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Abstract Many behaviors require reliably generating

sequences of motor activity while adapting the activity to

Action Editor: J. Rinzel

K. M. Shaw (�)

Department of Biology and Medical Scientist Training Program,

Case Western Reserve University, 10900 Euclid Ave., Cleveland

OH 44106, USA

e-mail: kms15@case.edu

D. N. Lyttle

Departments of Mathematics and Biology, Case Western Reserve

University, 10900 Euclid Ave., Cleveland OH 44106, USA

e-mail: david.lyttle@case.edu

J. P. Gill · M. J. Cullins · J. M. McManus · H. Lu

Department of Biology, Case Western Reserve University, 10900

Euclid Ave., Cleveland OH 44106, USA

J. P. Gill

e-mail: jpg18@case.edu,

M. J. Cullins

e-mail: mjc35@case.edu,

J. M. McManus

e-mail: jmm45@case.edu,

H. Lu

e-mail: hxl75@case.edu,

P. J. Thomas

Mathematics, Applied Mathematics and Statistics, Case Western

Reserve University, 10900 Euclid Ave., Cleveland OH 44106,

USA

e-mail: pjthomas@case.edu

H. J. Chiel

Departments of Biology, Neurosciences and Biomedical

Engineering, Case Western Reserve University, 10900 Euclid

Ave., Cleveland OH 44106, USA

e-mail: hjc@case.edu

incoming sensory information. This process has often been

conceptually explained as either fully dependent on sensory

input (a chain reflex) or fully independent of sensory input

(an idealized central pattern generator, or CPG), although

the consensus of the field is that most neural pattern gen-

erators lie somewhere between these two extremes. Many

mathematical models of neural pattern generators use limit

cycles to generate the sequence of behaviors, but other-

models, such as a heteroclinic channel (an attracting chain

of saddle points), have been suggested. To explore the

range of intermediate behaviors between CPGs and chain

reflexes, in this paper we describe a nominal model of swal-

lowing in Aplysia californica. Depending upon the value of

a single parameter, the model can transition from a generic

limit cycle regime to a heteroclinic regime (where the trajec-

tory slows as it passes near saddle points). We then study the

behavior of the system in these two regimes and compare

the behavior of the models with behavior recorded in the

animal in vivo and in vitro. We show that while both pattern

generators can generate similar behavior, the stable hetero-

clinic channel can better respond to changes in sensory input

induced by load, and that the response matches the changes

seen when a load is added in vivo. We then show that the

underlying stable heteroclinic channel architecture exhibits

dramatic slowing of activity when sensory and endoge-

nous input is reduced, and show that similar slowing with

removal of proprioception is seen in vitro. Finally, we show

that the distributions of burst lengths seen in vivo are better

matched by the distribution expected from a system oper-

ating in the heteroclinic regime than that expected from a

generic limit cycle. These observations suggest that generic

limit cycle models may fail to capture key aspects of Aplysia

feeding behavior, and that alternative architectures such as

heteroclinic channels may provide better descriptions.
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1 Introduction

Motor behaviors, such as cat running, crayfish swimming,

and dog lapping all require the nervous system to reliably

generate a sequence of motor outputs. To be efficient, how-

ever, a fixed sequence of activity is not enough: a cat that

fails to step over an obstacle may lose its footing and fall

(Forssberg et al. 1975; Forssberg 1979) and a crayfish that

wanders into a current of cold water must control muscles

that may suddenly have become stronger but relax more

slowly (Harri and Florey 1977). Sensory feedback plays a

key role in allowing an animal to adapt its behavioral pattern

to the circumstances in which it finds itself. The way that

this sensory information is integrated into pattern genera-

tion to produce adaptive behavior, however, can be difficult

to ascertain.

Historically, two competing theories have been proposed

for how the nervous system can generate sequences of motor

activity (Marder and Bucher 2001). At one extreme, Loeb

(1899) proposed that sensory input is required for the tran-

sitions between behaviors, so that the sequence of behavior

is formed of a chain of reflexes each leading to the next. He

thus proposed calling this form of pattern generation a “ket-

tenreflex,” or “chain reflex.” For example, during walking,

this theory would predict that extension of the leg contin-

ues until sensory input indicates that the foot has struck the

ground, and in the absence of this sensory input, the pat-

tern would not progress. This theory was later elaborated

by Sherrington, who noted that bouts of walking-like move-

ments could be evoked in the hind limbs of a dog after

spinal transection by dropping the limb, and these motor

patterns would stop abruptly when the limb was passively

mechanically arrested (Sherrington 1910).

Even the strongest proponents of chain reflex theory

saw it as an incomplete explanation of what was observed

in the biology, however. Sherrington, noting that spinal

stimulation could produce step-like movements even in a

deafferented limb, concluded “These difficulties suggest

that generation of a secondary local stimulus and its inter-

ference with the operation of the primary remote stimulus,

although regulative of the rhythm (cf. vagus and respi-

ratory rhythm) is of itself not the sole rhythm-producing

factor in the reflex.” By the time Wilson showed that the

nervous system in the locust could generate strong struc-

tured motor patterns in the absence of sensory input (Wilson

1961), investigators had come to assume that sequences

of motor activity were primarily generated by a central

pattern generator. The central pattern generator theory sug-

gests that the nervous system can, on its own, produce

appropriate patterns of motor activity even in the absence

of sensory input. Within the context of this theory, sen-

sory input merely serves to modulate the underlying neural

pattern.

It should be noted, however, that patterns generated by

the isolated nervous system often are very distorted com-

pared to those seen in vivo. In particular, components of

the motor pattern are often significantly longer than those

observed in the intact animal. This observation has led

many investigators to question the descriptive power of

central pattern generator theory. In the words of Robert-

son and Pearson, “Although now abundantly clear that a

central rhythm generator can produce powerful oscillations

in the activity of flight motor neurons and interneurons [in

locusts], it is equally clear that the properties of this central

oscillator cannot fully account for the normal flight pattern”

(Selverston 1985).

There is some evidence that slowing of isolated neural

patterns may be due to the absence of sensory feedback

and endogenous input. In Pearson et al. (1983), cycle-by-

cycle stimulation of the appropriate sensory afferents was

able to restore wing-beat frequency in fictive flight in the

locust. Restoration of the normal pattern by sensory input

suggests that biological pattern generators may occupy a

middle ground between pure central pattern generators and

chain reflexes. In some cases, endogenous neural input may

control where a systems lies on this continuum. As Bässler

(1986) noted when considering a relaxation-oscillator like

model of a central pattern generator “Hence, one and the

same system can behave either like a CPG or like a chain

reflex, depending only on the amount of endogenous input.”

These investigators thus warned about the dangers of infer-

ring the mechanism used by a pattern generator in vivo

based only on the behavior of a pattern generator in vitro.

Despite these hesitations, the empirical data supporting

the central pattern generator hypothesis led to a focus on

providing a mathematical formulation for this theory using

the qualitative analysis of dynamical systems. The behavior

of an ideal central pattern generator naturally corresponds to

a system of nonlinear ordinary differential equations whose

solutions contain a stable limit cycle (an attracting isolated

periodic orbit). As a result, this structure has played a cen-

tral role in the mathematical description of central pattern

generators (Ijspeert 2008).

In contrast, there have been fewer attempts to model

chain reflexes with systems of differential equations.

Instead, much of the work modeling these types of sensory-

dependent systems uses different tools, such as finite state

machines (Lewinger et al. 2006). While these models can

capture individual phases of the behavior well, they gen-

erally do not describe the transitions between the phases,

which may be important in understanding some forms of

behavior. In contrast, one could view the state of a chain
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reflex system in terms of a series of stable fixed points. In

each phase of the motion, the trajectory would be captured

by one of the fixed points until the appropriate (external)

sensory input pushed the system out of the neighborhood

attracted to that fixed point and into the basin of attraction

of the next.

Between these two extremes of models of central pattern

generators and chain reflexes, one may consider systems in

which the progress of a periodic orbit is slowed, but not

stopped, by passage near one or more fixed points. This

behavior arises naturally in a structure known as a “sta-

ble heteroclinic channel” (Rabinovich et al. 2008), where

multiple saddle points (fixed points that attract in some

directions while repelling in others) are connected in a

cycle, so that the unstable manifold of each saddle point

brings the system near the stable manifold of the next fixed

point. This structure has been used to describe motor behav-

ior such a predatory swimming behavior in Clione (Levi

et al. 2004; Varona et al. 2004). To our knowledge, however,

these models of pattern generation have not been directly

compared to those built with a more “pure” limit cycle that

does not pass near fixed points.

A potential advantage of a dynamical system that allows

trajectories to move close to equilibrium points is that it

may spend longer or shorter times in that vicinity, rather

than proceeding through the cycle with a relatively con-

stant velocity. In turn, this could allow an animal greater

flexibility in responding to unexpected changes in the envi-

ronment, such as increases or decreases in mechanical load

as it attempts to manipulate an object. Other studies have

investigated dynamical architectures in which oscillatory

pattern generators can selectively slow their dynamics in

response to sensory input (Zhang and Lewis 2013; Büschges

and Gruhn 2007; Daun-Gruhn and Büschges 2011; Nadim

et al. 2011; Rowat and Selverston 1993), which we discuss

in Section 6.2.2.

To examine these alternative dynamical architectures, we

have created a neuromechanical model based on the feed-

ing apparatus of the marine mollusk Aplysia californica.

We examine the behavior of the model in two parameter

regimes. In the first parameter regime, the neural dynamics

are largely insensitive to sensory feedback, and produce out-

put similar to an idealized central pattern generator. In this

regime, the presence of equilibrium points has only a small

effect, and the neural dynamics behave like a limit cycle. In

the second parameter regime, proprioceptive feedback can

overcome the intrinsic neural dynamics and selectively slow

progression through different points of the cycle, thereby

producing behavior closer to that of a chain reflex. In this

regime, the stable heteroclinic channel structure becomes

important, since the presence of the equilibrium points is

the key dynamical feature allowing the sensory feedback

to selectively slow the dynamics. We then compare the

behavior of the two models to the observed behavior of the

animal, and show that several of the features of the ani-

mal’s behavior are better described by the model in the the

more “chain-reflex like” parameter regime. At the end of the

paper, we reflect on possible general principles suggested

by this work.

2 Mathematical framework

In this section we describe a general mathematical frame-

work we will use for modeling the behavior of motor

pattern generators. We model a central pattern generator

receiving sensory input from the body as a system of dif-

ferential equations specifying the evolution of a vector of

n neural state variables, a ∈ R
n, and a vector of m state

variables, x ∈ R
m, representing the mechanics and periph-

ery (e.g. muscle activation). We assume that an applied load

interacts only with the mechanical state variables, so that

the differential equations can be naturally written in the

following form:

da

dt
= f (a, µ) + ǫg(a, x), (1)

dx

dt
= h(a, x) + ζ l(x). (2)

Here µ is a vector of parameters which can encode states

such as arousal of the animal, f (a, µ) represents the intrin-

sic dynamics of a motor pattern pattern generator, h(a, x)

represents the dynamics of the periphery with the given cen-

tral input, g(a, x) represents the effects of sensory feedback

from the periphery, l(x) represents the effects of an external

load or perturbation, and ǫ, ζ ∈ R
+ are scaling constants,

not necessarily small. We further assume that all of these

functions have bounded ranges over the domain of interest.

2.1 Limit cycles

We first consider the case of an idealized central pattern

generator, where a part of the nervous system can produce

sequences of motor activity that closely resemble those seen

in vivo, even when it is not attached to the periphery. Thus

we assume that, for some range of the parameter μ, the

dynamics of the isolated neural circuit, da/dt = f (a, µ),

contain an attracting limit cycle χ(t) which represents the

observed motor pattern.

2.2 Chain reflex models

We next consider the chain reflex. In this case, the dynam-

ics of the isolated nervous system, da/dt = f (a, µ),

will contain a set of stable nodes, A, where each node
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represents a “stage” of the chain reflex, that can be desta-

bilized by sensory input. Note that in this case, unlike

the central pattern generator, ǫ may need to be large to

destabilize a node. The combined dynamics of the ner-

vous system and the periphery, however, would still be

expected to contain a stable limit cycle ξ(t) rather than

a series of fixed points. Similar dynamics have been seen

in models of other biological oscillators; for example in

Novak et al. (1998) the authors created a model of the

cell cycle where fixed points in the biochemical dynam-

ics (analogous to the isolated neural dynamics) can be

destabilized by changes in cell size (analogous to the

periphery) so that the coupled system contains a limit

cycle.

2.3 Stable heteroclinic channels

We now consider a system that is intermediate between

the two extremes of an idealized central pattern generator

and a chain reflex. We can construct such a system from

a set of n-dimensional hyperbolic saddle points, each with

a one-dimensional unstable manifold and an n − 1 dimen-

sional stable manifold, arranged in a cycle such that the

unstable manifold of one saddle point intersects the sta-

ble manifold of the next, forming a heteroclinic orbit. We

refer to these saddle points and their connecting heteroclinic

orbits as a heteroclinic cycle (Guckenheimer and Holmes

1988).

Under appropriate conditions, this heteroclinic cycle

attracts nearby orbits (and thus can be called a stable het-

eroclinic cycle). In particular, if we define the (positive)

ratio of the least negative stable eigenvalue λi,s and the

unstable eigenvalue λi,u of the ith saddle as the saddle

index νi = −λi,s/λi,u (Shilnikov et al. 2002), then the

heteroclinic cycle will attract nearby orbits if
∏

i νi > 1

(Afraimovich et al. 2004a). This type of dynamics can arise

naturally from neural models involving symmetric, mutu-

ally inhibitory pools of neurons; for example see (Nowotny

and Rabinovich (2007), and Komarov et al. (2013, 2009).

Slow switching along heteroclinic loops can also occur in

systems of coupled phase oscillators (Kori and Kuramoto

2001). Conditions for the occurrence of stable heteroclinic

channels have been studied in Komarov et al. (2010) and

Ashwin et al. (2011).

An unperturbed trajectory on the heteroclinic cycle will,

like the chain reflex model in Section 2.2, asymptotically

approach a fixed point. Unlike the chain reflex model,

however, any perturbation transverse to the stable direc-

tion will push the trajectory out of the stable manifold,

allowing the trajectory to leave the neighborhood of the

fixed point (and potentially travel to the neighborhood of

the next fixed point). Arbitrarily small amounts of noise

can thus ensure that the system will almost certainly not

remain stuck at a given fixed point (Stone and Holmes 1990;

Armbruster et al. 2003; Gog et al. 1999). In contrast to

the stability of states seen in the chain reflex model, the

heteroclinic cycle exhibits metastability (Afraimovich et al.

2011), where the trajectory spends long but finite periods

of time near each fixed point (Bakhtin 2011). Thus, like

the chain reflex, the system can spend short or long peri-

ods of time in one particular state depending on sensory

input, but, like the limit cycle, the system will eventually

transition to the next state even in the absence of sensory

input.

While stable heteroclinic cycles are structurally unstable

(i.e. a small change in the vector field will generally break

the cycle), small perturbations can result in the creation of

a stable limit cycle that passes very close to the saddles.

For example, in the planar case, any sufficiently small per-

turbation that pushes the unstable manifold of the saddles

towards the inside of the unperturbed stable heteroclinic

cycle will result in a stable limit cycle (Reyn 1980). Similar

conditions can be found for higher dimensional stable het-

eroclinic cycles (Afraimovich et al. 2004a). These families

of limit cycles that pass close to the original saddles, known

as stable heteroclinic channels (SHCs) (Rabinovich et al.

2008), are structurally stable, and exhibit many of the same

properties of sensitivity and metastability as the original

stable heteroclinic cycles. As we will see, this extreme

sensitivity can be advantageous for generating adaptive

behaviors.

In the next section we provide an example of model

dynamics f (a, μ), parameterized by a scalar parameter μ,

that exhibits a limit cycle for μ > 0 and a bifurcation to

a heteroclinic cycle at μ = 0. We then demonstrate that

the full system (a, x) displays an abrupt transition between

“limit cycle” and “heteroclinic” dynamics depending on

the balance between sensory feedback (ǫ) and intrinsic

excitability (μ).

3 Model description

3.1 Neural model

We wish to explore the effects of different types of neural

dynamics on the behavior of the animal. Although detailed,

multi-cellular and multi-conductance models of neurons and

circuits underlying feeding pattern generation in Aplysia

have been described (Baxter and Byrne 2006; Cataldo et al.

2006; Susswein et al. 2002), the complexity of these mod-

els makes it difficult to use them for mathematical analysis.

As a consequence, we choose to represent neural pools

(which contain neurons that are electrically coupled to one

another or have mutual synaptic excitation) using nominal

firing-rate models.
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As discussed in Section 2, we define the neural dynamics

as a combination of an intrinsic component, f (a, μ), that

does not depend on the periphery, and a sensory (coupling)

component, g(x), which does depend on the periphery. For

mathematical tractability, we assume that the intrinsic and

sensory drive combine linearly, thus giving the evolution

equation of the neural activity

da

dt
= f (a, μ) + ǫg(xr), (3)

where a is a vector of the activity of each of the N neural

pools, ǫ is a parameter scaling the strength of sensory input,

xr is a biomechanical state variable which we will define in

more detail in Section 3.2, and μ is a scalar parameter that

can shape the intrinsic dynamics.

Specifically, we will consider the following modified

Lotka–Volterra model which captures the dynamics of N

neural pools:

fi(a, μ) =
1

τa

⎛

⎝

⎛

⎝1 −
∑

j

ρijaj

⎞

⎠ ai + μ

⎞

⎠ , (4)

for 0 ≤ i < N . Here μ is a scalar parameter represent-

ing intrinsic excitation, τa is a time constant, and ρ is the

coupling matrix

ρij =

⎧

⎨

⎩

1 i = j

γ i = j − 1 (mod N)

0 otherwise,

(5)

where γ is a coupling constant representing inhibition

between neural pools. In Aplysia, the neural pools respon-

sible for motor pattern generation are largely connected via

inhibition (Jing et al. 2004). As a first approximation, we

assume that the units are identical. Making the inhibitory

coupling weaker in one direction than the other is a natural

way of encouraging the activation sequence to proceed in a

particular direction around the cycle of neural pools.

When N > 2 and γ > 2 this system contains a stable

heteroclinic cycle when μ = 0 (Afraimovich et al. 2004a).

In contrast, as shown in Fig. 1, it contains a stable limit cycle

for small positive values of μ, with the distance between the

limit cycle and saddles increasing with increasing values of

μ. With the goal of parsimony, we use N = 3 and thus (4)

can be expanded to

f0(a, μ) =
1

τa
(a0(1 − a0 − γ a1) + μ), (6)

f1(a, μ) =
1

τa
(a1(1 − a1 − γ a2) + μ), (7)

f2(a, μ) = 1

τa

(a2(1 − a2 − γ a0) + μ). (8)

We explain the correspondence of these three neural pools

to specific neural pools in Aplysia in the next section.
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Fig. 1 The endogenous neural excitation parameter μ determines

whether the model behaves more like a stable heteroclinic cycle or a

limit cycle. Top left When μ = 0, in the absence of sensory input

(ǫ = 0), the intrinsic neural dynamics contain a stable heteroclinic

cycle connecting saddles at (1, 0, 0), (0, 1, 0), and (0, 0, 1). When μ

is a small positive number and ǫ = 0, the heteroclinic cycle is broken

and a stable limit cycle arises. For very small μ (10−9), the trajectory

passes very close to the fixed points (black line). For larger values of

μ (10−3) the trajectory (shown in light blue) does not pass near the

fixed points. Top right Magnified view of the isolated trajectories of

the system near one of the fixed points, (indicated by the arrow in

the top left panel). The small μ system clearly passes much closer to

the fixed points. Middle Sample trajectories of the three neural state

variables when μ is small (10−9), and no sensory feedback is present.

Because in this case the trajectory passes near the fixed points, the

dynamics exhibit long dwell times near each fixed point, separated by

rapid transitions. Note the relatively long cycle period. Bottom Sample

trajectories of the neural state variables when μ is larger (10−3). Here

the oscillation period is faster, and the variables change less sharply.

For these larger values of μ, the effect of the equilibrium points is less

evident, and the system behaves like a typical limit cycle

To understand the effects of proprioceptive input (the

term ǫg(a, x) in Eq. (1); see Section 3.3), it is important

to understand how adding a constant endogenous excita-

tory drive μ > 0 to each equation changes the geometry of

the differential Eqs. (6)–(8). Let �0, �1 and �2 denote the

planes

�0 = {(0, α, β)|(α, β) ∈ R
2} (9)

�1 = {(β, 0, α)|(α, β) ∈ R
2} (10)

�2 = {(α, β, 0)|(α, β) ∈ R
2}. (11)
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When μ = 0 each of these planes is a flow-invariant sub-

set of R3 for Eqs. (6)–(8). Taking �2 as an example, if we

begin at point a = (α, β, 0) then ȧ0 = α(1 − α − γβ)/τa ,

ȧ1 = β(1 − β)/τa , and ȧ2 = 0. Flow invariance means

that if initial conditions are chosen in plane �i , the subse-

quent trajectory remains in �i for all time. Moreover, the

heteroclinic trajectories beginning and ending at the saddle

fixed points at (1, 0, 0), (0, 1, 0) and (0, 0, 1) lie in the union

of these three planes. It is these trajectories to which ini-

tial conditions in the interior of the unit cube are attracted,

leading to progressive slowing of the orbits.

In contrast, when μ > 0, the �i are no longer flow-

invariant. Instead, initial conditions on plane �i have a

velocity component ȧi > 0 moving the trajectory to the

interior of the unit cube. By steering trajectories inward in

the vicinity of the saddle points, positive μ prevents the

unbounded growth of the return time and leads to creation

of a finite period attracting limit cycle. As we will see

in Section 5.1, inhibitory input from proprioceptive feed-

back can contribute with sign opposite that of μ, partially

undoing this steering effect.

Note that, in the absence of proprioceptive feedback, the

neural state variables ai will remain confined to the domain

(0,1). However, with the addition of either proprioceptive

feedback (the term g(xr ) in Eq. (3)) or noise, the neural

state variables can be pushed out of this domain. There-

fore, we impose strict, rectifying boundary conditions on

these variables that prevent them from leaving this domain.

For neural state variables that have reached the boundary at

0, any inhibitory input is ignored, while for variables that

have reached the upper boundary at 1, any further exci-

tatory input is similarly ignored. Biologically, this can be

interpreted as assuming that inhibitory input to an inactive

neural pool has no effect, whereas excitatory input to a max-

imally active neural pool similarly has no effect. The g(xr)

term, which describes the proprioceptive feedback from the

feeding apparatus, will be described in Section 3.3.

3.2 Model of the periphery and load

We next couple the neural dynamics to a nominal mechan-

ical model of swallowing in Aplysia. In the general frame-

work described in Eqs. (1) and (2), the biomechanics with

no applied load corresponds to h(a, x) in (2), and the per-

turbations applied by the seaweed force correspond to l(x).

During ingestive behaviors in Aplysia, a grasper, known

as the radula-odontophore, is protracted through the jaws

by a muscle referred to as I2. The grasper closes on food,

is retracted by a muscle called I3, and then opens again,

completing the cycle (see Fig. 2). The timing of closing is

often not precisely aligned with the switch from protrac-

tion to retraction. Instead, closing usually occurs before the

end of protraction, although the amount of overlap varies

Fig. 2 The model divides swallowing into three phases. First, the

grasper protracts while open (lower right). Near the end of protrac-

tion, the grasper begins closing (left) and protracts a small distance

while closed. In the last phase, the grasper retracts while closed (upper

right). The ingestive cycle then repeats. The protraction muscle (I2)

is shown in blue, the grasper (the radula-odontophore) is shown in

red, and the ring-like retraction muscle (I3) is shown in yellow, with

a section cut away to show the grasper. The green strand is seaweed,

with the arrows showing how the seaweed moves within a single cycle

by behavior, from very little overlap in swallows to a sig-

nificant overlap in egestive behaviors. A general model for

biting and swallowing could thus contain four components:

protraction while open, protraction while closed, retraction

while closed, and retraction while open. For simplicity, we

reduce these to three components, each of which corre-

sponds to one of the three neural pools in the neural model:

protraction open, protraction closing, and retraction closed,

as shown in Fig. 1. The protraction open neural pool (a0)

corresponds to the electrically coupled group of neurons

B31, B32, B61, B62, and B63, which activate the I2 muscle

and are all active during protraction ((Hurwitz et al. 1996,

1997; Susswein et al. 2002). The protraction closing neu-

ron pool (a1) corresponds to these same I2 neurons with

the addition of the B8 motor neurons, which activate the

I4 muscle used in closing (Morton and Chiel 1993). The

retraction closed pool (a2) contains B8 with the addition

of the I3 motor neurons B3, B6, and B9 and the interneu-

ron B64 which are simultaneously active during retraction

(Church and Lloyd 1994). Thus the I2 muscle will be driven

by both protraction-open (a0) and protraction-closing (a1)

neural pools, whereas the I3 muscle is driven by a single

neural pool (a2).

The I2 and I3 muscles are known to respond slowly to

neural inputs (Yu et al. 1999); we thus model their activa-

tion as a low-pass filter of the neural inputs using the time

constants from the model of the I2 muscle described by
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Yu et al. (1999). Using ui for the activation of the ith muscle

and τm for the time constant of the filter, we use

du0

dt
=

1

τm
((a0 + a1)umax − u0), (12)

du1

dt
=

1

τm
(a2umax − u1). (13)

Note that the muscle activation variables ui are compo-

nents of the vector x of biomechanical variables described

in Eq. (2).

In general, the force a muscle can exert will vary with the

length to which it is extended (Zajac 1989; Fox and Lloyd

1997). The length-tension relationship is typically explained

by the sliding filament theory as follows: for some maxi-

mal length, the actin and myosin fibers will not overlap and

the muscle will be limited to passive forces, but below that

length, the force will first rise with the increasing overlap

of the actin and myosin fibers, reach a maximum, and then

decline as the overlapping fibers start to exert steric effects

(Gordon et al. 1966). More recently, changes in lattice spac-

ing between the fibers have also been shown to have a role

in the force-length dependence (Williams et al. 2013). We

model this length-tension curve using the following simple

cubic polynomial:

φ(x) = −κx(x − 1)(x + 1), (14)

where κ is a scaling constant. This equation crosses through

zero force at zero length and again reaches zero at the nom-

inal maximal length of 1. We let κ = 3
√

3/2 to normalize

the maximum force between these two points to 1 (which

occurs at a length of 1/
√

3).

Although mechanical advantage plays an important role

in swallowing (Sutton et al. 2004b; Novakovic et al. 2006),

when combined with the length-tension curve, the resulting

force resembles a shifted and rescaled version of the original

length-tension curve over the range of motion used in swal-

lowing. We thus choose position and scaling constants for

the length-tension curve to approximate the resultant force

curve in the biomechanics, rather than the length-tension

curve of the isolated muscle.

We assume the tension on each muscle is linearly pro-

portional to its activation, and sum all of the muscle forces

giving

Fmusc = k0φ

(

xr − c0

w0

)

u0 + k1φ

(

xr − c1

w1

)

u1. (15)

Here xr ∈ [0, 1] is the position of the grasper, ki is a parame-

ter representing the strength and direction of each muscle, ci

the position of the grasper where the ith muscle is at its min-

imum effective length, and wi the difference between the

maximum and minimum effective lengths for the ith mus-

cle. The sign of ki determines the direction of force of the

muscle; when ki is negative (as it is for I2) the muscle will

pull towards its position of shortest length, and when it is

positive (as it is for I3) it will push away from this position

(in the case of I3, squeezing the grasper out of the ring of

the jaws).

We model closing and opening of the grasper (and thus

holding and releasing the seaweed) as a simple binary func-

tion, where the grasper is closed when certain neural pools

are active and open otherwise. Specifically, the grasper is

considered to be closed when a1 +a2 ≥ 0.5, and open when

a1 + a2 < 0.5 (see Figure 3). This threshold can be viewed

as a plane dividing phase space into two regions with dif-

ferent mechanics (holding the seaweed and not holding the

seaweed). The resulting dynamics are piecewise continu-

ous; a similar situation arises at the stance/swing transition

in walking (Spardy et al. 2011a, b).

In our experience, the teeth on the radular surface of the

grasper tend to hold the seaweed very firmly, and the animal

tends to let go before the seaweed slips from its grasp. Thus

the seaweed and the grasper are considered to be “locked

together” when the grasper is closed and we do not attempt

to model slip. The seaweed is assumed to be pulling back

with a constant force Fsw, which is included in the net force

on the grasper when the grasper is closed (see below).

We have observed that when seaweed is abruptly pulled,

animals respond with rapid movements of the grasper with-

out oscillations. This suggests that the system is at least crit-

ically damped under these conditions, if not over damped.

Furthermore, since the mass of the buccal mass is very small

(a few grams), and the accelerations during movement are

Fig. 3 Schematic of the neuromechanical model of the feeding appa-

ratus in Aplysia. The three neural pools (a0, a1, and a2) control three

phases of swallowing shown in Fig. 2: protraction open, protraction

closing, and retraction closed. The solid lines and triangles indicate

excitatory synaptic coupling with a neuromuscular transform repre-

sented by a low pass filter. The dashed line and summation symbol

represent a simple summation and thresholding that control closing in

the model. The a0 neural pool represents the B31, B32, B61, B62, and

B63 neurons, the a1 neural pool represents these same neurons with the

addition of B8 (which experiences slow excitation from B34), and the

a2 neural pool represents B64, B3, B6, B9, and B8 (which is excited

by B64) activity
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typically small (based on MRI measurements, they may be

close to zero during most of the motion Neustadter 2002,

2007), we choose to use equations of motion that assume

a viscous limit. Additionally, it has been observed that the

anterior portion of the I3 muscle can act to hold seaweed

in place while the grasper is open, significantly reducing

outward seaweed movement (McManus et al. 2014). For

simplicity, we assume that the seaweed velocity is zero

when the grasper is open. Thus, instead of directly simulat-

ing the full equations of motion (see Appendix B) we use

the reduced system

dxr

dt
=

Fmusc

br
, (16)

dxsw

dt
= 0 (17)

when the grasper is open, and

dxsw

dt
=

dxr

dt
=

Fmusc + Fsw

br + bsw
(18)

when the grasper is closed.

It is entirely possible that the system is effectively quasi-

static, and that positional forces dominate over viscous

forces, but this formulation does not assume that from the

outset.

Note that, in this formulation, sufficiently strong sea-

weed forces could pull the grasper out of its operating range

[0,1]. To prevent this (unrealistic) situation from occurring,

we impose boundary conditions limiting the motion of the

grasper at xr = 0 and xr = 1, similar to those imposed on

the neural variables.

3.3 Proprioceptive input

Proprioceptive neurons detect the position of and forces

within the animal’s body. These mechanoreceptors can take

many forms, from the muscle spindles and golgi tendon

organs of vertebrates to the muscle organs seen in crus-

taceans to the S-channel expressing neurons seen in mol-

lusks (Vandorpe et al. 1994). Rather than model these in

detail, we have assumed that, as a function of the position of

the grasper, the proprioceptive sensory neurons will create

a net excitation or inhibition of each neural pool. For sim-

plicity we have used a linear relation for this proprioceptive

input as a function of position,

gi(xr) = (xr − Si)σi , (19)

where xr ∈ [0, 1] is the position of the grasper, Si is the

position where the net proprioceptive input to the ith neural

pool is zero, and σi ∈ {−1, 1} is the direction of propriocep-

tive feedback for the ith neural pool. This term corresponds

to the term g(a, x) in the general framework described by

Eq. (1), where its strength is scaled by the parameter ǫ. In

this case, however, the proprioceptive input does not depend

upon a, and so we write it simply as gi(xr).

3.4 Noise

All biological systems are subject to noise, and as we will show,

this can have important effects on the dynamics. Typi-

cal examples of noise in a neural context would include

the small fluctuations caused by opening and closing of

ion channels (known as channel noise; White et al. 2000;

Goldwyn and Shea-Brown 2011), the variable release of

neural transmitter vesicles, and stochastic effects from small

numbers of molecules in second messenger systems. One

can also treat parts of the system that we are not including in

the model as “noise” (Schiff 2012), such as small variations

in sensory input from the environment with a mean of zero.

We model this noise as a 3-dimensional Weiner process

of magnitude η (i.e. white noise). This form of noise arises

naturally when the noise is created by many small identical

independent events with finite variance, such as channels

opening and closing. Although most biological noise is

bandwidth limited, the higher frequencies of the noise are

filtered out by the dynamics of the model and can thus be

ignored. Noise is added to the neural state variables ai but

is assumed to be negligible for the mechanical state vari-

able xr. For simulations in which noise is used, we thus

replace the ordinary differential Eq. (3) with the stochastic

differential equation

da =
(

f (a, μ) + ǫg(xr)
)

dt + η dWt , (20)

where Wt is a three-dimensional Weiner process.

3.5 Parameter changes used for the limit cycle simulations

As mentioned in Section 3.1, the isolated neural dynamics

(i.e. when ǫ = 0) exhibits a stable heteroclinic cycle when

μ = 0, and a stable limit cycle for small positive values of

μ.1 Upon increasing μ from zero, one observes a qualitative

change in dynamics in the fully coupled system (ǫ > 0) at a

critical value, μcrit, which divides the parameter space into

distinct regimes. We explore the differences between these

two dynamical regimes in detail below. Although the central

system exhibits a limit cycle in both regimes, the sensitivity

of the oscillation to sensory feedback changes dramatically

above versus below μcrit. We call the μ < μcrit regime the

“heteroclinic” regime because here the interplay of propri-

oceptive feedback with the underlying stable heteroclinic

channel architecture governs the timing of the oscillation.

1For sufficiently large values of μ, the intrinsic excitation overwhelms

the mutual inhibition between the pools and all of the pools become

tonically active via a supercritical Hopf bifurcation. This tonic activ-

ity does not produce ingestive behavior in our model, so we will not

examine it further in this paper.
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In contrast, for μ > μcrit, the timing of the cycle is largely

unaffected by proprioceptive feedback; we call the latter the

“limit cycle” regime.

Several of the results described later involve compar-

ing representative examples of systems in each of the two

regimes. As we will describe in Section 5.2, without addi-

tional tuning of the parameters, the limit cycle performs

much more poorly than the heteroclinic regime. For the limit

cycle models, we thus change a small number of parameters,

specifically, the neural time constant τa and the maximum

muscle activation umax. We also perform a phase dependent

adjustment of timing by replacing the neural time con-

stant τa with the following activity-dependent time scaling

function

τa(a) = (1 + α · a)β. (21)

Here β is a scalar parameter representing a uniform adjust-

ment in the speed of the trajectories (analogous to the

previous constant τa), and α is a vector parameter repre-

senting an activity-dependent scaling of the speed. Note that

this change affects the timing but not the location of the

trajectories in space in the isolated neural dynamics.

4 Materials and methods

Predictions of the model were tested using data from intact

animals, semi-intact preparations in which all but feeding

proprioceptive input had been removed (the suspended buc-

cal mass), and preparations from which all sensory input

had been removed (the isolated cerebral and buccal ganglia).

Adult Aplysia californica were obtained from Marinus Sci-

entific, Long-Beach CA, USA. The animals were housed

in aerated 50 gallon aquariums at 16◦C with a 12 hour

light/dark cycle and were fed 0.5 g of dried laver every other

day. Animals were presented with seaweed to test feeding

behavior before use, and all animals used generated bites at

3 to 5 second intervals when tested.

4.1 Intact animals

Details of the recording methods for intact animals are

described in Cullins and Chiel (2010). Briefly, animals from

350 g to 450 g were anesthetized by injecting 30 % of the

animal’s mass of isotonic (0.333 molar) magnesium chlo-

ride solution into the hemocoel. Hook electrodes were then

surgically implanted and attached to the I2 muscle, the radu-

lar nerve (RN), buccal nerve 2 (BN2), and buccal nerve

3 (BN3). The animals were allowed to recover, and they

were then presented with 5 mm wide seaweed strips to elicit

swallowing patterns. Video and EMG/ENG were recorded

simultaneously to capture the behavior corresponding to

the feeding motor patterns. Electrical recordings were made

using an A-M Systems model 1700 amplifier with a 10-

1000 Hz band-pass filter for EMG and a 100-1000 Hz

bandpass filter for the ENG recordings, and they were

captured using a Digidata 1300 digitizer and AxoScope

software (Molecular Devices).

4.2 Suspended buccal mass preparation

The methods used for the suspended buccal mass are

described in McManus et al. (2012). Briefly, animals from

250 g to 350 g in weight were anesthetized by injecting

50 % of the animal’s mass of isotonic magnesium chloride

into the hemocoel. The buccal mass and attached buccal

and cerebral ganglia were then dissected out and placed

in Aplysia saline (460 mM NaCl, 10 mM KCl, 22 mM

MgCl 2, 33 mM MgSO 4, 10 mM CaCl 2, 10 mM glu-

cose, 10 mM MOPS, pH 7.4-7.5). Hook electrodes were

attached to the I2 muscle, RN, BN2, BN3, and branch a

of BN2 (BN2a). The buccal mass was then suspended via

sutures through the soft tissue at the rostral edge and the

two ganglia pinned out behind it, with the cerebral ganglia

placed in a separate chamber isolated from the main cham-

ber using vacuum grease. To elicit ingestive patterns, the

Aplysia saline in the chamber containing the cerebral gan-

glion was changed to a solution of 10 mM carbachol (Acros

Organics) in Aplysia saline. Electrical recordings were made

using an A-M Systems model 1700 amplifier with a 10-500

Hz band-pass filter for EMG and a 300-500 Hz bandpass

filter for the ENG recordings, and they were captured using

a Digidata 1300 digitizer and AxoGraph software (Axon

Instruments).

4.3 Isolated buccal ganglion

The methods used for the isolated ganglia are described in

Lu et al. (2013). Briefly, the animal was euthanized and the

buccal mass and buccal and cerebral ganglia dissected out

as described for the suspended buccal mass. The ganglia

were then dissected away from the buccal mass along with

a small strip of I2 attached to the I2 nerve, and the ganglia

was pinned out in a two-chambered dish lined with Sylgard

184 (Dow Corning), with a vacuum grease seal separating

the solution in the chamber with the cerebral ganglion from

that in the chamber with the buccal ganglion. Suction elec-

trodes were attached to BN2, BN3, RN, and the excised

strip of the I2 muscle. For ingestive patterns, a 10 mM car-

bachol solution was applied to the chamber containing the

cerebral ganglion. Electrical recordings were made using

an A-M Systems model 1700 amplifier with a 10-500 Hz

band-pass filter for EMG and a 300-500 Hz bandpass fil-

ter for the ENG recordings, and they were captured using

a Digidata 1300 digitizer and AxoGraph software (Axon

Instruments).
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4.4 Data analysis

Selection of patterns for analysis varied by preparation. For

the intact animal, patterns were considered swallows if the

video showed the animal grasping the seaweed through-

out the pattern and the net movement of the seaweed was

inward; other behaviors such as bites and rejections were

not studied for this paper. For the suspended buccal mass

and isolated ganglia, patterns were used near the middle of

the experimental session following carbachol application,

as the patterns tend to be more distorted when carbachol

is first added and late into the application as the beha-

vior slows.

Onsets and offsets of activity in the I2 muscle EMG were

identified based on the onset and offset of high frequency

firing. Activity of I3 was identified based on the activity of

the three largest units on the buccal nerve 2 ENG, which

have previously been identified by our lab as B3, B6, and B9

(Lu et al. 2013). A subset of the burst onset and offset tim-

ings were independently identified by a second researcher

to verify inter-rater reliability.

4.5 Numerical methods

The stochastic differential equations were simulated in

C++ using an explicit order two weak scheme with addi-

tive noise, described in Kloeden and Platen (1992). If the

stochastic differential equation is expressed in vector form

as

dyt = A(yt ) dt + B(yt ) dWt , (22)

this scheme is described by the following recurrence

relationship:

ỹn+1 = yn + A(yn)h + B(yn)�Wn, (23)

yn+1 = yn + 1
2
(A(ỹn+1) + A(yn))h + B(yn)�Wn. (24)

Here h is the length of a time step and �Wn is a Weiner

increment (a vector of pseudo-random numbers from a

Gaussian distribution with mean zero and variance h). Note

that in the deterministic case this reduces to the Heun

method (Kloeden and Platen 1992).

Random numbers for the Wiener increments were gener-

ated using a Mersenne twister with a period of 219937 − 1

(Matsumoto and Nishimura 1998). A time step of size 10−3

was used. This was verified to be sufficiently small by

simulating the model with default parameters and seeing a

change in period of less than 30 parts per million (from

4.02704 to 4.02693) when the step size was changed from

10−3 to 10−4. Onsets and offsets of bursts were determined

by when the activity of the next neural pool rose above the

previous one (i.e. ai+1 > ai), and were linearly interpolated

between time steps to improve accuracy.

5 Results

5.1 Endogenous excitation vs. sensory feedback

The marine mollusk Aplysia must adapt to the changing

forces imposed on it by the stipe of seaweed it is attempt-

ing to consume. These forces can vary considerably during

feeding; a stipe of seaweed might initially present very lit-

tle resistance, but accumulated elastic forces in the seaweed

will grow as the animal pulls against the holdfast, and tidal

forces can present a sudden load with little warning.

The ability of Aplysia to respond adaptively to mechan-

ical loads during feeding depends on the balance between

the intrinsic excitability of the isolated nervous system and

the strength of proprioceptive feedback. Therefore, we first

systematically explored how the interplay of propriocep-

tive feedback and intrinsic excitability affects the response

of the model to a range of mechanical loads. In the equa-

tions governing the neural state variables (see Appendix A)

the endogenous excitation (μ) is added to the propriocep-

tive feedback, which is scaled linearly by the parameter ǫ.
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Fig. 4 Retraction phase duration is sensitive to sensory feedback

when intrinsic neuronal excitability is low, but not when it is high.

Across a range of forces, the duration of the retraction neural pool

activity undergoes a sharp, qualitative change at a critical value of μ.

Thus, we divide the parameter space into “heteroclinic” (low μ, below

the transition point) and “limit cycle” (high μ, above the transition

point) regimes. This transition is present even at zero force (black line),

but the critical μ value is larger for greater forces. Below the transition

(small μ), the retraction duration is longer, and the duration increases

significantly with increasing seaweed force, as can be seen by com-

paring the black curve (Fsw = 0) to the blue curve (Fsw = 0.1).

For large μ above the transition, the retraction duration is shorter and

largely unaffected by the applied seaweed force. This implies that the

model is capable of operating in two dynamical regimes. As a short-

hand, throughout the paper we refer to μ values below the transition

point as belonging to the “heteroclinic” regime, and μ values above

the transition as belonging to the “limit cycle” regime
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Thus we fixed the parameter controlling the strength of pro-

prioception (ǫ), and observed the dynamics of the model

across a range of endogenous excitation levels (μ) for sev-

eral different applied loads (Fsw). We focused on retraction

duration as a way of measuring the responsiveness of the

system to load, since in the retraction phase the grasper is

closed on the seaweed and the muscles are actively counter-

ing the seaweed force. Longer retractions allow the muscles

to build up more force and thus more effectively counter the

applied load. Figure 4 shows the activity duration in seconds

of the retraction neural pool a2, which drives the retractor

muscle I3, across a range of μ values. Curves for several

values of the resisting seaweed force Fsw are shown, ranging

from Fsw = 0 to Fsw = 0.1. Here all other parameters are

held constant at their default values as listed in Appendix C,

and for each curve, only μ is systematically varied.

Figure 4 indicates that, depending on the level of endoge-

nous excitation, the response to mechanical load operates

in two distinct dynamical regimes. First, note that in each

curve there is a sharp transition at some nonzero, critical μ

value, which becomes more dramatic for greater mechanical

loads. For μ values below the transition point, the retraction

phase is longer and increases with higher seaweed force.

In contrast, for μ values above the transition point, the

retraction phase is significantly shorter and is only weakly

affected by the seaweed force. Also note that the critical μ

value increases as the seaweed force is increased.

The existence of this transition allows us to separate

the parameter space into two distinct regimes. The first of

these regimes, which corresponds to the range of μ values

below the transition point, we refer to as the “heteroclinic”

regime. In the heteroclinic regime, the system is sensitive to

mechanical load. We refer to the range of μ values above

the transition point as the “limit cycle” regime. In this sec-

ond regime, the system is no longer sensitive to mechanical

load.

To understand this qualitative change, consider the

dynamics on either side of the transition for the fixed force

Fsw = 0.05. For this force value, the sharp change occurs at

approximately μcrit = 1.7 × 10−5. Figure 5 shows example

trajectories for the μ values μ1 = 1.6 × 10−5 (heteroclinic

regime, left) and μ2 = 1.8×10−5 (limit cycle regime, right),

respectively, as examples of the dynamics on either side of

the transition. All other parameters are kept fixed. The top
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Fig. 5 A small change in endogenous excitation near the critical value

of μ switches the dynamical regime. Top panels The trajectories of

the state variables over a single cycle, for μ values just below and

above the transition point, when Fsw = 0.05. The top left panel

shows trajectories for the heteroclinic regime (μ1 = 1.6 × 10−5),

whereas the top right panel shows trajectories for the limit cycle regime

(μ2 = 1.8 × 10−5). In both plots, the a0 (protraction open), a1 (pro-

traction closing) and a2 (retraction) variables are shown in blue, red,

and yellow, respectively. The position of the grasper is plotted in black,

with 1 corresponding to full protraction and 0 to full retraction. The

thick portion of the curve indicates where the grasper is closed. The

limit cycle regime trajectory has a shorter cycle period relative to the

heteroclinic regime trajectory (note 0.5 ms scale bars left and right),

and this difference is primarily manifested in durations of the a0 and a2

neural pools. Bottom panels The proprioceptive inputs to the a0 (blue)

and a1 (red) neural pools, for the heteroclinic regime (left), and the

limit cycle regime (right). The dashed black lines show the constant

values −μ1/τa (left) and −μ2/τa (right) for reference. Note that in the

heteroclinic regime example (left), the proprioceptive feedback curves

cross the horizontal line at −μ1/τa. In this regime, sensory feedback

is able to overcome the neural dynamics and “pin” the neural state

variables to one of the fixed points until the appropriate mechanical

state is reached. In contrast, in the limit cycle regime example (right),

the proprioceptive feedback curves never cross the line at −μ2/τa. In

this regime, the proprioceptive input never exceeds the intrinsic neural

dynamics and thus has only a weak effect on the cycle timing. Note

that in the heteroclinic regime (left) the grasper is able to retract more

fully, which both increases the proprioceptive feedback and allows for

greater inward seaweed movement
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panels on both the left and right show the time courses of the

a0 (blue), a1 (red), and a2 (yellow) neural state variables,

and the position of the grasper (black), for a single cycle.

The bottom panels on either side show the total propriocep-

tive input (given by the term ǫ(xr − Si)σi in the equations)

to the a0 (blue) and a1 (red) neural pools, along with the

constant quantity −μ/τa (black, dashed line).2

We found that the transition between the two regimes

is governed by the relative balance of endogenous excita-

tion and inhibitory proprioceptive feedback, in the following

sense. Consider initial conditions for which the neural activ-

ity vector lies on one of the three lower-bound planes �i

(see Section 3.1). Then the i th component ai equals zero,

and has rate of change ȧi = (μ/τa) + ǫgi (x), where gi

is the i th component of the proprioceptive feedback vec-

tor g. If the full system has a periodic solution for which

the mechanical component x(t) satisfies μ/τa > |ǫg(x(t))|
for all t , then the flow of the neural subsystem at the

boundary �i is always transverse and inwards. That is,

the periodic neural trajectory a(t) corresponding to such a

periodic mechanical trajectory x(t) will remain in the inte-

rior of the unit cube, and the boundary conditions on a

will never need to be enforced. In this case the behavior

of the model retains the character of a typical limit cycle

system.

On the other hand, if there is a range of t for which x(t)

satisfies −μ/τa > ǫgi(x), then it is possible that the neural

components a(t) could collide with the plane �i , requir-

ing the boundary conditions to be enforced. Empirically, as

we vary μ, we find that the system behavior changes dra-

matically when any of the proprioceptive terms ǫgi(xr (t))

crosses the value −μ/τa from above. It is at just such a

value of μ that the system enters the heteroclinic-dominated

regime.3

Figure 5 illustrates this change in behavior. In the het-

eroclinic regime (left), the proprioceptive feedback to the

a0 and a1 neural pools both cross the line at −μ1/τa.

When this occurs, the proprioceptive feedback provides suf-

ficiently strong inhibition to overcome the endogenous exci-

tation (μ1/τa), which suppresses the activity of that neural

pool. Since the pools are inhibitorily coupled, suppress-

ing the activity of the pool that is next to activate removes

2Note that in Equation 4, the endogenous excitation μ is scaled by the

neural time constant τa. Thus the total endogenous excitation which

must be overcome by the proproceptive feedback is
μ
τa

. This occurs

when the sum of the proprioceptive term and μ
τa

is less than zero, and

thus we plot the constant quantity − μ
τa

in the bottom panels of Fig. 5 as

a reference. Note that in both cases the proprioceptive input to the a2

neural pool never crosses the threshold −μ/τa, and thus is not plotted.
3In general, global bifurcations in non-smooth systems can be difficult

to analyze (Di Bernardo et al. 2008; Makarenkov and Lamb 2012). A

more detailed analysis focusing on the bifurcation structure of the fully

coupled system lies beyond the scope of this paper.

inhibition to the currently active pool. This allows the activ-

ity of the currently active pool to reach a maximum, pushing

the neural state variables close to one of the fixed points and

thereby halting progression of the neural dynamics through

the cycle. When the neural variables are held in place by the

proprioceptive feedback, the dynamics are driven entirely

by the slow mechanical variables. The cycle will therefore

only advance when the grasper reaches the appropriate posi-

tion, such that the proprioceptive input no longer counters

the endogenous excitation. Since progress through the cycle

depends upon the state of the mechanical variables, the sys-

tem is highly sensitive to mechanical forces affecting the

position of the grasper.

In contrast, in the limit cycle regime (Fig. 5, right), the

proprioceptive input cannot overcome the greater endoge-

nous excitation, resulting in markedly different dynam-

ics. As illustrated in the bottom right panel of Fig. 5,

in this regime the proprioceptive inputs never cross the

line at −μ/τa and thus never dominate the intrinsic neu-

ral dynamics. Consequently, progression through the cycle

occurs regardless of the position of the grasper. This

leads to more limit-cycle-like behavior and a signifi-

cantly reduced sensitivity to mechanical load. Note that in

this regime, the system has a considerably shorter cycle

period, since the transition between phases is driven by

the fast neural variables rather than the slow mechanical

variables.

These observations also provide insight into both the

increase in retraction durations and the larger critical val-

ues of μ at higher forces. In the heteroclinic regime,

proprioceptive feedback will suppress the onset of the pro-

traction pool until the grasper is sufficiently retracted.

With increased mechanical load, retraction occurs more

slowly, since the slow muscles must build up a suffi-

cient amount of force to overcome the resisting seaweed

force. This slower retraction extends the duration of the

inhibitory proprioceptive input to the protraction neural

pool, thereby delaying the onset of protraction and extend-

ing the retraction phase. The critical μ value increases at

higher forces because the increased force produces stronger

proprioceptive feedback during the protraction closing

phase, which can overcome higher levels of endogenous

excitation.

Thus, by systematically examining the balance between

sensory input and endogenous excitation, we see that the

model can operate in two different regimes: 1. A hetero-

clinic regime, in which the proprioceptive feedback can

dominate and push the neural state variables very close

to the fixed points (resulting in long dwell times near the

fixed points), and 2. a limit cycle regime, in which the

intrinsic neural activity is sufficiently strong that it always

dominates the proprioceptive feedback, resulting in generic

limit-cycle-type dynamics.
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5.2 Comparing the performance of the limit cycle regime

to the heteroclinic regime

We have seen that the model can operate in one of two dis-

tinct dynamical regimes, with the primary distinction being

that in one regime (the heteroclinic regime), the neural

dynamics are sensitive to proprioceptive input and mechani-

cal load, while in the other (the limit cycle regime), they are

not. Next we ask whether the enhanced sensitivity to load

seen in the heteroclinic regime confers any functional or

behavioral advantages. We therefore explore the efficacy of

the limit cycle and heteroclinic regimes in the ingestion of

seaweed over a range of resisting forces on the seaweed. As

a representative example of a system falling within the het-

eroclinic regime, we ran the model with the very small but

non-zero μ value of 10−9. We do not set this parameter iden-

tically equal to zero since for this (and only this) value the

isolated neural dynamics possess a heteroclinic cycle rather

than a stable heteroclinic channel. As an example of the sys-

tem in the limit cycle regime, we ran the simulation for the

much larger μ value of 10−3. These choices ensure that the

two examples will lie safely on either side of the transition

point across all of the parameter ranges we explore.

Although the heteroclinic regime model can be switched

to the limit cycle regime by increasing the intrinsic

excitability μ, as shown in Fig. 6 (top line: heteroclinic

regime, μ = 10−9; bottom line: limit cycle regime,
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Fig. 6 The limit cycle regime example produced by changing intrin-

sic neural excitability (μ) alone performs much more poorly than the

heteroclinic regime, but the limit cycle regime’s performance can be

improved by adjustments in timing. Top black line heteroclinic regime.

Lower green line limit cycle regime example produced by only chang-

ing μ. Orange line, second from bottom: limit cycle regime example

produced by changing μ and τa, which controls the overall cycle dura-

tion. Red line, third from bottom: limit cycle regime example produced

by changing μ and replacing the constant τa with the function τa(a) =
(1+α ·a)β, thus allowing the limit cycle regime to spend similar times

to the heteroclinic regime at different phases of the motor pattern

μ = 10−3; all other parameters fixed), the resulting model

is unable to effectively ingest seaweed. We thus attempt

to tune the parameters for the limit cycle regime to make

it more effective and more comparable to the heteroclinic

regime. We use the behavior of the heteroclinic regime

under a light seaweed load (Fsw = 0.01) to guide our

parameter changes. Under these conditions, the heteroclinic

regime ingests seaweed at a rate of 0.125/s, but the limit

cycle regime (with changes to μ only) egests seaweed at a

rate of 0.03/s (i.e. the seaweed is pushed out more than it

is pulled in).

There are a number of reasons why the limit cycle regime

is less effective at ingesting seaweed. The increase in μ

dramatically decreases the time spent near the saddles with-

out increasing the time spent moving between saddles; as a

result, the period of the neural pattern decreases from 4.45s

to 0.99s. To compensate for this change, we increased the

time scaling constant τa for the limit cycle regime so that its

cycle period matched that of the heteroclinic regime. This

adjustment increases the efficacy of the limit cycle regime

to ingest at a rate of 0.030/s; a similar improvement is seen

across a range of loads as shown in Fig. 6, second line from

the bottom.

The next obvious cause of the lower efficiency of the

limit cycle regime is the approximately equal length of time

each neural pool is active; with the changes to μ and the

constant τa, each pool is active for 1.49, 1.46, and 1.50 sec-

onds for protraction open, protraction closing, and retrac-

tion closed, respectively, whereas in the heteroclinic regime,

protraction closing (0.49s) is much shorter than protraction

open and retraction closed (2.08s and 1.88s). These differ-

ences in how long each neural pool is active are likely to be

due to differences in sensory responsiveness, which we will

explore in Section 5.3. In general, a limit cycle could spend

different amounts of time in each region of the pattern with-

out requiring dependence on sensory input. To illustrate this

point, we adjust the timing of the limit cycle by making τa

activity-dependent, as described in Equation 21, setting β

equal to our previous constant τa and adjusting the parame-

ter vector α to make the duration of activity match that seen

in the heteroclinic regime with the test seaweed load. This

increases the efficacy of the limit cycle to 0.102/s, and

again improves the performance of the limit cycle regime

across a range of loads as shown in Fig. 6, third line from

the bottom.

Despite these changes to the intrinsic neural dynamics,

the limit cycle is still less effective than the heteroclinic

regime. One reason for this remaining deficit is that the

sharp transitions in the heteroclinic regime may provide

faster activation of the muscles than the more gradual onset

and offset of activity in the limit cycle. As shown in Fig. 7,

this slower activation and deactivation can be compensated

for by increasing the maximum activation of the muscle (or,
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Fig. 7 Increasing the maximum muscle activation allows the system

in the limit cycle regime to perform as well as that in the heteroclinic

regime, over a range of forces. Black line heteroclinic regime. Red

line, yellow line, green line, and blue line: limit cycle regime with

timing changes and 1, 1.2, 1.4, or 1.6 times the maximum muscle

activation, respectively

equivalently, the cross section of the muscle) umax. Increas-

ing umax by a factor of 1.6 results in a rate of ingestion of

0.126, which is slightly higher than the efficacy of the hete-

roclinic regime. Note that, as shown in the figure, even with

higher values of umax, the heteroclinic regime is more effec-

tive than the limit cycle regime when the mechanical load

due to the seaweed increases .

Although increasing the maximum muscle activation

allows the limit cycle regime to match or even exceed

the efficacy of the heteroclinic regime over a range of
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Fig. 8 Increased muscle activation in the limit cycle regime comes

at a metabolic cost (see Eq. (25)). Black line heteroclinic regime. Red

line, yellow line, green line, and blue line: limit cycle regime with

timing changes and 1, 1.2, 1.4, or 1.6 times the maximum muscle

activation, respectively

loads, this change has a metabolic cost for the animal. To

a first approximation, the energetic cost of contraction is

proportional to the force generated by the muscle (Sacco

et al. 1994). Thus, under the model’s assumption that we

are in the linear regime of the force-activation curve, the

energetic cost of contraction is also proportional to the

activation of the muscle. In Fig. 8 we show the energetic

cost, in the form of integrated muscle activation over time,

per length of seaweed ingested. Assuming the system has

reached steady-state, this is

∫ T

0

∑

i ui(t) dt

xsw(0) − xsw(T )
, (25)

where T is the period of the behavior. Note that even at low

loads, the limit cycle regime pays a higher metabolic cost

per unit length of seaweed ingested.

The behavior of the limit cycle regime is also mechani-

cally less efficient at higher loads. In Fig. 9, we show the

mechanical work done by the muscles per unit length of

seaweed ingested,

∫ T

0 Fmusc(s)
dxr

dt

∣

∣

∣

t=s
ds

xsw(0) − xsw(T )
. (26)

Note that the limit cycle regime is able to remain mechani-

cally efficient over a larger range of loads when the muscles

are strengthened, but the heteroclinic regime is still more

mechanically efficient at higher loads than the limit cycle

regime with muscles that are 1.6 times stronger. We will

explore the differences in behavior that lead to these effects

in the next section.
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Fig. 9 With higher loads, the system in the limit cycle regime is less

efficient than in the heteroclinic regime, and does more mechanical

work (Eq. (26)) for a given amount of seaweed ingested. Black line

heteroclinic regime. Red line, yellow line, green line, and blue line:

limit cycle regime with timing changes and 1, 1.2, 1.4, or 1.6 times the

maximum muscle activation, respectively
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5.3 Mechanisms of adaptation to load

How do the two architectures adapt to changes in mechan-

ical load? In Fig. 10, we can see the changes between

low and high seaweed forces. In the limit cycle regime,

the time course of neural activation is very similar under

both high (Fsw = 0.1) and low (Fsw = 0.01) load

conditions. As a result, the forces in the high-load con-

dition dramatically reduce the distance that the seaweed

is pulled inward before the grasper releases the seaweed

(thick green line). Note that once the seaweed is released,

the retraction force on the grasper is no longer opposed,

causing a rapid retraction. In the heteroclinic regime, by

comparison, we can see that the neural pool involved in

retraction (yellow) increases its duration of activity. The

resulting long retraction allows the animal to draw in more

seaweed by allowing the muscles to exert a greater peak

force.
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Fig. 10 Forces on seaweed can selectively prolong the retraction

phase of the heteroclinic regime, but have little effect on the limit

cycle regime. Black and green lines show the position of the grasper,

with the thick green sections showing the positions when the grasper

is closed on the seaweed and the black sections showing the positions

when the grasper is open. The blue, red and yellow lines show the

activity of the protraction open, protraction closing, and retraction

closed neural pools, respectively. The mechanical load, Fsw was

increased from 0.01 to 0.1. The positions of the grasper are similar

for both the heteroclinic regime and the limit cycle regime when

there is little load. Note that the duration of retraction closed (yellow)

increases substantially in the heteroclinic regime under high load,

resulting in a stronger retraction while holding the seaweed; this is

not true in the limit cycle regime under load. The sensitivity to load in

the heteroclinic regime is due to sensory feedback counteracting the

endogenous excitation and delaying the onset of the protraction neural

pool, as demonstrated in Figs. 4 and 5
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This difference in response is consistent with our obser-

vations in Fig. 4 that, in the heteroclinic regime, the system

compensates for higher loads by increasing the duration of

the retraction neural pool activity, whereas in the (untuned)

limit cycle regime, the system is largely insensitive to sea-

weed forces. To examine more systematically how the tuned

limit cycle regime responds to changes in force, in Fig. 11

we plotted the retraction neural pool duration across a

range of forces for both the heteroclinic and limit cycle

regime examples. Here we see clearly that the heteroclinic

regime example systematically increases retraction dura-

tion in response to increasing force, whereas the limit cycle

regime example is insensitive to changes in load, even when

the time constants and muscle activation parameters have

been tuned.

The mechanisms of these changes in timing can be seen

in more detail in Fig. 12. In both the heteroclinic and limit

cycle regimes, the trajectory is moved only a small distance

by sensory input. In the case of the limit cycle regime, the

new trajectory passes through a very similar region of phase

space as the unperturbed trajectory, and thus the timing of

the oscillation does not change very much. In contrast, in

the heteroclinic regime, the small perturbation moves the

trajectory near the saddle point where the flow decreases

rapidly even over these short distances. During retraction,

the trajectory passes closer to the saddle where the flow is

very small; thus it spends longer in this region.

It is natural to ask whether the intact behaving animal

employs similar strategies. Because it is difficult in the

intact animal to assess the dynamic forces generated by

seaweed bunching up in the buccal cavity as seaweed is
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Fig. 11 In the heteroclinic regime (black line, μ = 10−9), the system

reacts to increasing the seaweed force by lengthening the duration of

the retraction neural pool activity. In contrast, retraction duration in

the limit cycle regime example (blue line, μ = 10−3) is relatively

insensitive to mechanical load, despite adjustments to the neural time

constants and the maximum muscle activation parameter

ingested, we consider a simplified situation where a stiff

elastic force is encountered during a swallow that prevents

the seaweed from moving inward, such as the holdfast of the

seaweed. We can create an analagous situation in the ani-

mal by feeding the animal a thin strip of seaweed and then

holding the seaweed during a swallow to present a resisting

force.

How do these strategies compare to those used by the

animal itself? As shown in Fig. 13, when seaweed is held by

the experimenter to prevent inward movement, the duration

of retraction increases, although the duration of protraction

does not appear to increase or decrease.

It is not surprising that an animal would behave in an

adaptive manner to the behaviorally relevant task of con-

suming seaweed. If the dynamics of the central nervous

system are heteroclinic regime-like, would this create any

changes that would not be expected from a purely adaptive

standpoint? There are two we will discuss here: the response

to removal of proprioceptive and excitatory input, and the

shape of the distribution of durations of components of the

pattern.

The removal of sensory input and excitatory drive can

be simulated by setting ǫ and μ equal to zero. For these

parameters, the system possesses a true heteroclinic cycle,

and in the absence of noise or intrinsic excitability the dura-

tion of patterns will grow without bound. In our preparations

of the isolated buccal ganglia, we observed that the iso-

lated neural system did possess a small but not zero amount

of intrinsic excitability. Therefore we simulated this situa-

tion by setting μ equal to a very small but non-zero value

(μ = 10−30). Note also that the addition of noise could also

produce oscillations in the pure heteroclinic cycle, leading

to long, but still finite, cycle times. In Fig. 14 (left), we set

μ to 10−30 to show that even a very small amount of con-

stant excitation is sufficient to prevent the heteroclinic cycle

from becoming “stuck” in one of the phases. In this case we

see that the pattern duration is much longer than either the

heteroclinic regime or limit cycle regime examples we have

previously explored, which both have non-zero values of μ.

Furthermore, this lengthening of the pattern is observed in

all three motor components. It is important to note that this

lengthening of the patterns depends upon the presence of

an underlying heteroclinic architecture, since the slowing of

the neural trajectory occurs due to the passage of the trajec-

tory near a series of fixed points. If we reduce the influence

of the fixed points by increasing μ, thereby making the sys-

tem resemble a generic limit cycle (Fig. 14, right), then

the removal of sensory input has very little effect (compare

Fig. 14 top right and bottom right).

When sensory input is removed from the animal, does the

duration of protraction and retraction increase as is seen in

the heteroclinic regime, or remain about the same as is seen

in the limit cycle regime? To investigate this, we examine
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Fig. 12 A small change in the trajectory caused by sensory input can

have a large effect on timing in the heteroclinic regime by pulling the

trajectory closer to the saddle; the same magnitude of change has very

little effect in the limit cycle regime. The upper row shows the tra-

jectory of the neural variables in phase space with small load (Fsw =
0.01) for both the heteroclinic regime and the limit cycle regime. The

circles represent points equally spaced in time (by 100 ms intervals) to

show speed of the trajectory. Note that the trajectory of the heteroclinic

regime spends almost all of its time near the saddles (at the corners of

the triangle), whereas the limit cycle regime spends more time on the

parts of the trajectory between two saddles. The second row contains a

magnification of the top corner of the trajectory (where the retraction-

closed neural pool is most active) for the heteroclinic regime (left) and

limit cycle regime (right) with the light mechanical load (Fsw = 0.01).

The heteroclinic regime plots are magnified 10000 times, whereas the

limit cycle plots are magnified 10 times. The third row shows trajec-

tories for the same two examples after increasing the seaweed force

(Fsw = 0.1). Note that in the limit cycle regime, the trajectory is

largely unchanged. In the heteroclinic regime, however, the trajectory

is pulled close to the saddle and spends a significantly longer amount

of time in the retraction phase. This effect occurs only when sensory

feedback is strong enough to overcome the endogenous excitation

two preparations of the animal with reduced sensory input

and compared them to the intact animal. In the first prepa-

ration, the suspended buccal mass (McManus et al. 2012),

the feeding apparatus and the ganglia controlling feeding

are dissected out of the animal and suspended in a physio-

logical saline. This preparation thus removes sensory input

from the lips, anterior tentacles, and other parts of the body,

but not the proprioceptive feedback from the feeding appa-

ratus itself. In the second preparation, the isolated ganglia,

the feeding apparatus is also dissected away, leaving just the

ganglia controlling feeding. As shown in Fig. 15, protrac-

tion (containing both the protraction open and protraction
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Fig. 13 When a force is applied to the seaweed in vivo (by holding

the seaweed), the activity of the neurons involved in retraction (corre-

sponding to retraction closed) is prolonged (right), while the activity

of the protractor muscle (corresponding to the start of protraction open

to the end of protraction closing) is not (left). Medians differ (Mann–

Whitney test, p = 0.013). 30 unheld swallows and 7 held swallows

were used from the same two animals. Results are similar if unheld

swallows from all 6 animals are used (not shown, p = 0.003)

closing phases) and retraction (closed) both increase in

duration from the intact animal to the suspended buccal

mass, and increase further in duration from the suspended

buccal mass to the fictive patterns of the isolated ganglia.

Note that this increase in both protraction and retraction

differs from the selective increase in retraction when the

seaweed was held in Fig. 13, but matches the increase

in both phases seen in the stable heteroclinic channel

(Fig. 14).

When subject to small amounts of noise, the heteroclinic

regime and the limit cycle regime show different forms of

variability in timing. We illustrated this by running 10000

independent stochastic simulations of the model with low

amplitude Gaussian noise (standard deviation η = 10−4),

for both the heteroclinic regime model and the limit cycle

regime model. The retraction neuronal pool durations were

collected from all simulations in both cases, and for each

case we computed a distribution of duration times. The

density functions were estimated using a kernel density

estimator algorithm described in Silverman (1986). Each

data point was convolved with a Gaussian kernel, and the

resulting smoothed curves were summed to form a single

function. This function was then normalized by dividing

by the total area under the curve. The kernel bandwidth in

each case was chosen based on the variance of the data

(Silverman 1986).

The key result of simulations with noise, shown in

Fig. 16, is that the distribution for the heteroclinic regime

is significantly skewed compared to the more symmet-

ric distribution for the limit cycle regime. In the limit

cycle regime, perturbations from the noise have very simi-

lar effects regardless of where they occur in the cycle, so, by

the central limit theorem, their cumulative effect is approx-

imately Gaussian in the limit of small noise.4 In contrast, in

the heteroclinic regime, as described in Shaw et al. (2012),

perturbations that occur while approaching the saddle can

have much larger effects than perturbations that occur while

leaving the saddle, so the central limit theorem does not

apply. As predicted by Stone and Holmes (1990), this results

in a distribution that is skewed to the right.

Using our in vivo preparation, we can measure the retrac-

tion duration during swallowing in intact Aplysia, and com-

pare the resulting distribution to our simulation output. In

Fig. 17, we see that the distribution of retraction durations

is significantly skewed to the right, more closely resem-

bling that seen in the heteroclinic regime of the model.

The experimental distribution was computed via the same

kernel density estimation procedure used for the simulated

data.

6 Discussion

In this paper, we have examined a neuromechanical model

of swallowing in Aplysia in two parameter regimes. In the

first parameter regime, the internal neural dynamics drive

the cycle in a manner similar to an idealized central pat-

tern generator. In contrast, in the second parameter regime,

which has dynamics more similar to those of a chain reflex,

passage near saddle points leads to greater sensitivity to

sensory inputs.

We have shown that the model operating within the limit

cycle regime does not adapt as well to changing loads as the

model operating within the heteroclinic regime, even when

the durations of the cycle components have been tuned to be

the same in both regimes (Figs. 6–9). We showed that part

of this change is due to a prolongation of retraction allowing

greater activation of the slow retractor muscles (Figs. 10,

11). We then showed that the animal itself appears to use

the same strategy of prolonging retraction when faced with

loads in vivo (Fig. 13).

We showed that, in the heteroclinic regime, the model

could more accurately capture behaviors observed in exper-

imental data than in the limit cycle regime, even for

aspects of the behavior that do not convey an obvious

evolutionary advantage. First, removal of sensory feed-

back and reduction of endogenous excitation resulted in

4In the limit cycle regime, the time spent passing through one part of

the cycle can be approximated as the first passage time of a Brown-

ian particle with drift, so the small noise assumption is important; the

distribution will become skewed as the noise becomes large relative to

the drift.
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Fig. 14 Removing sensory feedback and endogenous excitation by

setting ǫ = 0 and μ = 10−30 slows both protraction and retraction

due to the underlying heteroclinic cycle architecture. For reference,

the top two panels on the left and right show example trajectories for

the heteroclinic and limit cycle regimes, respectively (identical to the

top panels of Fig. 10). The two panels at bottom left show example

trajectories resulting from the removal of sensory input and endoge-

nous excitation (ǫ = 0 and μ = 10−30). When the system is made to

a resemble a standard limit cycle by setting μ = 10−3, the removal

of sensory input no longer has an effect, as seen in the two panels at

bottom right

slowed cycling in the model (Fig. 14, left), due to the

underlying stable heteroclinic channel architecture. In the

model, however, when the endogenous excitation of the

neurons was increased so that the neural dynamics entered

the limit cycle regime, the removal of sensory input had

essentially no effect on the model’s dynamics (Fig. 14,

right). Interestingly, slowed cycling was also observed

experimentally in the animal when sensory inputs to the

buccal ganglia were removed (Fig. 15). This is consis-

tent with the model in the heteroclinic regime but not

the limit cycle regime. Second, the distribution of burst

durations in the model showed a very skewed distri-

bution in the heteroclinic regime but not in the limit

cycle regime (Fig. 16). A similarly skewed distribution of

retraction durations was observed experimentally in vivo

(Fig. 17).

6.1 Limitations of the model and results

We have intentionally created a very nominal model of

swallowing behavior which does not capture many of the

details known about feeding in Aplysia. As previous work
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Fig. 15 Protraction and retraction intervals are longer in the sus-

pended buccal mass than in the intact animal, and longer in the isolated

ganglia than in either the suspended buccal mass or the intact animal.

Bites were used (rather than swallows) because there is no clear ana-

log of a swallow in the isolated ganglia. Medians differ significantly

by preparation type for both protraction (Kruskal–Wallis, p < 0.001)

and retraction (Kruskal–Wallis, p < 0.001). Results are similar when

swallows from the in vivo and suspended buccal mass preparations

are used instead of bites (not shown, p < 0.001 for both protraction

and retraction). Recordings in vivo: 146 bites from 6 animals. Sus-

pended buccal mass: 8 bites from 2 animals. Isolated ganglia: 13 motor

patterns from 2 animals
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Fig. 16 In the presence of small amounts of noise, retractions are sig-

nificantly more skewed for the heteroclinic regime than for the limit

cycle regime (skewness = 0.91 vs 0.03, for the heteroclinic regime

and limit cycle regime respectively. D’Agostino test for skewness

(D’Agostino et al. 1990):
√

b1 = 32 vs 1.1, p < 0.001 vs p = 0.27).

Shown is the kernel density estimator for the last a2 duration in each

of 10000 simulations with noise magnitude η = 10−4. Kernel den-

sity estimation was performed using the algorithm given in Silverman

(1986), which involves convolving the data with a Gaussian kernel and

dividing by the total area of the resulting function. Kernel width was

chosen based on the variance of the data (Silverman 1986)
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Fig. 17 Retraction durations are significantly skewed during swallow-

ing patterns in intact Aplysia californica (skewness = 1.4, D’Agostino

test for skewness (D’Agostino et al. 1990):
√

b1 = 4.56, p < 0.001).

Shown is the kernel density estimator (see the caption to Figure 16 for

a description of the algorithm) of the total duration of B6/B9 and B3

activity from 84 swallowing patterns in 6 animals

from our lab and others has shown, there are many degrees

of biomechanical freedom beyond protraction and retrac-

tion that influence the efficacy of feeding (Sutton et al.

2004a, b; Novakovic et al. 2006), the muscles involved

have many properties which we do not include in our

model (Yu et al. 1999; Zajac 1989), and the mechanics of

seaweed are much more complex than we have represented

in the model (Denny and Gaylord 2002; Harder et al. 2006).

Similarly, the dynamics of proprioception are much more

complex than the linear model we have used (Evans and

Cropper 1998), and there are more than three pools of neu-

rons involved in feeding behavior (Hurwitz et al. 1997),

with dynamics that are much more complex than the firing

rate model we have used (Susswein et al. 2002). In addi-

tion, neuromodulation and learning may alter the dynamics

of the network slowly over time (Nargeot and Simmers

2012; Susswein and Chiel 2012). Thus we expect at best a

qualitative match to the in vivo behavior, and cannot com-

pare the results against other models as rigorously as could

be done with a model capable of quantitative predictions.

A nominal model may also have advantages. As com-

plexity is added to a model, it can become more difficult

to interpret the mechanics and, as a result, less clear what

details of the dynamics are responsible for an observed

aspect of the behavior. In addition, as the parameter space

grows, it becomes less obvious how dependent the results

are on the particular choice of parameters (Foster et al.

1993). Thus the nominal model we have used makes it clear

that passage near a saddle point results in enhanced sensitiv-

ity to sensory perturbations, and the role of the parameters in

creating these dynamics can be easily understood in an intu-

itive manner. In addition, the dynamics we have included
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in the model, (e.g. mutually inhibitory neural pools, slow

antagonistic muscles, and a slow muscle transfer function)

are common to many other systems. Thus the qualitative

behavior of the model can be more readily generalized to a

variety of other systems, which would be more difficult with

a highly detailed model.

It is possible that some omitted details are critical

for representing the behavior of the actual system. For

example, intense bursting in the neural pools involves oscil-

lations in fast variables such as membrane potential and

some gating variables. In our model these bursts are rep-

resented in terms of passage near a saddle, where the state

variables are changing slowly. Many neuronal systems,

however, can be decomposed into fast and slow subsystems

(Butera et al. 1996; Krupa et al. 2008; Sherwood and

Guckenheimer 2010), and slow passages near saddles may

occur in the dynamics of the slow state variables, as

described by Nowotny and Rabinovich (2007). Ideally, one

would want to create a more detailed model of feeding

in Aplysia and then use a principled reduction to find the

slower dynamics. The work done in this paper may be

useful for guiding such a reduction.

One should also note that certain features of the exper-

imental data that are well fit by our model based on a

stable heteroclinic channel architecture may also be com-

patible with other dynamical architectures. For example, the

skewed distribution of burst durations seen in the hetero-

clinic regime (Fig. 16) could also be produced by a system

in which transitions between a series of stable equilibria

are induced by noise. Indeed, attractor networks have been

used as models for motor pattern generation (Cruse et al.

1998), and it may be possible to model Aplysia feeding

using such a system. Further work would need to be done to

characterize the respective roles of proprioceptive feedback

and endogenous excitation in such systems and to com-

pare them with experimental data. However, the goal of the

present work is not to rule out all other possible dynami-

cal architectures consistent with experimental observations.

Rather, our emphasis is on proposing the heteroclinic chan-

nel architecture as an empirically motivated alternative to

the traditional limit cycle formulation of central pattern

generators.

6.2 Larger implications for pattern generators

6.2.1 Biological aspects

Many previous authors have noted the difference between

patterns seen in vitro and those seen in vivo, but the field

has not yet reached a consensus about the source of these

differences. In this paper, we propose that passage of trajec-

tories near a fixed point provides a model that can explain

some of the distortions in timing seen in vitro. Furthermore,

this dynamical structure may help a pattern generator bet-

ter use sensory input to adapt to a changing environment,

and thus this structure may be selected for by evolutionary

pressures. Although stable heteroclinic cycles are not struc-

turally stable and thus are unlikely to be seen in a biological

context, stable heteroclinic channels are structurally stable

and robust to parameter variations and noise (Afraimovich

et al. 2004b), and thus they are plausible dynamics for a

biological system. The passage near fixed points as a way

of controlling timing has been seen in other models, for

example (Spardy et al. 2011c).

Many other pattern generators that have been previously

identified may lie between the two extremes on this con-

tinuum between ideal central pattern generators and chain

reflexes. Slower patterns in the absence of innervation have

been seen in lamprey swimming (Wallèn and Williams

1984), crayfish walking (Chrachri and Clarac 1990), and

locust flight (Pearson et al. 1983).

These models of pattern generation may also be rele-

vant in clinical contexts. In mammals, fictive respiration can

be observed in the isolated central nervous system and is

hypothesized to arise from the interaction of two pattern

generators in the medulla – an inspiratory pattern generator

in the pre-Bötzinger complex and an expiratory pattern gen-

erator in the retrotrapezoidal-parafacial area (Tomori et al.

2010). It has been known for some time, however, that

vagotomy (cutting the vagus nerve, which contains sensory

afferents involved in respiration) causes a dramatic slowing,

but not cessation, of respiration. Qualitatively, this behavior

is much closer to what we have shown in the stable hete-

roclinic channel model, and not that of an idealized limit

cycle. This would suggest that small perturbations may be

enough to cause the changes seen in central sleep apnea and

possibly sudden infant death syndrome, but also suggests

that the system may remain quite sensitive to certain pertur-

bations even in the pathological state. In the case of central

sleep apnea, good models of the dynamics and sensitivity to

sensory input might allow for new treatment modalities such

as transcranial direct current stimulation during episodes of

apnea or hypopnea.

6.2.2 Mathematical implications

Many of the behaviors we have observed in the stable

heteroclinic channel regime may depend primarily on local-

ized regions of the dynamics where the intrinsic dynam-

ics, f (a, μ), are smaller than the proprioceptive feedback,

ǫg(a, x). When the intrinsic excitability μ is sufficiently

strong that f (a, μ) > |ǫg(a, x)| for all values of a and x, the

sensory input will have little effect on the temporal dynam-

ics of the neural system. In this second regime, the neural

dynamics are largely insensitive to changes in mechanical

load or perturbations.
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Although we have used a stable heteroclinic channel in

our model to create localized regions of slowing, several

related dynamical architectures may produce similar effects.

For example, in a saddle-node bifurcation on an invariant

cycle, the flow around a limit cycle slows near a point as

one approaches the bifurcation. This slowing may create

qualitatively similar behavior.5 Other examples may include

relaxation oscillators where some parts of the trajectory are

much slower than others, e.g. a Van der Pol oscillator (van

der Pol 1926), which can create similar regions of sensitiv-

ity (Bässler 1986) that may be relevant for motor pattern

generation (Rowat and Selverston 1993; Nadim et al. 2011).

Half-center oscillator systems can also exhibit localized

slowing, which can affect the response of pattern generators

to sensory input (Zhang and Lewis 2013; Daun et al. 2009;

Daun-Gruhn 2011; Skinner et al. 1994).

Localized regions of slowing may not always be apparent

in a model as it is written. For example, many dynami-

cal models, such as bursting cells, may not have localized

regions of slowing in the form that they are written, but can

be decomposed using fast-slow analysis into state variables

that change on different time scales. In these systems, sad-

dle points may exist in the slower state variables that were

not apparent in the complete system.

The Equilibrium Point Hypothesis (EPH) states that

motor trajectories could be understood as the result of a con-

trol process that sets up one or a sequence of biomechanical

equilibrium points (Feldman 1966). Typically, the control is

set by an unspecified central mechanism that may take into

account high-level sensory (visual, auditory) or goal-related

information. Our framework is consistent with the EPH.

When the system (1–2) has ǫ set to zero, the autonomous

central dynamics has a fixed point atg for which the target

configuration, xtg, is a fixed point of the biomechanics, i.e.

h(atg, xtg) = 0, with a suitable adjustment in the case of a

nonzero load. The incorporation of sensory feedback from

the motor apparatus in the EPH is implicit in the setting of

the neural equilibrium point.

Recent investigations have explored both experimental

and theoretical approaches to understanding how oscilla-

tory pattern generators incorporate sensory feedback. Daun-

Gruhn and Büschges emphasize these issues in modeling

approaches to understanding control of stepping motions in

insects. As they point out, successful walking on irregular

5The similarity actually goes deeper than this; if one adds a new state

variable representing the bifurcation parameter μ and sets dμ/dt = 0,

the limit cycle in the augmented system now passes near a degenerate

saddle at μ = 0.

terrain requires coordinated activation of multiple muscle

groups within each limb, as well as coordination between

limbs. In the stick insect system, it has been shown that

sensory feedback carries information both about joint posi-

tion and about external loads, and that this feedback impacts

both the timing and intensity of motor neuron activation

(Büschges and Gruhn 2007; Daun-Gruhn and Büschges

2011). Furthermore, Daun-Gruhn and colleagues discuss

how changing a single parameter representing endogenous

excitation can cause a half-center oscillator system to tran-

sition from a stable limit cycle regime to a regime in which

initiation of each phase of the oscillation is contingent on a

transient sensory input signal, analogous to a discontinuous

bistable chain reflex model (Daun et al. 2009; Daun-Gruhn

2011). In addition, Paoletti and Mahadevan have recently

proposed a model for the coordination of peristaltic contrac-

tions underlying crawling motility in soft bodied organisms.

In their model, coordination of central neural activation

between adjacent body segments is mediated not by synap-

tic connections, but by mechanical interactions affecting

the neural elements via sensory feedback through stretch

receptors (Paoletti and Mahadevan 2014).

Understanding how sensitivity to perturbations differs in

the heteroclinic and limit cycle regimes may also prove

useful as a diagnostic tool for probing the intrinsic dynam-

ics of the pattern generating circuit. It has been shown in

other cases that phase response curves can provide useful

insights into the underlying dynamics of oscillatory pat-

tern generators. For example, Zhang and Lewis (2013) have

shown that the phase response curves of half-center oscil-

lator (HCO) circuits can be used to determine whether

progression through the cycle is governed by an “escape”

or a “release” type mechanism (Wang and Rinzel 1992).

They found that in the escape-dominated regime, the system

was sensitive to perturbations to the inactive cell as it was

becoming active, whereas in the release-dominated regime

the opposite was true. Furthermore, they demonstrated that

the sensitivity of their system to external inputs resulted

from the presence of fixed points near the limit cycle in

phase space, which is analogous to what we have observed

in our heteroclinic channel model. It remains to be seen

whether the oscillations in our model are governed primarily

by release or escape and how this depends upon the balance

of endogenous excitation and proprioceptive feedback. It

may also be useful to compare the phase response curves of

the uncoupled neural system to those obtained when propri-

oceptive feedback is present. As we have shown elsewhere,

one can analyze the infinitesimal phase response curve for

an uncoupled heteroclinic channel model (Shaw et al. 2012).
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Appendix A Mathematical framework

Here we present the full model equations for the reader’s

convenience, and spell out how our model fits within the

general framework presented in Section 2. In this frame-

work, the coupled neuromechanical system is written in the

form:

da

dt
= f (a, μ) + ǫg(a, x), (27)

dx

dt
= h(a, x) + ζ l(x). (28)

In the specific example studied here, the vector a of neu-

ral variables consists of a0, a1, and a2. The full equations

for the neural state variables ai (noiseless case) are:

da0

dt
=

1

τa
(a0(1 − a0 − γ a1) + μ) + ǫ(xr − S0)σ0, (29)

da1

dt
= 1

τa

(a1(1 − a1 − γ a2) + μ) + ǫ(xr − S1)σ1, (30)

da2

dt
= 1

τa
(a2(1 − a2 − γ a0) + μ) + ǫ(xr − S2)σ2. (31)

These equations apply when ai ∈ (0, 1). At the bound-

aries, strict rectifying boundary conditions are imposed

which prevent ai from being greater than 1 or less than

0. Specifically, when a neural variable is at 0, any further

inhibitory input has no effect. Similarly, when a variable is

at 1, any additional excitatory input has no effect. In the

stochastic form of the equations each equation is amended

to include a ηdWi term.

Relating Eqs. (29–31) to Eq. (27) is straightforward. Here

fi(a, μ) =
1

τa
(ai(1 − ai − γ ai+1) + μ), (32)

and

ǫgi(a, x) = ǫ(xr − Si)σi . (33)

The vector of mechanical state variables x consists of u0,

u1, xr and a binary variable ψ which takes the value of 0 or

1 depending on whether the grasper is open or closed. The

equations for the muscle activation variables ui are:

du0

dt
= 1

τm
((a0 + a1)umax − u0), (34)

du1

dt
= 1

τm
(a2umax − u1). (35)

Note that u0 activates the I2 muscle (protraction) and

u1 activates the I3 muscle (retraction). The grasper can be

either open or closed. When a1 + a2 > 0.5, it is closed

(ψ = 0), otherwise it is open (ψ = 1).

The position of the grasper (xr) is governed by the

equation

dxr

dt
= Fmusc

br
(36)

when the grasper is open, and

dxr

dt
= Fmusc + Fsw

br + bsw
(37)

when it is closed.This can be written in terms of a single

equation as

dxr

dt
= Fmusc

br + ψbsw
+ ψ

Fsw

br + bsw
. (38)

The grasper position is also subject to the rectifying

boundary conditions that prevent it from going above 1 or

below 0.

The muscle force Fmusc is the sum of the I2 and I3

muscles, given by

Fmusc =
∑

i

kiφ

(

xr − ci

wi

)

ui (39)

where φ(x) = −κx(x − 1)(x + 1) is the length-tension

curve of the muscles (with κ = 3
√

3/2), and i = 0, 1

denote the I2 and I3 muscles, respectively. Here xr ∈ [0, 1]
is the position of the grasper, ki is a parameter representing

the strength and direction of each muscle, ci the position of

the grasper where the ith muscle is at its minimum effec-

tive length, and wi the difference between the maximum

and minimum effective lengths for the ith muscle. The sign

of ki determines the direction of force of the muscle; when

ki is negative (as it is for I2) the muscle will shorten as it

move the grasper forward toward the anterior portion of the

jaws (protraction), and when it is positive (as it is for I3)

it will shorten as it moves the grasper backward toward the

posterior portion of the jaws (retraction).

Relating Eqs. (34–39) to Eq. (28), one can see that h(a, x)

includes the equations governing the ui variables, the switch

determining the open/closed state of the grasper, as well

as the equation governing xr. The term ζ l(x) refers to the

applied load, which is ψFsw/(br + bsw).
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Appendix B Derivation of simplified biomechanics

The seaweed and grasper are assigned viscous damping con-

stants bsw and br, respectively; thus the full equations of

motion are

dxr

dt
= vr, (40)

dxsw

dt
= 0, (41)

dvr

dt
=

Fmusc − brvr

mr
, (42)

dvsw

dt
= 0 (43)

when the grasper is open, and

dxr

dt
= dxsw

dt
= vr, (44)

dvr

dt
= Fmusc + Fsw − (br + bsw)vr

mr + msw
, (45)

vsw = vr (46)

when the grasper is closed. Note that that we are assuming

that the momentum of the seaweed is negligible and that the

seaweed is stationary when the grasper is open.

Table 1 Model parameters

Parameter Value Description

γ 2.4 inhibition strength from next pool

ǫ 0.002 sensory feedback strength

κ 3
√

3/2 length-tension curve normalization constant

μ 10−9 neural pool intrinsic excitation

τa 0.05 neural pool time constant

τm 2.45 muscle activation time constant

br 0.1 grasper damping constant

bsw 0.3 seaweed damping constant

c0 1.0 position of shortest length for I2

c1 1.1 position of center of I3

Fsw 0.01 force on the seaweed resisting ingestion

k0 −1 I2 muscle strength and direction

k1 1 I3 muscle strength and direction

σ0 −1 sign of proproceptive input to a0 neural pool

σ1 1 sign of proproceptive input to a1 neural pool

σ2 1 sign of proproceptive input to a2 neural pool

S0 0.5 proprioceptive neutral position for protraction

open neural pool

S1 0.5 proprioceptive neutral position for protraction

closing neural pool

S2 0.25 proprioceptive neutral position for retraction

closed neural pool

umax 1.0 maximum muscle activation

w0 2 maximal effective length of I2

w1 1.1 maximal effective length of I3

Table 2 State variables

State Initial Description

variable value

a0 1 − 10−9 activity of protraction open neural pool

(non-negative)

a1 10−9 activity of protraction closing neural pool

(non-negative)

a2 10−9 activity of retraction closed neural pool

(non-negative)

u0 0 activity of I2 muscle

u1 0 activity of I3 muscle

xr 0.5 grasper position (0 is retracted, 1 is

protracted)

xsw 0 seaweed position (positive is away

from the animal)

Under the assumption that the system is critically

damped, we can then use the following reduced system:

dxr

dt
= Fmusc

br

, (47)

dxsw

dt
= 0 (48)

when the grasper is open, and

dxsw

dt
=

dxr

dt
=

Fmusc + Fsw

br + bsw
(49)

when the grasper is closed.

Appendix C Parameters and state variables

The meaning and default values of all the parameters (for

the heteroclinic regime) are given in the following table:

In the limit cycle regime, the neural time constant is

rescaled by replacing the neural time constant τa with the

following activity-dependent time scaling function:

τa(a) = (1 + α · a)β (50)

where β is a uniform adjustment in the speed of the trajec-

tories (analogous to the previous constant), and α is a vector

parameter representing an activity-dependent scaling of the

Table 3 Parameters used for the limit cycle simulations

Parameter Value Description

β 0.2262 neural pool global time constant

μ 10−3 neural pool intrinsic excitation

α0 0.59 neural pool local time scaling near

protraction open

α1 −0.975 neural pool local time scaling near

protraction closing

α2 0.32 neural pool local time scaling near

retraction closed

umax 1.6 maximum muscle activation
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speed. μ and umax are also altered. The values used in the

limit cycle regime are given in Table 3.
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der wirbellosen thiere. Leipzig, J.A. Barth, http://archive.org/

details/einleitungindiev00loeb.

Lu, H., McManus, J.M., Chiel, H.J. (2013). Extracellularly iden-

tifying motor neurons for a muscle motor pool in Aplysia

californica. Journal of Visualized Experiments, (73),

doi:10.3791/50189.

Makarenkov, O., & Lamb, J.S. (2012). Dynamics and bifurcations of

nonsmooth systems: A survey. Physica D: Nonlinear Phenomena,

241(22), 1826–1844.

Marder, E., & Bucher, D. (2001). Central pattern generators and the

control of rhythmic movements. Current Biology, 11(23), R986–

R996. doi:10.1016/S0960-9822(01)00581-4.
Matsumoto, M., & Nishimura, T. (1998). Mersenne twister: A 623-

dimensionally equidistributed uniform pseudo-random number

generator. ACM Transactions Model Computation and Simulation,

8(1), 3–30. doi:10.1145/272991.272995.
McManus, J.M., Lu, H., Chiel, H.J. (2012). An in vitro preparation

for eliciting and recording feeding motor programs with physio-

logical movements in Aplysia californica. Journal of Visualized

Experiments, (70), doi:10.3791/4320.
McManus, J.M., Lu, H., Cullins, M.J., Chiel, H.J. (2014). Differen-

tial activation of an identified motor neuron and neuromodulation

provide Aplysia’s retractor muscle an additional function. Journal

of Neurophysiology. In press.
Morton, D.W., & Chiel, H.J. (1993). The timing of activity in motor

neurons that produce radula movements distinguishes ingestion

from rejection in Aplysia. Journal of Comparative Physiology

A: Neuroethology, Sensory Neural, and Behavioral Physiology,

173(5), 519–536. doi:10.1007/BF00197761.

Nadim, F., Zhao, S., Zhou, L., Bose, A. (2011). Inhibitory feedback

promotes stability in an oscillatory network. Journal of neural

engineering, 8(6), 065,001.

Nargeot, R., & Simmers, J. (2012). Functional organization and

adaptability of a decision-making network in Aplysia. Frontiers in

Neuroscience, 6. doi:10.3389/fnins.2012.00113. http://www.ncbi.

nlm.nih.gov/pmc/articles/PMC3405415/.

Neustadter, D.M., Drushel, R.F., Chiel, H.J. (2002). Kinematics of

the buccal mass during swallowing based on magnetic reso-

nance imaging in intact, behaving Aplysia californica. Journal of

Experimental Biology, 205(7), 939–958. http://jeb.biologists.org/

cgi/content/abstract/205/7/939.

Neustadter, D.M., Herman, R.L., Drushel, R.F., Chestek, D.W., Chiel,

H.J. (2007). The kinematics of multifunctionality: Comparisons

of biting and swallowing in Aplysia californica. Journal of Exper-

imental Biology, 210(2), 238–260. doi:10.1242/jeb.02654. http://

jeb.biologists.org/cgi/content/abstract/210/2/238.

Novak, B., Csikasz-Nagy, A., Gyorffy, B., Nasmyth, K., Tyson,

J.J. (1998). Model scenarios for evolution of the eukaryotic

cell cycle. Philosophical Transactions of the Royal Society

of London Series B: Biological Sciences, 353(1378), 2063–2076.

doi:10.1098/rstb.1998.0352. http://rstb.royalsocietypublishing.

org/content/353/1378/2063.

Novakovic, V.A., Sutton, G.P., Neustadter, D.M., Beer, R.D., Chiel,

H.J. (2006). Mechanical reconfiguration mediates swallowing and

rejection in Aplysia californica. Journal of Comparative Physiol-

ogy A: Neuroethology, Sensory Neural, and Behavioral Physiol-

ogy, 192(8), 857–870. doi:10.1007/s00359-006-0124-7.

Nowotny, T., & Rabinovich, M.I. (2007). Dynamical origin of inde-

pendent spiking and bursting activity in neural microcircuits.

Physical Review Letters, 98(12), 128,106–4. doi:10.1103/Phys-

RevLett.98.128106. http://link.aps.org/abstract/PRL/v98/

e128106.

Paoletti, P., & Mahadevan, L. (2014). A proprioceptive neuromechan-

ical theory of crawling. Journal of the Royal Society Interface. In

press.

Pearson, K.G., Reye, D.N., Robertson, R.M. (1983). Phase-

dependent influences of wing stretch receptors on flight

rhythm in the locust. Journal of Neurophysiology, 49(5), 1168–

1181. http://post.queensu.ca/locust/Publications/pearson%20reye

%20robertson%201983%20jnp.pdf.

van der Pol, B. (1926). On “relaxation-oscillations”. Philosophi-

cal Magazine Series 7, 2(11), 978–992. doi: 10.1080/147864426

08564127.

http://dx.doi.org/10.3732/ajb.93.10.1426
http://dx.doi.org/10.1007/BF00605523
http://jn.physiology.org/content/78/3/1305.abstract
http://jn.physiology.org/content/78/3/1305.abstract
http://dx.doi.org/10.1016/j.neunet.2008.03.014
http://dx.doi.org/10.1063/1.2779859
http://chaos.aip.org/resource/1/chaoeh/v18/i1/p015106_s1
http://chaos.aip.org/resource/1/chaoeh/v18/i1/p015106_s1
http://dx.doi.org/10.1152/jn.00753.2003
http://jn.physiology.org/cgi/content/abstract/91/1/336
http://jn.physiology.org/cgi/content/abstract/91/1/336
http://archive.org/details/einleitungindiev00loeb
http://archive.org/details/einleitungindiev00loeb
http://dx.doi.org/10.3791/50189
http://dx.doi.org/10.1016/S0960-9822(01)00581-4
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.3791/4320
http://dx.doi.org/10.1007/BF00197761
http://dx.doi.org/10.3389/fnins.2012.00113
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405415/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3405415/
http://jeb.biologists.org/cgi/content/abstract/205/7/939
http://jeb.biologists.org/cgi/content/abstract/205/7/939
http://dx.doi.org/10.1242/jeb.02654
http://jeb.biologists.org/cgi/content/abstract/210/2/238
http://jeb.biologists.org/cgi/content/abstract/210/2/238
http://dx.doi.org/10.1098/rstb.1998.0352
http://rstb.royalsocietypublishing.org/content/353/1378/2063
http://rstb.royalsocietypublishing.org/content/353/1378/2063
http://dx.doi.org/10.1007/s00359-006-0124-7
http://dx.doi.org/10.1103/PhysRevLett.98.128106
http://link.aps.org/abstract/PRL/v98/e128106
http://link.aps.org/abstract/PRL/v98/e128106
http://post.queensu.ca/locust/Publications/pearson%20reye%20robertson%201983%20jnp.pdf
http://post.queensu.ca/locust/Publications/pearson%20reye%20robertson%201983%20jnp.pdf
http://www.tandfonline.com/doi/abs/10.1080/1478644260856412710.1080/14786442608564127
http://www.tandfonline.com/doi/abs/10.1080/1478644260856412710.1080/14786442608564127


J Comput Neurosci

Rabinovich, M.I., Huerta, R., Varona, P., Afraimovich, V.S. (2008).

Transient cognitive dynamics, metastability, and decision mak-

ing. PLoS Computational Biology, 4(5), e1000,072. doi: 10.1371/

journal.pcbi.1000072.

Reyn, J.W. (1980). Generation of limit cycles from separatrix polygons

in the phase plane. In: R. Martini (Ed.), Geometrical approaches

to differential equations, no. 810 in lecture notes in mathematics,

(pp. 264–289). Berlin Heidelberg: Springer. http://link.springer.

com/chapter/10.1007/BFb0089983.

Rowat, P.F., & Selverston, A. (1993). Modeling the gastric mill

central pattern generator of the lobster with a relaxation-oscillator

network. Journal of Neurophysiology, 70(3).

Sacco, P., McIntyre, D.B., Jones, D.A. (1994). Effects of length and

stimulation frequency on fatigue of the human tibialis anterior

muscle. Journal of Applied Physiology, 77(3), 1148–1154. http://

jap.physiology.org/content/77/3/1148.

Schiff, S.J. (2012). Neural control engineering: The emerging inter-

section between control theory and neuroscience. Cambridge:

MIT Press. http://search.ebscohost.com/login.aspx?direct=true&

scope=site&db=nlebk&db=nlabk&AN=512645.

Selverston, A.I. (1985). Model neural networks and behavior. New

York: Plenum Press.

Shaw, K.M., Park, Y.M., Chiel, H.J., Thomas, P.J. (2012). Phase

resetting in an asymptotically phaseless system: On the phase

response of limit cycles verging on a heteroclinic orbit.

SIAM Journal on Applied Dynamical Systems, 11, 350–391.

doi:10.1137/110828976. http://link.aip.org/link/?SJA/11/350/1.

Sherrington, C.S. (1910). Flexion-reflex of the limb, crossed

extension-reflex, and reflex stepping and standing. The Journal of

Physiology, 40(1–2), 28–121. http://www.ncbi.nlm.nih.gov/pmc/

articles/PMC1533734/.

Sherwood, W.E., & Guckenheimer, J. (2010). Dissecting the phase

response of a model bursting neuron. SIAM Journal on Applied

Dynamical Systems, 9(3), 659–703. http://epubs.siam.org/doi/abs/

10.1137/090773519.

Shilnikov, L.P., Shilnikov, A.L., Turaev DV, Chua LO (2002). Meth-

ods of qualitative theory in nonlinear dynamics, Part II. World

Scientific.

Silverman, B.W. (1986). Density estimation for statistics and data

analysis (Vol. 26). CRC Press.

Skinner, F.K., Kopell, N., Marder, E. (1994). Mechanisms for oscil-

lation and frequency control in reciprocally inhibitory model

neural networks. Journal of Computational Neuroscience, 1(1–2),

69–87.

Spardy, L.E., Markin, S.N., Shevtsova, N.A., Prilutsky, B.I., Rybak,

I.A., Rubin, J.E. (2011a). A dynamical systems analysis of affer-

ent control in a neuromechanical model of locomotion. I. Rhythm

generation. Journal of Neural Engineering, 8(6), 065,003.

Spardy, L.E., Markin, S.N., Shevtsova, N.A., Prilutsky, B.I., Rybak,

I.A., Rubin, J.E. (2011b). A dynamical systems analysis of affer-

ent control in a neuromechanical model of locomotion. II. Phase

asymmetry. Journal of Neural Engineering, 8(6), 065,004.

Spardy, L.E., Markin, S.N., Shevtsova, N.A., Prilutsky, B.I., Rybak,

I.A., Rubin, J.E. (2011c). A dynamical systems analysis of

afferent control in a neuromechanical model of locomotion: II.

phase asymmetry. Journal of Neural Engineering, 8(6), 065,004.

doi:10.1088/1741-2560/8/6/065004.

Stone, E., & Holmes, P. (1990). Random perturbations of heteroclinic

attractors. SIAM Journal on Applied Mathematics, 50(3), 726–

743. doi:10.2307/2101884. http://www.jstor.org/stable/2101884.

Susswein, A.J., & Chiel, H.J. (2012). Nitric oxide as a regulator of

behavior: New ideas from Aplysia feeding. Progress in Neurobiol-

ogy, 97(3), 304–317. doi:10.1016/j.pneurobio.2012.03.004. http://

www.sciencedirect.com/science/article/pii/S0301008212000366.

Susswein, A.J., Hurwitz, I., Thorne, R., Byrne, J.H., Baxter, D.A.

(2002). Mechanisms underlying fictive feeding in Aplysia:

Coupling between a large neuron with plateau potentials

activity and a spiking neuron. Journal of Neurophysiology, 87(5),

2307–2323. http://jn.physiology.org/content/87/5/2307.long.

Sutton, G.P., Macknin, J.B., Gartman, S.S., Sunny, G.P., Beer, R.D.,

Crago, P.E., Neustadter, D.M., Chiel, H.J. (2004a). Passive hinge

forces in the feeding apparatus of Aplysia aid retraction during bit-

ing but not during swallowing. Journal of Comparative Physiology

A, 190(6), 501–514. doi:10.1007/s00359-004-0517-4.

Sutton, G.P., Mangan, E.V., Neustadter, D.M., Beer, R.D., Crago, P.E.,

Chiel, H.J. (2004b). Neural control exploits changing mechanical

advantage and context dependence to generate different feed-

ing responses in Aplysia. Biological Cybernetics, 91(5), 333–345.

doi:10.1007/s00422-004-0517-z.

Tomori, Z., Poliacek, I., Jakus, J., Widdicombe, J., Donic, V., Benacka,

R., Gresova, S. (2010). Distinct generators for aspiration and expi-

ration reflexes: Localization, mechanisms and effects. Journal of

Physiology and Pharmacology: An Official Journal of the Polish

Physiological Society, 61(1), 5–12.

Vandorpe, D.H., Small, D.L., Dabrowski, A.R., Morris, C.E. (1994).

FMRFamide and membrane stretch as activators of the Aplysia S-

channel. Biophysical Journal, 66(1), 46–58. http://www.ncbi.nlm.

nih.gov/pmc/articles/PMC1275662/.

Varona, P., Levi, R., Arshavsky, Y.I., Rabinovich, M.I., Selverston,

A.I. (2004). Competing sensory neurons and motor rhythm

coordination. Neurocomputing, 58–60, 549–554. doi

10.1016/j.neucom.2004.01.093. http://www.sciencedirect.com/sci

ence/article/B6V10-4BVP69M-M/2/c7aa0434cb0551bbe9ac6b17

07b52ba7.
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