of observation, near 05:30, 11:30, 

17:30, and 23:30 UTC each day.  ECMWF output has a maximum weighting in 

between radiosonde observations, near 02:30, 08:30, 14:30, and 20:30 UTC.  Surface 
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meteorological instrumentation (MET) and a two-channel microwave radiometer 

(MWR) provide 1-min observations that serve as boundary conditions at the 

surface and scale the relative humidity profiles, respectively.   

 To evaluate MSecmwf thermodynamic profiles, a similar MWRP-Merged 

Sounding (MSmwrp) data product was created using the same algorithm, but 1-min 

radiometric retrievals are used in place of hourly ECMWF output.   Boundary 

conditions provided by MET and the MWR in MSecmwf  were not applied.  Above 

10 km, where radiometric retrievals are not available, radiosonde observations are 

simply interpolated.  MSmwrp was generated using observations from the AMF1 

deployment in Niamey, Niger during 2006.  Thermodynamic profiles have the same 

spatial and temporal resolution as MSecmwf. 

 Time-height cross-sections of temperature and relative humidity from 

MSecmwf and MSmwrp for 11 August 2006 are compared in Fig. 3.5.  Below 10 km, 

there are significant differences in the evolution of temperature throughout the 

day.  The four vertical streaks in MSecmwf occur at the times when the model output 

is weighted most heavily. The model output and SONDE observations are not in 

good agreement, and the observed structure is a result of the weighted average 

used to merge the two data sources.  The MWRP and SONDE agree rather well 
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and produce a much more realistic evolution of temperature.  Relative humidity 

structures are, however, remarkably similar below 10 km.  

Above 10 km, where no high resolution data is available to fill the gaps between 

radiosonde launches in the MSmwrp product, the evolution of temperature agrees 

rather well with the MSecmwf product.  In contrast, the evolution of relative humidity 

differs significantly between the two data products, with much higher relative 
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humidity values in the MSecmwf product.  The incorporation of model data to fill 

the gaps between radiosonde launches in the MSecmwf product appears to have a 

greater influence on the evolution of relative humidity than for temperature above 

10 km.  This suggests that only having available high resolution data from the 

surface to 10 km in the MSmwrp product may be more of a limitation for relative 

humidity than for temperature. 

 

 Mean and RMS discrepancies in temperature, water vapor density, and 

relative humidity between MSecmwf and MSmwrp  (defined as MSecmwf - MSmwrp) for the 
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2006 monsoon season are shown in Fig. 3.6.  MSecmwf exhibits a negative 

temperature bias of about 1 K from the surface to 10 km (Fig. A6-a).  The RMS 

difference is 1.5 K near the surface, and 2-3 K to 10 km.  These differences are 

larger than the MWRP RMS error determined for the year 2006.  For water vapor 

density, MSecmwf shows a small negative bias, within -0.5 g m-3, to 5 km, and a slight 

positive bias, within 0.2 K from 5 to 10 km (Fig. 3.6-b).  RMS differences are 

within 1.5 g m-3 from the surface to 10 km, which is roughly equivalent to MWRP 

RMS errors for the year 2006.  MSecmwf and MSmwrp compare extremely well for 

relative humidity from the surface to 5 km, with negligible bias and RMS 

differences within 5% (Fig. 3.6-c).  Above 5 km, MSecmwf tends to be increasingly 

more humid with height, although RMS differences are within 15% to 10 km.  

These results are consistent with the differences identified between the two data 

products in the August 11, 2006 example from the surface to 10 km.   

 High-resolution thermodynamic profiles allow for the investigation of 

relationships between the thermodynamic environment and other meteorological 

phenomena that evolve on short time scales, such as cloud cover, precipitation, and 

radiation.  For such applications it is common to characterize the thermodynamic 

environment in terms of derived quantities, such as convective available potential 
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energy (CAPE) and convective inhibition (CIN).  Due to the complex definition of 

these quantities, it is not immediately clear how the interpretation of CAPE and 

CIN may be influenced by uncertainties in the temperature and humidity profiles 

from which they have been derived.  In the following analyses, we compare time 

series of CAPE and CIN computed using temperature and humidity profiles from 

MSecmwf and MSmwrp to determine the implications that uncertainties in temperature 

and humidity profiles from MSecmwf may have for the utility of time series of CAPE 

and CIN derived from this product.   

 Vertical profiles of temperature and humidity from MSecmwf and MSmwrp were 

used to compute CAPE and CIN for the 2006 monsoon season in Niamey, Niger 

using simple, psuedoadiabatic parcel theory, as described in Appendix A.   

 The diurnal and seasonal cycles of CAPE and CIN for the 2006 wet season 

in Niamey, computed from each time series, are compared in Figure 3.7.  With 

respect to the diurnal cycle, MSmwrp values for CIN and CAPE (black lines) range 

from 0.1 to 0.2 kJ·kg-1 and 1.2 to 1.6 kJ·kg-1 respectively.  CIN tends to a 

maximum around 6:00 local time (LT) and a minimum around 15:00 LT, while 

CAPE shows an opposing trend, with a maximum at night and a minimum in the 

morning.  The diurnal cycles of CAPE and CIN from the MSecmwf data product (red 
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lines) are similar, but not as 

well defined.  The evolution of 

CIN from the MSecmwf product 

is almost identical to that of 

the MSmwrp product, but 

deviates to lesser values at the 

times of day when ECMWF 

output is weighted most 

heavily by the merge 

algorithm.  CAPE values 

from MSecmwf range from 1.4 to 

2.0 kJ·kg-1, which is 

generally higher than the 

MSmwrp range, and the 

evolution of CAPE throughout the day does not coincide with MSmwrp as well as it 

does for CIN.   
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 With respect to the seasonal cycles of CAPE and CIN, the MSecmwf product 

exhibits a consistent positive bias for CAPE and negative bias for CIN, however, 

the evolution of both CAPE and CIN are well correlated.  Both products show 

that on average CAPE increases over the course of the monsoon season, starting 

at approximately 0.5 kJ·kg-1 in May and maximizing at 2.0 kJ·kg-1 near the end 

of September, before disappearing entirely at the end of October.  Similar values 

of CAPE were found by Monkam (2002) using low resolution thermodynamic 

profiles at mandatory levels.  Kollias et al. (2009) reported 6-day running mean 

values of CAPE computed using equivalent potential temperature profiles derived 

from MSecmwf temperature and humidity that showed no steady increase in CAPE 

over the course of the monsoon season, and maintained a substantially higher value 

of 5 kJ·kg-1 throughout.  This scale bias limits application of the MSecmwf VAP for 

process studies on scales consistent with model time steps and cloud-scale 

parameterization physics.   

 These results suggest that the MSecmwf VAP produces reliable trends for CIN 

and CAPE on seasonal time scales, but cannot be used to draw relationships 

between the thermodynamic environment and clouds or precipitation on shorter 

time scales. 
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 Temperature profiles from the MSecmwf VAP serve as a data source for the 

Continuous Baseline Microphysical Retrieval (MICROBASE) VAP (Dunn et al., 

2011) to generate vertical profiles of cloud microphysical properties that are in turn 

used by higher-order VAPs to generate estimates of atmospheric heating rates.  

The MICROBASE VAP employs a mixed-mode phase partitioning scheme and a 

set of empirical relationships to derive vertical profiles of liquid water content 

(LWC), ice water content (IWC), cloud droplet effective radius (Re) and ice cloud 

particle effective radius (Rei) from cloud radar reflectivity and ambient 

temperature.  In the following analyses, we use the uncertainty in the MSecmwf VAP 

temperature profile δT, estimated by statistical comparison with the MSmwrp data 

product for the 2006 wet season in Niamey to quantify the uncertainty in the cloud 

microphysical properties that MICROBASE supplies to higher-order VAPs.  

Uncertainty equations (Appendix B) are formulated using the log-derivative 

method and used to demonstrate how the uncertainty propagation resulting from 

MSecmwf temperature biases potentially impacts microphysical parameters computed 

when MSecmwf temperature profiles are used. 
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These results identify a significant sensitivity to uncertainty in the temperature 

profile with respect to the liquid cloud droplet effective radius in mixed phase 

clouds in the MICROBASE algorithm. Reductions in temperature-profile 

specification uncertainties are found in all four microphysical variables computed 

in MICROBASE (Fig. 3.8).  The most significant uncertainty in IWC due to 

temperature specification is realized when temperatures are near freezing and the 
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uncertainty in Rei is not temperature dependent.  Liquid cloud parameters become 

progressively more uncertain as the temperatures approach -16 °C, which is the 

temperature at which MICROBASE assumes that liquid is no longer present in the 

cloud. These uncertainties in the liquid water parameters are a particularly caustic 

issue when they are used as inputs to radiation transfer calculations, so any 

reduction in the uncertainties is highly desirable. 

 Evaluating parameterizations in atmospheric models is a challenging 

endeavor because observations are often incomplete and incompatible with model 

vertical, horizontal, and temporal resolution.  A crucial aspect of any model 

forecast is the thermodynamic profile because it is integrally related to switches 

within the model that toggle various parameterizations on and off.  Invoking the 

convective parameterization or diagnosing stratiform cloudiness is a function of the 

predicted thermodynamic profile, for example, and diagnosing the existence and 

phase of clouds within the model column is also a function of this profile.  Many 

past efforts to evaluate model thermodynamic profiles have relied upon 

comparisons between radiosonde profiles collected every few hours and the 

predicted thermodynamic profile.  But radiosonde thermodynamic profiles are 

detailed snapshots, while model calculations in a given grid cell are the result of 
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the convergences and divergences within the models dynamic core; there is an 

inherent mismatch between the two profiles.  Noting every small fluctuation in the 

vertical profile of temperature or water vapor during a radiosonde ascent provides 

little that is directly comparable, by itself, with model output. Of more utility is a 

continuous, lower resolution thermodynamic profile that mocks model output in 

temporal and spatial resolution.  The MWRP uses detailed radiation transfer 

calculations operating through a mathematical inversion to produce a continuous 

estimate of the temperature and water vapor profiles.  These profiles often gloss-

over specific details such as sharp inversions in favor of an averaged profile, which 

is quite similar to the behavior of the dynamic cores in models, which do not possess 

the vertical and temporal resolution to produce anything more.  

 Beyond the thermodynamic profile as a direct model comparison tool is the 

temperature sensitivity of microphysical retrievals that are used to evaluate model 

parameterizations.  These retrievals operate continuously and require temperature 

information to specify the phase of hydrometeors within clouds.  Demonstrations 

presented herein suggest that a combined MWRP and radiosonde thermodynamic 

profile (MSmwrp) provides a superior product relative to a radiosonde and model 

derived product (MSecmwf). Despite the 10-km height limitation imposed when using 
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the MWRP measurement between soundings, structures in the lower 10-km are 

better resolved when the MWRP is used and it is in these layers where convective 

and stratiform cloud parameterizations generally operate.  Perhaps most 

importantly, the specifications of the MSmwrp product deem it more compatible with 

the requirements for evaluation of GCM thermodynamics and process-related 

parameterizations. 

3.4 Summary and Conclusions 

Creating, evaluating, and improving model cloud parameterizations is of critical 

importance for virtually all types of atmospheric models, and a particularly urgent 

issue for global climate models (GCMs).  This study demonstrates that radiosonde 

observations and measurements from a profiling microwave radiometer may be 

combined to provide thermodynamic profiles that are substantially more 

appropriate for atmospheric model evaluations than radiosonde observations alone.  

 The accuracy of vertical profiles of temperature and humidity derived from 

measurements made by the AMF-1 MWRP was estimated by an extensive 

statistical comparison with co-located radiosonde observations during the course of 

six deployments between 2005 and 2013.  To our knowledge, this is the most 

extensive and wide ranging comparison to date.  It was determined that 
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thermodynamic profiles suitable for combination with radiosonde observations are 

attainable from measurements by the MWRP among the diverse set of climate 

regimes relevant to atmospheric model development.  This result establishes a 

unique potential for high-resolution thermodynamic profiles derived from the 

combination of radiosondes and radiometers that can be of substantial benefit to 

the atmospheric community for use in model evaluations.   

 Some specific results of this study deserve special mention.  Combining 

radiosonde and numerical model output to produce a continuous thermodynamic 

profile is a useful technique, but it suffers from the need to juxtapose two sources 

of information that are somewhat dissimilar and requires the use of techniques to 

meld them together even when they exhibit considerable disagreement.  The 

melding process produces artifacts in the final output product that are clearly 

evident when the product is compared to a merged product consisting of two types 

of measurements: radiosondes and the MWRP.  Artifacts in the radiosonde and 

model product propagate into hybrid quantities such as CAPE and CIN, which are 

important parameters in cloud parameterizations, and these artifacts may mask 

the true relationships between CAPE and CIN and cloud development that need 

to be better quantified if they are to be used in cloud parameterizations.  Finally, 
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these artifacts introduce unnecessary uncertainty into downstream algorithms that 

are sensitive to accurate specification of temperature such as microphysical 

retrievals.       

 High-resolution thermodynamic profiles generated by combining 

measurements from a profiling microwave radiometer and radiosonde observations 

show potential to enhance the efficiency of the atmospheric model development 

process, especially with respect to the improvement of the representation of clouds 

and convection.  The capability to quantify the uncertainty of model 

thermodynamic variables can lead to a better understanding of the sensitivity of 

model physics to changes in the thermodynamic profile.  It is likely that reductions 

in the uncertainty of model thermodynamics can lead to a narrowing of the 

variability among different model solutions.  A profiling microwave radiometer is 

a valuable addition to the suites of remote sensors at research facilities with model 

development missions and we recommend that it become a standard instrument at 

all sites with this mission. 
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Chapter 4: Observations 

 

 

4.1 Background Climatology 

The lower troposphere in the Sahel region is a transitional zone between the warm, 

moist savanna to the south and the hot, dry Sahara Desert to the north. The 

transition occurs abruptly along a quasi-stationary Intertropical Front (ITF) and 

is experienced at the surface by sharp meridional gradients in temperature and 

humidity, and a discontinuity in wind direction.  Northeasterly Harmattan winds 

allow Saharan air to penetrate the portion of the Sahel north of the ITF, while the 

portion south of the ITF is penetrated by relatively cooler, moist air fronm the 

tropical Atlantic Ocean.  The Sahel is a semi-arid climate zone that experiences 

two distinct seasons annually, fundamentally driven by the West African Monsoon 

(WAM) circulation.  During the boreal winter the ITF is stationed near 10°N, 

bringing hot, dry conditions to the Sahel.  In spring, the ITF begins a slow 

northward migration reaching approximately 20°N in mid-August, during which 

time the Sahel receives a majority of its annual rainfall.  The ITF then rapidly 

retreats southward, and conditions in the Sahel are once again dry by November.   
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At approximately 13.5°N and 2°E, Niamey, Niger is located near the 

southern border of the West African Sahel region.  The ITF typically passes 

northward of Niamey (using the standard criteria of 15 °C of sustained near-surface 

dew point temperatures) during the first dekad in April and passes southward 

during the last dekad in October (Lélé and Lamb, 2010).  Although the monsoon 

season spans a period of six months, Niamey receives a majority of its rainfall 

during a core period from later July to early September (Slingo et al., 2007). 

4.2 Overview of Observations from RADAGAST 

4.2.1 Rainfall 

The evolution of monthly accumulated rainfall measured using the AMF-1 PWD 

during 2006 is shown in Fig. 3.1(a). Rainfall begins modestly in May, steadily 

increases to a maximum in August, before rapidly declining back to dry conditions 

in November.  Niamey received a total of 386 mm of rain from May through 

October of 2006, a majority of which (337 mm) occurred during the peak monsoon 

months of July, August, and September.  Although the monthly accumulated 

rainfall total for August was close to average, below normal monthly accumulations 

were experienced in all other wet season months (Lélé and Lamb, 2010). 
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Rainfall totals determined from the AMF-1 PWD disagreed with the amounts 

reported by Slingo et al. (2008), Miller et al. (2009), and Miller et al. (2012) 

(referred to as S08, M09, and M12 respectively) (Table 4.1).  

 

Using an AMMA TBRG, S08 reported rainfall totals in May through September, 

with an annual total of 395 mm.  Using the AMF1 ORG, M09 reported May 

through September monthly rainfall totals that are consistently less than S08 

throughout the monsoon season, resulting in an annual rainfall amount that is 

roughly 100 mm less than S08.  Also, Rainfall was observed in October and 
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November according to M09, while no rainfall was reported during these months 

by S08.   To resolve these inconsistencies for the present study, the rainfall rates 

recorded by the AMF1 ORG were compared to the AMF-1 PWD and an AMMA 

TBRG located at the Niamey airport site.   Close inspection of the 1-minute rainfall 

rates recorded by the ORG and PWD revealed two major rain events were reported 

by the ORG were false readings associated with two attempts to recalibrate the 

instrument.  Serial communication errors and dropouts during heavy rainfall were 

identified in the PWD data throughout the monsoon season.  Once corrections for 

these errors were made, the ORG and PWD data streams were found the be highly 

correlated (R = 0.98), although measurements from the ORG were about 15% 

lower than those of the PWD on a consistent basis.  Based on a comparison with 

5-minute accumulated rainfall recorded 

by the AMMA TBRG it was concluded 

that the ORG underreported rainfall. 

Therefore, monthly accumulated 

rainfall totals used in this study were 

derived from measurements by the 
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PWD.  Monthly accumulated rainfall totals for the 2006 season from each 

instrument are shown in Fig. 4.2.  

4.2.2 Surface Meteorology 

Monthly-mean near-surface air temperature and near-surface dew point 

temperatures are presented in Fig. 4.1(b) and (c), respectively.  Average dew point 

temperatures are above 15 °C during May through October, defining the 2006 wet 

season.  There are two local maxima in near-surface air temperature over the course 

of the year, coincident with the beginning and end of the wet season.  These results 

are consistent with the evolution of daily-mean screen-level temperature and dew 

point temperatures reported by Slingo et al. (2008). 

Month-mean near surface wind speeds and directions are shown in Fig. 4.1 

(d) and (e), respectively.  Although wind speeds remain fairly constant throughout 

the year, the near-surface wind direction abruptly shifts from northeasterly to 

southwesterly at the beginning of the wet season.  Southwesterly winds are 

maintained throughout the wet season, and abruptly shift back to northeasterly at 

the start of the dry season.  These results are consistent with evolution of daily-

mean surface wind speed and direction reported by Slingo et al. (2008). 
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Monthly-mean surface air pressure remains fairly constant throughout the 

year (Fig. 4.1(f)), with a minimum occurring just before the onset of the monsoon 

season and a less pronounced minimum at the end. 

Near-surface air temperature and specific humidity measurements from the 

AMF-1 MET were used derive surface moist static energy at 1-min resolution (ℎ =

𝐶𝐶𝑝𝑝𝑇𝑇𝑠𝑠 + 𝐿𝐿𝑣𝑣𝑞𝑞𝑠𝑠).  Monthly-mean values of moist static energy divided by 𝐶𝐶𝑝𝑝 (Fig. 

4.1(g)) abruptly increase at the start of the wet season, then steadily increases 

before abruptly dropping back to dry season values at the end of the wet season.  

These results are consistent with daily-mean values based on measurements by the 

AMF-1 eddy correlation instrument report by Miller et al. (2009). 

4.2.3 The Thermodynamic Environment 

Monthly-mean vertical profiles of relative humidity and temperature from the 

MWRP-MERGESONDE data product described in Chapter 3 are shown in Fig. 

4.3(a) and (b), respectively.  The presence of the monsoon air mass is evident 

during May through October in Fig. 4.3(a), and monthly-average relative humidity 

is highest (~70%) through 5 km during the peak season from July to September.  

A moderate level of humidity is present in the upper atmosphere for the remained 

of the year, with the exception of December, during which time the total 
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atmospheric column is remarkably dry.  Although the seasonal cycle of monthly 

average temperature is fairly uniform throughout the year, there are a few subtle 

characteristics worth noting.  First, the two near-surface temperature maximum 

identified in Fig. 4.1(b) at the very beginning and very end of the monsoon season 

are shown to extend upward from the surface to about 1 km.  Second, the freezing 

level remains fairly constant at about 4 km throughout the entire seasonal cycle.  

Lastly, the effects of peak monsoon season deep convection on the temperature 

profile are reflected in the warming of the atmosphere near 18 km, which is most 

pronounced during the month of August. 
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Monthly-mean lifted-condensation level (LCL), convective available 

potential energy (CAPE), and convective inhibition (CIN) based on simple pseudo-

adiabatic parcel theory (described in Appendix A) are shown in Fig. 4.1 (h), (i), 

and (k), respectively. The LCL is highest in March, then drops to half its maximum 

value by the start of the wet season, and reaches a minimum in August, coincident 

with the rainfall maximum.  CAPE is unavailable throughout the dry season, then 

abruptly increases with the onset of the monsoon.  On average CAPE increases at 

a slow, steady rate over the course of the monsoon season, starting at 

approximately 0.5 kJ·kg-1 in May and maximizing at 2.0 kJ·kg-1 near the end of 

September, before disappearing entirely at the end of October.  Similar values of 

CAPE were found in this region by Monkam (2002) using low resolution 

thermodynamic profiles at mandatory levels.   CIN is also not present during the 

dry season.  Highest values of CIN occur at the onset of the wet season and decrease 

steadily to a peak season minimum. 

4.2.4 Clouds 

Cloud boundaries were determined at 42-meter resolution in the vertical every 6 

seconds by combining data from the WACR, MPL, and CEIL as described in 

Kollias et al. (2009).  Consistent with Miller et al. (2012) cloud area fraction is 
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defined as the fraction of each 1-hour period that clouds were present in the 

column.  Monthly-mean cloud fractions are variable in the dry season, ranging 20 

to 40%, and consistently higher at 60% throughout the length of the wet season 

(Fig. 4.1(k)).  These values are consistent with the daily-mean cloud fraction 

derived from the SEVERI cloud mask (Slingo et al., 2009).   

Monthly-mean liquid water path (LWP) and integrated water vapor (IWV) 

are shown in Fig. 4.1(l) and (m), respectively.  Liquid water is nearly non-existent 

in the atmosphere over Niamey during the dry season.  The LWP is elevated 

throughout the wet season, although the largest values are observed in June, July, 

and August of 2006.  At the onset of the wet season, total column water vapor 

quickly doubles in comparison to its dry season presence, then slowly increases to 

a maximum coincident with the peak of the monsoon season, consistent with Miller 

et al. (2009). 

4.2.3 The Surface Energy Balance 

Surface fluxes of latent and sensible heat are shown in Fig. 4.1(n) and (o) 

respectively.  The latent heat flux (LHF) remains below 10 W·m-2 for the duration 

of the dry season months, with a minimum value in May at the beginning of the 

wet season.  During the wet season the LHF evolves in a manner similar to 
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accumulated monthly rainfall and CAPE, reaching a maximum in August at 60 W 

m-2.  The SHF evolves as near surface air temperatures, with maxima at the 

beginning and end of the wet season.  

 Surface downward shortwave radiative fluxes for all-sky and clear-sky 

conditions are presented in Fig. 4.1(p) and (q), respectively.  Clear-sky conditions 

were identified using the technique described in Collow et al. (2015).  Clear-sky 

fluxes peak early in the year, just before cloud cover returns to the Sahel at the 

start of the monsoon season then steadily declines until the beginning of the dry 

season in November.  All-sky fluxes exhibit a similar range of variability although 

the decline over the course of the monsoon season is at first slower than that of 

the clear-sky fluxes, but more abrupt at the end.  Surface downward longwave 

radiative fluxes for all-sky and clear-sky conditions are shown in Fig. 4.1(r) and 

(s), respectively.  These fluxes are largest during the wet season, reflecting the 

seasonal cycles of cloud cover and integrated water vapor shown in Fig. 4.1(k) and 

(l), respectively. 

Surface upward longwave radiative flux is presented in Fig. 4.1(t).   This flux 

exhibits a maximum value in May that is coincident with the maximum in near 

surface air temperature shown in Fig. 4.1(b). 
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Chapter 5:  Observation and Model Comparison  

 

 

GCM performance may be assessed under the expectation that the seasonal cycle 

of any given quantity observed during a single year should be contained within the 

model-generated envelope of solutions for a decadal period that includes the year 

of observation (Miller et al., 2012).  In the following, monthly-mean atmospheric 

fields for the single column of grid cells over Niamey, Niger was extracted from the 

first 10 years (2006 – 2015) of the RCP4.5 emissions scenario dataset for two 

CMIP5 coupled GCMs and compared to the observations of rainfall, meteorology, 

clouds, and radiation measured during 2006 in Niamey, Niger presented in Chapter 

3.    Model performance is then assessed in terms of the capability of each model 

to: 1) comprehensively capture 2006 monsoon cycle as characterized by the 

evolution various atmospheric quantities over the course of the year, 2) reproduce 

observed relationships between of such quantities and monthly accumulated 

rainfall.       
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5.1 Seasonal Cycles 

The 2006 – 2015 envelope of seasonal cycles of rainfall, meteorology, the 

thermodynamic environment, clouds, and radiation from generated by GFDL-CM3 

and GISS-E2-R for the RCP4.5 emissions scenario are compared to the seasonal 

cycles observed during 2006 in Niamey in Fig. 5.1 and Fig. 5.2 respectively. 

 5.1.1 Rainfall 

Both models consistently simulate a seasonal rainfall cycle that is centered 

on, but extended beyond the observed wet season.  GFDL-CM3 generally 

overestimates total annual rainfall (64 – 90 cm/year), and the peak rainfall month 

tends to occur either too early (as early as May) or too late (as late as October). 

The timing and magnitude of the observed annual cycle is better captured by GISS-

E2-R, which simulates peak rainfall in July or August, and produces annual rainfall 

total ranging 42 – 67 cm/year.  Rainfall that occurs too early (during February 

and March) or too late (during November and December) in GISS-E2-R 

simulations does not make a significant contribution to the simulated annual 

rainfall totals.  

Simulated monthly rainfall totals were also extracted for the eight 

surrounding grid cells to ensure that spatial displacement was not a significant 
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source of error in the cycles simulated by either model.   These results are provided 

in Appendix C.     

5.1.2 Surface Meteorology 

GFDL-CM3 captures the evolution of near-surface air temperature throughout the 

year (Fig. 4.1(b)), while GISS-E2-R simulates the basic evolutionary structure 

although temperatures are too high during the dry season, and peak one month 

earlier than observed (Fig. 5.2(b)).  Both models simulate a generally appropriate 

range of near-surface dew point temperatures throughout the year (Fig. 5.1(c) & 

Fig. 5.2(c)), however both models simulate the onset of the monsoon season too 

early, as indicated by the occurrence of dew point temperatures above 15°C.  Both 

models also fail to simulate the observed increase in dew point temperature over 

the course of the wet season. 

Both models simulate a seasonal cycle of near-surface wind speeds that was 

not evident in the observations (Fig. 5.1(d) & Fig. 5.2(d)).  While measurements 

during 2006 show little variation in near-surface wind speeds throughout the year, 

the models produce high wind speeds during the dry season that slowly decrease 

over the course of the wet season.  Although this cycle is more pronounced in 

GFDL-CM3 than in GISS-E2-R, wind speeds observed during the wet season are 
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captured by the GFDL-CM3 decadal envelope, wind speeds simulated by GISS-

E2-R are consistently higher than observed throughout the year.  The observed 

shift in wind direction that is characteristic of the monsoon season is captured by 

GFDL-CM3 (Fig. 5.1(e)), however wind direction shifts 1 – 2 months earlier in 

GISS-E2-R than observed (Fig. 5.2(e)). 

 Both models exhibit deficiencies simulating the observed surface air 

pressure.  GFDL-CM3 simulates a seasonal cycle with a minimum in pressure near 

the end of the dry season (Fig. 5.1(f)). GISS-E2-R simulates lower than observed 

pressure throughout the season but evolves with little variation as observed (Fig. 

5.2(f)).  

 Although both models simulate the observed sharp increase in surface moist 

static energy at the start of the wet season, both overestimate the increase and fail 

to capture the steady increase in moist static energy over the course of the wet 

season (Fig. 5.1(g) and Fig. 5.2(g)). 

5.1.3 The Thermodynamic Environment 

Simulated seasonal cycles of the LCL, CAPE, and CIN were derived from vertical 

profiles output by each model at standard pressure levels using the same algorithm 

applied to the observations.  Both models capture the magnitude and general 
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evolution of the LCL, although the reduction in LCL at the beginning of the wet 

season occurs too early in GISS-E2-R (Fig. 5.2(h)) and too rapidly in GFDL-CM3.  

5.1.4 Clouds 

Both models capture the seasonal cycle of cloud cover, but with about 10-20% too 

much cloud cover during the wet season. Although GFDL-CM3 (Fig. 5.1(k)) 

produces higher wet season cloud cover amounts (80-100% in June), it captures 

the 2006 dry season cloud amount.  GISS-E2-R (Fig. 5.2(k)) produces too many 

clouds throughout the year, but produces more realistic cloud amounts during the 

wet season than GFSL, in comparison to the 2006 observations. 

The models each simulate a seasonal cycle for the liquid water path (LWP) 

the peaks during the wet season, but these cycles are rather different in terms of 

magnitude and evolution.  GFSL-CM3 (Fig. 5.1(l)) produces LWP values that 

capture the 2006 observations during the dry season, but too low from June 

through September. GISS-E2-R (Fig. 5.2(l)) simulates the LWP with values that 

are nearly three times larger than observed throughout the year.  Despite these 

differences, both models capture the 2006 seasonal cycle of total column water 

vapor rather well.  GFDL-CM3 produces values that closely represent the 2006 

observations in all months with the exception of January (Fig. 5.1(m)).  GISS-E2-
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R envelope is slightly higher than the 2006 observation, during the first half of the 

year, but still captures the evolution of total column water vapor (Fig. 5.2(m)). 

5.1.5 The Surface Energy Balance 

The LHF is over estimated during the wet season in both models, however, the 

observed evolution of the LHF over the course of the first half of the 2006 wet 

season (May – August) is more closely resembled by GISS-E2-R (Fig. 5.2(n)) than 

by GFDL-CM3 (Fig. 5.1(n)), which simulates an abrupt increase in the LHF to 

peak season values at the beginning of the monsoon season in June.  Both models 

capture a seasonal cycle for the SHF similar to the 2006 observations, but the 

observed May maximum and August-September minimum are each produced 

about 2 months early by both models (Fig. 5.1(o) & Fig. 5.2(o)). 

GFDL-CM3 captures the evolution and magnitude of the observed 2006 

seasonal cycles of surface radiative fluxes extraordinarily well (Fig. 5.1(p) – (t)).  

GISS-E2-R produces comparable seasonal evolution but simulates low amounts of 

surface downwelling SW radiation for both all-sky and clear-sky conditions, and 

simulates large values of surface downwelling longwave radiation for both clear-sky 

and all-sky conditions throughout the year (Fig. 5.2 (p) – (t)). 
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5.2 Model Intercomparison 

5.2.1 Errors in Seasonal Cycles 

For any given simulated variable, model error is quantified for each calendar month 

as the magnitude of the difference between the value observed during such month 

in 2006 and the nearest bound of the decadal envelope simulated by the model.  

For months in which a model captures the 2006 seasonal cycle within its decadal 

envelope, the model error is defined as zero.  Errors corresponding to the decadal 

envelopes simulated by GFDL-CM3 and GISS-E2-R are directly compared in Fig. 

5.3 

 With regards to the capability of the models to capture the 2006 monsoon 

season, GFDL-CM3 is superior to GISS-E2-R for all evaluated quantities with a 

few notable exceptions.  The models have roughly equal magnitudes of error with 

respect to cloud fraction (Fig. 5.3(k)) and sensible heat flux (Fig. 5.3(o)).  GISS-

E2-R has substantially less error than GFDL-CM3 for rainfall (Fig. 5.3(a)) and 

latent heat flux (Fig. 5.3(n)).  While the model errors frequently differ in terms of 

magnitude, they follow remarkably similar trends over the course of the year.  

Errors tend to be largest, especially for the GISS-E2-R model, during the transition 
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from the dry season to the wet season in March, April, and May.  The larger 

magnitudes of error during this time period indicates that the elevated early-season 

rainfall in GISS-E2-R is consistent with an early onset of the monsoon reflected by 

other simulated quantities (e.g., near surface dew point temperature, wind speeds, 

and the LCL). 

 Following the same method applied above to 2-D atmospheric fields, errors 

in simulated monthly-average vertical profiles of temperature and specific humidity 

were computed against observed profiles interpolated to the standard pressure 

levels available in the model output (Fig. 5.4).  For GISS-E2-R, temperature errors 

are minimum in the lower atmosphere, but too cool by 2-3 °C between 9 and 12 

km during the peak monsoon season.  Temperature errors are largest for this model 

in the upper atmosphere (but within ±5 °C).  Most apparent are warm errors 

between 14 and 18 km during January through May, and cool errors near 18 km 

during the core of the monsoon season, from June through September.  GISS-E2-

R simulates an excess of humidity below 3 km that is most pronounced during 

early monsoon season months from April – June with magnitudes near 5 g·kg-1.  

GFDL-CM3 presents a rather striking capability to simulate the thermodynamic 

environment throughout the entire seasonal cycle.  Temperatures are slightly cool 
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(less than 1 °C) for nearly the entire depth of the atmosphere during monsoon 

months.  Errors in specific humidity for GFDL-CM3 only appear in January (too 

dry by about 2 g·kg-1) near 3 km, and in June (too wet by about 2 g·kg-1) at the 

surface.     

Although GFDL-CM3 captures the seasonal evolution of these variables 

with less error than GISS-E2-R, its relatively poor simulation of early-season 

rainfall indicates a possible disconnect in the subgrid-scale physics. Whether or not 

GFDL-CM3’s simulation of the west African monsoon is less coordinated than that 

of GISS-E2-R is further explored in the next section.           

5.2.2 Correlations 

To further quantify model performance, time series of monthly accumulated rainfall 

simulated by each model over the decade from 2006 – 2015 were correlated with 

all other quantities individually (Fig. 5.5).  Correlation coefficients characterizing 

the relationship between rainfall and all other quantities were evaluated against 

correlation coefficients determined from the observations in 2006 (Table 5.1). 
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Six different quantities were observed to have strong relationships with 

precipitation during the 2006 wet season: near-surface air temperature, near-surface 

dew point temperature, the LCL, CIN, integrated water vapor and latent heat flux 

(Fig. 5.5(b), (c), (h), (j), (m) and (n), respectively).  GISS-E2-R simulations show 

similarly strong correlations for each of these variables with the exception of dew 

point tempzerature, for which the correlation is slightly weaker.  GFDL-CM3 
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simulations reproduce a strong correlation between precipitation and integrated 

water vapor, but reproduce weak correlations with respect to the near-surface dew 

point temperature, LCL, CIN and LHF, and essentially no relationship between 

precipitation and near-surface air temperature. 

 Surface air pressure, CAPE, cloud fraction, LWP, and sensible heat flux 

were observed to correlate weakly with precipitation in 2006 (Fig. 5.5(f), (i), (k), 

(l), and (o), respectively).  GISS-E2-R reproduces similarly weak correlations for 

each of these quantities, with the exception of the sensible heat flux, which exhibits 

a strong relationship with simulated precipitation.  GFDL-CM3 simulations show 

weak relationships with respect to cloud fraction and CAPE that are similar to the 

observed.  However, GFDL-CM3 reproduces a strong correlation with respect to 

the LWP, and essentially no correlation with respect to surface air pressure and 

the sensible heat flux. 

 Observations during 2006 revealed little or no relationships between the 

seasonal cycle of precipitation and wind speed, wind direction, moist static energy, 

or any of the surface radiative fluxes (Fig. 5.5(d), (e), (g), (p)-(t), respectively.)  

GISS-E2-R simulations show similarly weak correlations for near-surface wind 

speed, downward shortwave radiation at the surface for all-sky and clear-sky, and 
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downward longwave radiation at the surface.  Wind direction and moist static 

energy exhibit weak correlations in GISS-E2-R simulations, and a uniquely strong 

correlation is shown with respect to upward longwave radiation at the surface.  

GFDL-CM3 reproduces the observed weak correlations between precipitation and 

wind speed, downward shortwave radiation at the surface for clear-sky conditions, 

and upward longwave radiation at the surface.  Weak correlations are found with 

respect to wind direction, moist static energy, downward shortwave radiation at 

the surface (all-sky) and downward longwave radiation at the surface. 

 On the basis of these results, the originating sources of error with respect to 

the simulation of rainfall appear to be unique to each model.  Simulations from 

GISS-E2-R reproduced relationships between precipitation and nearly all evaluated 

quantities that were remarkably similar to those observed during 2006.  The fact 

that the evolution of rainfall is largely consistent with the evolution of other 

atmospheric fields suggests that the treatment of convective rainfall in this model 

does not contain deficiencies that significantly influence model performance on 

seasonal time scales. The tendency to of this model to simulate the start of the 

monsoon season early is then most likely rooted in non-local sources of error.  

GFDL-CM3 captures the 2006 seasonal cycles for nearly all evaluated quantities, 
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yet does not reproduce the observed relationships between the evolution of rainfall 

and all other quantities.  The dominant source of error in this model appears to 

come from deficiencies in the treatment of convective rainfall.   
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Chapter 6:  Connecting Subgrid-Scale Physics 

with Grid-Scale Performance 

 

 

 

6.1 Discussion 

The persistent lack of agreement in projections of rainfall in the Sahel among 

different GCMs has been generally attributed to challenges associated with the 

representation of convective processes.  To establish the degree to which convective 

parameterizations may influence seasonal-scale model output more definitively, a 

single column of standard model output was extracted from the CMIP5 dataset for 

two GCMs and compared with the observed seasonal evolution of rainfall, surface 

meteorology, the thermodynamic state of the atmosphere, clouds and radiation, 

obtained during the RADAGAST experiment in Niamey, Niger.  This approach 

enables a unique comprehensive assessment of seasonal rainfall simulations and 

provides valuable insight into how the parameterization of convective processes 

relate to model performance on seasonal scales that could not be gained from 

traditional model evaluations techniques.   It was found that local sources of error 
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originating from the representation of subgrid-scale convective processes may 

significantly impact simulations of the seasonal cycle of rainfall in some models.  

Based on the relative performance of each model in combination with their 

respective formulations, a physically-based treatment of convective rainfall may be 

critical to successful simulation of rainfall on seasonal time scales. 

 Some additional findings deserve specific mention. First, both models 

demonstrated a remarkable overall capability to simulate the set of variables 

representing the seasonal cycles of surface meteorology, the thermodynamic 

environment, clouds and radiation that characterize the WAM.   A less 

comprehensive study that uses JAS rainfall totals as a reflection of the capability 

of GCMs to simulate convection may not reach the same conclusion.  As 

demonstrated by the performance of GFDL-CM3 in this study, low JAS rainfall 

may result from errors in timing of peak-season rainfall, not the inability of the 

model to simulate a monsoon season.  As also demonstrated by GFDL-CM3, errors 

in timing may simply be a reflection of the model’s handling of convection 

precipitation, and does not speak for its ability to simulate other aspects of 

convection.  These considerations shed a different light the capability of GCMs to 
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simulate the WAM and allow for the possibility that progress simulating 

convection in this region may be understated.              

The availability of only a single year of observations in Niamey is a 

significant limitation with two major implications for the present study.  First, the 

observed correlation coefficients that quantify the relationships between rainfall 

and all other quantities are less robust than those computed for the simulations, 

which were determined from 10 years of data.  Second, it is not possible to evaluate 

the year-to-year variability in the simulated seasonal cycles, which could have 

illuminated additional errors that were otherwise not identified by this study.  

These limitations, however, should not overshadow the fact that the RADAGAST 

dataset represents a rare wealth of observations that may not be available in the 

Sahel again for some time. 

The uniformity of the landscape in the Sahel is a major factor that allows 

for the comparison of grid-cell average quantities to point observations as done so 

in this study.  Successful application of this method to other regions with similar 

available datasets from other AMF-1 deployments is not immediately obvious.  

Additional research would most likely be required to show that monthly-average 

observations are comparable to model output in other locations.  How applicable 
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the results of the present study are to the rest of the Sahel is unclear.  Further 

study is required to determine how local and non-local sources of error may vary 

in relation to each other within a given region.   

Despite the above-mentioned limitations, the analysis defined by the scope 

of this study hardly exhausted the utility of the evaluation dataset.  Specifically, 

further evaluation could have been performed by comparing simulated and 

observed relationships between all possible combinations of quantities.  Such results 

may be useful to study the influence of the models’ formulations of convective 

processes other than rainfall on seasonal-scale performance.   The results of this 

study might also be especially useful for interpretation of the future rainfall 

projections for the emissions scenario dataset that was utilized in the present-day 

evaluation.  GCM capabilities to reproduce the present-day climate are typically 

limited to a historical time period that precedes the start of emission scenario 

projections.  The fact that the simulations used in this study to represent the 

present-day climate were extracted from the first decade of data available for 

RCP4.5 makes the results of the evaluation slightly more relevant for the 

interpretation of future rainfall projections in the Sahel.  
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6.2 Conclusions 

This study confirms that deficiencies in subgrid-scale physics can be a significant 

source of error in GCM simulations of rainfall at seasonal scales and, in some 

models dominate non-local sources of error.  While deficiencies in subgrid-scale 

physics are unique to each model’s formulation, the capability to simulate the 

seasonal cycle of rainfall in the Sahel appears to be more sensitive to a realistic 

representation of convective precipitation microphysics than to a realistic 

representation of the organization of convective structures.  Information 

characterizing the nature of errors in rainfall simulations at seasonal scales such as 

this can be a valuable supplement to model evaluations performed using traditional 

methods and ultimately help expedite the resolution of long-standing issues with 

GCM simulations in the Sahel.   

Increasing the certainty in GCM projections of rainfall in the Sahel is but 

one of many important challenges that model developers continue to be faced with.  

Given these challenges, an effort to increase the efficiency of the model development 

process is a task of equal importance to development efforts in and of themselves.  

Although this study sheds light on the enormity of the task at hand, it also 

illuminates a path by which the larger scientific community can contribute to an 
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increased understanding of model performance, given knowledge of how GCMs are 

formulated. 

The sensitivity of seasonal-scale GCM performance in the Sahel to the 

microphysical treatment of convective precipitation in the model’s formulation 

provokes further exploration into the mechanisms of communication between the 

land surface and the atmosphere in this region.  Future work should answer key 

questions regarding the relevance of these microphysical communications to the 

evolution of rainfall within a given season and how these communications may be 

effected in future climate change scenarios.  Such knowledge would be invaluable 

not only for the Sahel, but for any other region that depends so critically on its 

local agriculture.  
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Appendix A: Computation of CAPE and CIN 

 

 

 

The following describes the methodology used to approximate CAPE and CIN 

based on the ascent of a mixed-layer parcel using simple, psuedoadiabatic pure 

parcel theory. The MSecmwf and MSmwrp high-resolution data products provide 

temperature Tc in °C, relative humidity, RH in %, and barometric pressure, P in 

mb, for 266 levels from the surface (level 0) to a height of 20 km (level 266).   

 Physical constants used in this formulation were defined as follows: Gas 

constant for dry air, Rd = 287.04 J·kg-1·K-1, gas constant for water vapor, Rv = 

461.50 J·kg-1·K-1, specific heat of dry air at constant pressure, Cpd = 1005.7 J·kg-

1·K-1, specific heat of water vapor at constant pressure, Cpv = 1875 J·kg-1·K-1, 

acceleration due to gravity, g = 9.81 m·s-2. Meteorological variables, including 

absolute temperature, potential temperature, virtual temperature, vapor pressure, 

and water vapor mixing ratio were computed using the relationships and empirical 

formulas of Bolton [1980]. 
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 The initial parcel assumes the average properties of the environment (mixing 

ratio and potential temperature) within and including level 2 through level 8, at 

the pressure (and height) of level 5, as determined for each individual sounding.  

The lifted condensation level (LCL) temperature and height, and pseudoequivalent 

potential temperature are approximated from the temperature, pressure, height 

and vapor pressure of the initial parcel as follows: 

LCL temperature [Bolton, 1980]:   
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Pseudoequivalent potential temperature [Bolton, 1980]: 
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 The temperature of the parcel is determined at each vertical level by raising 

the parcel dry adiabatically below the LCL height, and pseudoadiabatically 

according to (B3) above the LCL height.  (B3) was solved numerically according 
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to the method described in Stackpole (1967).  The buoyancy of the parcel relative 

to the environment as described by the model sounding was then determined for 

each model level as follows: 

envv

envvparv
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 The level of free convection (LFC) virtual temperature and height were 

linearly interpolated from the temperature and height of the lowest model level 

above the LCL with positive buoyancy and that of the immediately preceding, 

negatively buoyant level.  For cases in which the first model level above the LCL 

is positively buoyant, the LFC temperature and height are set equal to that of the 

LCL.  The equilibrium level (EL) temperature and height were linearly interpolated 

from the temperature and height of the lowest model level above the LFC with 

negative buoyancy and that of the immediately preceding, positively buoyant level.  

 For each layer between level five and the EL, the mean-layer potential 

energy (MLPE) is computed as follows: 
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For layers in which buoyancy changes sign (i.e., LFC and EL layers), the MLPE 

is calculated separately for the portions of each layer above and below the LFC 

and EL.  The upper level potential energy (ULPE) and lower level potential energy 

(LLPE) for the LFC and EL layers is defined as:  
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CIN is determined from the MLPE of each layer from level 5 to the layer 

immediately below the LFC, and the LLPE of the layer that includes the LFC.  

CAPE is determined from the ULPE of the layer that includes the LFC, the MLPE 

of each layer from the layers between the LFC and EL, and the LLPE of the layer 

that includes the EL.  In the event that no LFC exists in a given profile, CAPE 

and CIN are accordingly undefined. 
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Appendix B: Uncertainty equations for cloud 

microphysical properties 

 

 

 

Cloud Water Phase Partition 

 The following simple mixed-mode fractionating scheme based on MSecmwf 

high-resolution temperature profiles is used to determine ice fraction 𝑖𝑖  and liquid 

water fraction ℓ  which separate the total measured radar reflectivity factor 

𝑍𝑍T [mm6 m−3]  into ice and liquid water portions (𝑍𝑍i  and 𝑍𝑍ℓ , respectively) for 

temperatures between -16 and 0°C : 

𝑖𝑖 = −𝑇𝑇/16  

ℓ = 1 − 𝑖𝑖 = 1 + 𝑇𝑇/16 

𝑍𝑍i = 𝑖𝑖𝑍𝑍T = − 𝑇𝑇
16
𝑍𝑍T 

𝑍𝑍ℓ = ℓ𝑍𝑍T = �1 +
𝑇𝑇

16
� 𝑍𝑍T 

Ice Water Content 
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 Ice water content (IWC) is determined from Zi by the empirical relationship 

of Liu and Illingworth (2000): 

IWC = 0.097𝑍𝑍i0.59 = 0.097 �− 𝑇𝑇
16
𝑍𝑍T�0.59

 

The uncertainty in IWC based on the uncertainty in temperature 𝛿𝛿𝑇𝑇 is given by: 

𝛿𝛿IWC =
𝑑𝑑IWC𝑑𝑑𝑇𝑇 𝛿𝛿𝑇𝑇 = 0.097 �𝑍𝑍𝑇𝑇

16
�0.59 𝑑𝑑𝑑𝑑𝑇𝑇 (−𝑇𝑇)0.59𝛿𝛿𝑇𝑇 = −0.05723

�𝑍𝑍𝑇𝑇
16
�0.59

(−𝑇𝑇)0.41 𝛿𝛿𝑇𝑇 

 

Ice Cloud Particle Effective Radius 

 Ice cloud particle effective radius (𝑟𝑟𝑒𝑒𝑖𝑖) is a function of temperature according 

to Ivanova et al. (2001): 

𝑟𝑟𝑒𝑒𝑖𝑖 =
75.3 + 0.5895𝑇𝑇

2
 

The uncertainty in 𝑟𝑟𝑒𝑒𝑖𝑖 based on the uncertainty in temperature 𝛿𝛿𝑇𝑇 is given by: 

𝛿𝛿𝑟𝑟𝑒𝑒𝑖𝑖 =
𝑑𝑑𝑟𝑟𝑒𝑒𝑖𝑖𝑑𝑑𝑇𝑇 𝛿𝛿𝑇𝑇 =

𝑑𝑑𝑑𝑑𝑇𝑇 �75.3 + 0.5895𝑇𝑇
2

� 𝛿𝛿𝑇𝑇 = 0.29475 𝛿𝛿𝑇𝑇 

 

Liquid Water Content 
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Liquid water content (LWC) is based on Zl and an assumed reference cloud particle 

number N0 of 100 cm-3, as derived by Liao and Sassen (1994): 

LWC = �𝑁𝑁0𝑍𝑍ℓ
3.6

�5/9
= �𝑁𝑁0 �1 +

𝑇𝑇
16
�𝑍𝑍T

3.6
�5/9

 

The uncertainty in LWC based on the uncertainty in temperature 𝛿𝛿𝑇𝑇 is given by: 

𝛿𝛿LWC =
𝑑𝑑LWC𝑑𝑑𝑇𝑇 𝛿𝛿𝑇𝑇 = �𝑁𝑁0𝑍𝑍T

3.6
�5/9 𝑑𝑑𝑑𝑑𝑇𝑇 �1 +

𝑇𝑇
16
�5/9 𝛿𝛿𝑇𝑇 =

5 �𝑁𝑁0𝑍𝑍T
3.6

�5/9
144 �1 +

𝑇𝑇
16
�4/9 𝛿𝛿𝑇𝑇 

 

Liquid Water Effective Radius 

Liquid water effective radius (𝑟𝑟𝑒𝑒) is a function of the LWC, assuming a log-normal 

droplet distribution with a width σ of 0.35 and cloud particle number concentration 

Nd equal to 200 cm-3 according to Frisch et al. (1995): 

𝑟𝑟𝑒𝑒 = 1.358 � 3LWC

4𝜋𝜋𝜌𝜌𝑤𝑤𝑁𝑁𝑑𝑑exp �9𝜎𝜎2
2
��
1/3

 

The uncertainty in 𝑟𝑟𝑒𝑒 based on the uncertainty in temperature 𝛿𝛿𝑇𝑇 is given by: 

𝛿𝛿𝑟𝑟𝑒𝑒 =
𝑑𝑑𝑟𝑟𝑒𝑒𝑑𝑑𝑇𝑇 𝛿𝛿𝑇𝑇 = 1.358

𝑑𝑑𝑟𝑟𝑚𝑚𝑑𝑑𝑇𝑇 = 1.358
𝑑𝑑𝑟𝑟𝑚𝑚𝑑𝑑LWC

 
𝑑𝑑LWC𝑑𝑑𝑇𝑇  
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𝑑𝑑𝑟𝑟𝑚𝑚𝑑𝑑LWC
=

1

3
� 3

4𝜋𝜋𝜌𝜌𝑤𝑤𝑁𝑁𝑑𝑑exp �9𝜎𝜎2
2
��
1/3

 

LWC−2/3 =
1

3
� 3

4𝜋𝜋𝜌𝜌𝑤𝑤𝑁𝑁𝑑𝑑exp �9𝜎𝜎2
2
��
1/3 �𝑁𝑁0 �1 +

𝑇𝑇
16
�𝑍𝑍T

3.6
�−10/27

 

𝛿𝛿𝑟𝑟𝑒𝑒 =
1.358

3
� 3

4𝜋𝜋𝜌𝜌𝑤𝑤𝑁𝑁𝑑𝑑exp �9𝜎𝜎2
2
��
1/3 �𝑁𝑁0 �1 +

𝑇𝑇
16
�𝑍𝑍T

3.6
�−10/27 � 5 �𝑁𝑁0𝑍𝑍T

3.6
�5/9
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Appendix C: Simulated Seasonal Cycles of 

Rainfall in the Region Surrounding Niamey 

 

 

The evolution of monthly-mean rainfall rate derived from measurements recorded 

by the AMF-1 PWD during 2006 in Niamey, Niger are compared to the 2006 – 

2015 envelopes of minimum and maximum monthly-average rainfall rate simulated 

by GISS-E2-R for the grid cell containing Niamey (Fig. D.1-e) and the eight 

surrounding grid cells (Fig. D.1-a, b, c, d, f, g, h, i).  Consistent with the spatial 

distribution of annual rainfall totals reported by Lélé and Lamb (2010), GISS-E2-

R simulates higher monthly-average rainfall rates (indicating larger monthly 

accumulated rainfall totals) throughout the monsoon season to the south and east 

of the grid cell containing Niamey, while lower monthly-average rainfall rates are 

produced to the north and east of the grid cell containing Niamey.  GFDL-CM3 

produces a similar pattern of monthly-mean rainfall rates (Fig. D.2).  It is therefore 

concluded that spatial displacement is not a significant source of error in the 

monthly average rainfall rates simulated by these two models for the grid cell 

including Niamey.    
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