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Tumor necrosis factor (TNF) is a pleiotropic cytokine that has both pro-inflammatory 
and anti-inflammatory functions. The biological functions of TNF are mediated by two 
receptors, TNF receptor type I (TNFR1) and TNF receptor type II (TNFR2). TNFR1 is 
expressed universally on almost all cell types and has been extensively studied, whereas 
TNFR2 is mainly restricted to immune cells and some tumor cells and its role is far from 
clarified. Studies have shown that TNFR2 mediates the stimulatory activity of TNF on 
CD4+Foxp3+ regulatory T  cells (Tregs) and CD8+Foxp3+ Tregs, and is involved in the 
phenotypic stability, proliferation, activation, and suppressive activity of Tregs. TNFR2 
can also be expressed on CD8+ effector T cells (Teffs), which delivers an activation signal 
and cytotoxic ability to CD8+ Teffs during the early immune response, as well as an 
apoptosis signal to terminate the immune response. TNFR2-induced abolition of TNF 
receptor-associated factor 2 (TRAF2) degradation may play an important role in these 
processes. Consequently, due to the distribution of TNFR2 and its pleiotropic effects, 
TNFR2 appears to be critical to keeping the balance between Tregs and Teffs, and may 
be an efficient therapeutic target for tumor and autoimmune diseases. In this review, 
we summarize the biological functions of TNFR2 expressed on CD8+Foxp3+ Tregs and 
CD8+ Teffs, and highlight how TNF uses TNFR2 to coordinate the complex events that 
ultimately lead to efficient CD8+ T cell-mediated immune responses.

Keywords: tumor necrosis factor, tumor necrosis factor receptor type ii, CD8+ regulatory T cells, CD8+ effector 
T cells, CD4+ regulatory T cells

inTRODUCTiOn

Tumor necrosis factor (TNF) is a pleiotropic cytokine involved in regulating diverse functions, 
including cell growth modulation, viral replication, septic shock, tumorigenesis, inflammation, and 
autoimmunity (1, 2). These functions hinge upon the binding of TNF to two distinct membrane 
receptors on target cells: TNF receptor (TNFR) 1and TNFR2. TNFR1 is expressed universally on 
almost all cell types, whereas TNFR2 is restricted to immune cells (2–6) and some tumor cells 
(7–13). Since TNFR1 and TNFR2 were identified (14), multiple studies have been carried out to 
characterize their structures and functions. While TNFR1 has been extensively characterized, the 
biological functions of TNFR2 have remained elusive (15). There is mounting evidence to suggest 
that TNFR2 is expressed on and has critical roles in immune cells, including CD4+ regulatory 
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FiGURe 1 | Tumor necrosis factor (TNF) receptor type II (TNFR2) acts as a suppressive marker for CD8+ regulatory T (Tregs) cells. The TNF/TNFR2 interaction,  
as well as TNFR2 and CD28 agonists, could promote the induction of Foxp3 in the presence of anti-CD3. Additionally, the TNF/TNFR2 interaction could also 
upregulate CD25 and PD-L1, the negative molecules on the surface of CD8+ Tregs, to mediate a contact-dependent inhibition to CD4+ and CD8+ effector T cells, 
cooperation with other negative molecules on the surface of CD8+ Tregs, such as CTLA-4.
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T cells (Tregs) (16), CD4+ effector T cells (Teffs) (4), CD8+ Tregs 
(17), and CD8+ Teffs (18). This implies that TNFR2 is involved 
in various T cell-mediated immune responses. TNFR2 expressed 
on CD4+ T cells has been studied in depth with many studies 
indicating that TNFR2 mediates the stimulatory activity of TNF 
on CD4+ Treg cells, resulting in their phenotypic stability, prolif-
eration, and activation (3, 19–22). Furthermore, TNFR2 can be 
used to identify the maximally suppressive subset of CD4+ Tregs 
(20). However, studies on TNFR2 expression on CD8+ T  cells 
are relatively deficient. Several studies have identified TNFR2 
as a potent costimulatory molecule on CD8+ T cells required to 
sustain cell survival and protect from apoptosis, while TNFR2 
expressing CD8+Foxp3+ Tregs exhibited highly suppressive 
activity (17, 23, 24).

The restricted distribution of TNFR2 has identified it as a  
potential target for immunotherapy. Targeting TNFR2 for cancer 
immunotherapy has seen remarkable success. Treatment of 
OVVAR3, an ovarian cancer cell line with surface expression 
of TNFR2, with a TNFR2 antagonist induced significant tumor 
cell death. Furthermore, the TNFR2 antagonist preferentially 
suppressed the activity of tumor-associated CD4+ Treg cells, 
but had little inhibitory effects on peripheral CD4+ Treg cells or 
cells from healthy donors (25). This result indicates that patients 
treated with a TNFR2 antagonist can maintain immunological 

homeostasis and mitigate the collateral damage to healthy tis-
sues (20, 25). While the potential effects of TNFR2 antagonists 
on tumors have been documented, major questions remain 
unanswered, including how much the effects of therapeutically 
targeting TNFR2 in  vivo are directly related to modulating 
T  cell activity. Better knowledge of the fundamental biological 
processes, such as signaling pathway activation and the molecular 
mechanism underlying the T cell response to TNFR2 stimulation, 
especially in Treg cells, may help design safer and more effective 
targeted therapeutics. As TNFR2 expression on CD4+ T  cells 
has been documented in detail, in this review, we mainly sum-
marize and discuss the biological effects of TNFR2 expression on 
CD8+Foxp3+ Tregs and CD8+ Teffs.

TnFR2 eXPReSSeD On CD8+ Tregs

The suppressive effects of CD8+ Tregs on normal and pathologic 
immune responses are well described (Figure 1) (26–28). Previous 
study demonstrated that human CD8+CD25+ Tregs share 
many features with CD4+CD25+ Tregs in the thymus, such as 
phenotype, function, and mechanisms of action (23). Increasing 
evidence suggests that TNFR2 is a significant biomarker for 
highly potent suppressive Tregs, because TNFR2 promotes the 
activation, expansion, and survival of CD4+ Tregs by mediating 
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the effect of TNF (29). However, most studies on TNFR2 expres-
sion on Tregs have focused on the CD4+ Tregs population, rather 
than CD8+ Tregs. Current results suggest that TNFR2 might also 
be a critical suppressive maker of the functional CD8+Foxp3+ 
Tregs. However, CD8+ Tregs are not the CD8+ counterpart of 
CD4+ Tregs. There are multiple subsets of CD8+ Tregs reported 
in both humans and mice (30), such as CD8+CD122+ Tregs (31), 
CD8+CD28− Tregs (32, 33), and CD8+CD103+ Tregs (34, 35). 
Unfortunately, the published studies on TNFR2 expression on 
CD8+Tregs all focused on CD8+Foxp3+ Tregs. As a consequence, 
we can only summarize the biological effects of TNFR2 expressed 
on CD8+Foxp3+ Tregs.

TnFR2 is a Better Functional Treg Cell 
Marker Than CD25 for CD8+Foxp3+ Tregs
CD8+Foxp3+ Tregs can be generated in  vitro with anti-CD3 
antibodies (17, 36, 37) or anti-CD3/28 beads (24). These cells 
expressed CD25, Foxp3, TNFR2, and the negative co-stimulatory 
receptors CTLA-4, PD-1, PDL-1, and Tim-3 (24). When CD8+ 
T  cells were isolated from peripheral blood mononuclear cells 
(PBMCs) from healthy donors and cultured with anti-CD3 mAb 
for 5 days, the TNFR2+CD25+ cells were identified as the main 
subset that expressed Foxp3 (17). Similarly, human CD25 and 
TNFR2-coexpressing CD4+ Tregs were identified as a potent 
subpopulation of Tregs (22, 38–40). Interestingly, when these 
CD8+Tregs were sorted into four subsets, CD25+TNFR2+, 
CD25+TNFR2−, CD25−TNFR2+, and CD25−TNFR2−, to identify 
their respective ability to inhibit proliferation of target CD4+ Teffs, 
the results identified that both CD8+CD25+ and CD8+CD25− cells 
were more potent inhibitors of proliferation if they coexpressed 
TNFR2, suggesting that TNFR2 is a more important marker than 
CD25 on CD8+Foxp3+ Tregs (17). Additionally, in vitro-induced 
CD8+Foxp3+ Tregs expressed both TNFR2 and PDL-1. When 
sorting CD8+ T  cells into TNFR2+PDL-1+, TNFR2+PDL-1−, 
TNFR2−PDL-1+, or TNFR2−PDL-1−, it was observed that TNFR2- 
PDL-1 double positive cells exhibited much stronger suppressive 
activity than control sham sorted cells. TNFR2 or PDL-1 single 
positive cells had modest suppressive activity, while the double 
negative cells had none (24). Once more, these data emphasized 
that TNFR2 might be a characteristic expression marker for func-
tional CD8+Foxp3+ Tregs and the coexpression of TNFR2 and 
PDL-1 on CD8+Foxp3+ Tregs may represent cells with stronger 
suppressive activity.

TnF/TnFR2 interaction Delivers a  
Co-Stimulatory Signal to induce  
Foxp3 by CD8+Foxp3+ Tregs
It was shown that Foxp3 appears to function as a master regula-
tor of the regulatory pathway in the development and function 
of Tregs (41–43). Interestingly, the TNF/TNFR2 interaction 
on the surface of CD8+ T  cells could promote the induction 
of Foxp3 in the presence of anti-CD3/CD28 beads to generate 
more CD8+Foxp3+ Tregs. Previous studies have shown that when 
PBMCs from rheumatoid arthritis (RA) patients were cultured 
with anti-CD3 for 24  h, a greater percentage of CD8+Foxp3+ 
Tregs were generated and expressed high levels of CD25 and 

TNFR2 (44). However, when anti-TNF monoclonal antibodies 
(mAb) were added into the in vitro culture system, the percentage 
of Foxp3 expression on CD8+ Tregs decreased significantly (44). 
Furthermore, experimental results show that membrane TNF/
TNFR2 interactions, in combination with CD80/CD28 interac-
tions between monocytes and CD8+ T  cells from RA patients, 
could also promote the induction of CD8+Foxp3+ Tregs in vitro, 
while combined CD86 and TNF blockade completely ablated the 
process (44). These data all indicated that the effect mediated by 
TNFR2 expression on CD8+ T  cells played a prominent role for  
the generation of CD8+Foxp3+ Tregs in the presence of anti-CD3 
in vitro. However, a defined mechanism remains elusive and the 
corresponding process in vivo remains to be studied.

TnF/TnFR2 interactions Mediate the 
Suppressive Activity of CD8+Foxp3+ Tregs
Tumor necrosis factor was also found to be responsible for the 
induction of CD8+Foxp3+ Tregs, as anti-TNF monoclonal anti-
bodies (mAb) could dramatically abrogate the proliferation of 
CD8+Foxp3+ Tregs, prevent the upregulation of CD25 in response 
to anti-CD3 in vitro on CD8+ Tregs, and interfere with the sup-
pressive activity of CD8+Foxp3+ Tregs. Furthermore, TNFR2 
expression was upregulated significantly after CD8+Foxp3+ 
Tregs were stimulated with anti-CD3 mAb in vitro, whereas the 
TNFR1 level was relatively low (17), indicating that the effect of 
TNF was more potent via TNFR2 to mediate the downstream 
signal. Additionally, TNF could upregulate PDL-1 expression on 
CD8+Foxp3+ Tregs via TNFR2 and which was greatly decreased 
by blocking with soluble TNF receptors (TNFR2-Fc) (17). 
Therefore, upregulating PDL-1 expressing on CD8+ Tregs might 
be a specific mechanism for TNF/TNFR2 mediating CD8+ Treg 
suppressive activation (45). Compared with TNFR2 expressed 
on CD4+ Tregs, little is known about the significance of TNFR2 
on CD8+ Tregs. The available evidence indicates that TNFR2 
expression on CD8+Foxp3+ Tregs is beneficial for their function, 
and defects in their suppressive function occurred when TNFR2 
was neutralized. CD8+ Tregs have been shown to exhibit different 
phenotypes in different diseases, including viral infection (46), 
autoimmune diseases (47), graft-versus-host disease (GVHD) 
(48, 49), and cancer (44, 50). However, it is unclear whether 
TNFR2 can be used as a suppressive marker for all the reported 
CD8+ Treg subsets.

TnFR2 eXPReSSeD On CD8+ eFFeCTOR 
T CeLLS

Studies on TNFR2 expressed on CD8+ Teffs are relatively more 
sufficient than studies on TNFR2 expressed on CD8+ Tregs 
(Figure 2). Numerous reports have shown that CD8+ Teffs are 
critical players involved in various immune responses (51–53). 
Efficient induction of CD8+ Teffs requires coordinated signaling 
through a number of pathways, including T cell receptor (TCR) 
ligation with peptide in the context of major histocompat-
ibility complex class I (MHC I), costimulatory molecules, and 
cytokines(53). TNFR2, but not TNFR1, has been previously 
shown to be the predominant TNF receptor on activation CD8+ 
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FiGURe 2 | Tumor necrosis factor (TNF) receptor type II (TNFR2) modulates the process of immune response mediated by CD8+ effector T cells (Teffs). In the early 
phase of immune response, TNFR2 is a CD8+ Teff costimulatory molecule for IL-2, survivin, Bcl-2, and Bcl-xL induction to promote CD8+ Teffs survival, proliferation, 
and activation and involve in controlling the cell fate during TCR/CD28-mediated stimulation. TNFR2 is essential for the production of IFN-γ and TNF-α in CD8+ Teffs 
to promote antigen clearance. Additionally, TNFR2 is also required for CD8+ Teffs to upregulate Fas-L and granzyme B to enhance their cytotoxic activity. However, 
in the anaphase of immune response, TNFR2 can induce activated CD8+ T cells programmed cell death to terminate the immune response via the degradation of a 
pro-survival signal—TRAF2, which is required for the recruitment of cellular inhibitor of apoptosis proteins cIAP-1 and cIAP-2 to the TNFR2 signaling complex and 
activates nuclear factor-κB.
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Teffs (54, 55). Thus, the direct effects of TNF on CD8+ Teffs are 
mainly mediated through TNFR2 (54, 55). Typically, T-cell-
mediated immune responses can be divided into three parts: (1) 
antigen recognition; (2) proliferation and differentiation; and (3) 
activation-induced cell death (AICD). Once an activation signal 
has been received, primary CD8+ T cells undergo proliferation, 
expansion, and differentiation. It has been reported that TNFR2 
expression was involved in CD8+ Teffs activation in certain 
phases of an immune response. For instance, it has been found 
that TNFR2 not only lowered the threshold for T cell activation, 
but also provided early costimulatory signals during T cell acti-
vation (56–58). Additionally, TNFR2 also plays a critical role in 
regulating AICD in activated CD8+ Teffs (59).

TnFR2 as an Activator Molecule in the 
early Phase of immune Response
TNFR2 Is Required for Primary CD8+ T Cell Survival 
and Proliferation
CD28 is a key costimulatory molecule for IL-2 induction, based 
on its ability to substantially augment expression in T cells stimu-
lated via the TCR (60). However, the effects mediated by CD28 
were found to be insufficient to sustain long-term T cell survival 
(61). Nevertheless, TNFR2 plays a critical role in promoting 
activation and survival of naive T cells during a primary response 
(5, 62). CD8+ T  cells deficient in TNFR2 possessed a marked 
defect in IL-2 production, a critical T cell growth factor (63, 64), 
resulting in a decreased proliferative response (57), suggesting 

that TNFR2 is a CD8+ T cell costimulatory molecule involved in 
controlling the cell fate during TCR/CD28-mediated stimulation 
(57). Additionally, TNFR2 deficiency in CD8+ T cells increased 
the requirements for a TCR agonist, approximately fivefold to 
achieve a proliferative response equivalent to wild-type CD8+ 
T cells in several infection models (5, 56–58). Additionally, in a 
mouse tumor model, the proportion of proliferating transgenic 
tumor-specific CD8+ T  cells in TNFR2 deficient mice were 
significant reduced in tumor-draining lymph nodes (54). These 
data indicated that TNFR2 sustained the early proliferative phase 
during CD8+ T cell cells activation. Moreover, during CD8+ T cell 
activation in response to antigen in  vitro, TNFR2 deficiency 
was related to a reduction of anti-apoptotic molecules, such as 
survivin, Bcl-2, and Bcl-xL (57, 58), indicating the critical roles of 
TNFR2 in CD8+ T cell survival.

TNFR2 Is Required for the Secretion of Effector 
Molecules by CD8+ Teffs
One of the key effector functions of activated CD8+ T  cells is 
the ability to produce antiviral and pro-inflammatory cytokines, 
including interferon (IFN)-γ and TNF-α (65). Typically, cytokine 
production by antiviral CD8+ T  cells occurs in a hierarchical 
fashion, with the majority producing IFN-γ, and a subset of 
those producing TNF-α (66–68). During infection, such as 
respiratory influenza or C. muridarum infection, the production 
of IFN-γ was significantly decreased in TNFR2−/−CD8+ T  cell, 
with significantly delayed antigen clearance in TNFR2−/− mice 
(69, 70). These results suggest that TNFR2 primarily promotes 
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the activation of CD8+ T cells and enhances the ability of CD8+ 
T cells to clear antigen. When tumor-special CD8+ T cells, iso-
lated from TNFR2−/− mice, TNFR1−/−, or wild-type mice, were 
cultured with specific antigens in  vitro, IFN-γ levels produced 
by TNFR2−/−CD8+ T cells was less than TNFR1−/− or wild-type 
CD8+ T cells (54), indicating that TNFR2 was also necessary for 
the optimal production of IFN-γ to clear tumor antigens during 
the T cell activation phase.

Second, TNF-α is increased during CD8+ T cell activation fol-
lowing antigenic stimulation (71, 72). Similar to IFN-γ, TNF-α is 
critically required for efficient CD8+ T cell-mediated responses 
from initiation to pathogen clearance. However, TNF-α levels 
produced by CD8+ T cells were not always in line with INF-γ 
production. During colitis, CD8+ T cells from TNFR2−/− mice 
expressed significantly higher levels of TNF-α compared with 
wild-type mice, which was sufficient to worsen colonic inflam-
mation (73). Similarly, after intranasal challenge with HKx31 
influenza A virus, TNF-α production was also increased in 
TNFR2−/− mice, compared with wild-type mice (73). It is pos-
sible that the increased TNF-α in TNFR2 deficient mice may be 
due to a negative feedback loop in the TNF-TNFR2 signaling 
(5, 59, 62, 73).

TNFR2 Is Required for CD8+ T Memory Cells 
Recovery
After encountering with microbial antigen, T  cells can dif-
ferentiate into memory cells to provide long-lasting protection 
against subsequent pathogens (18, 74, 75). During transplanta-
tion, microbe-elicited T memory cells can also cross-react with 
allogeneic antigen and mediate graft rejection, a process termed 
allogeneic heterologous immunity. TCR affinity is hypothesized 
to be critically important in the context of allogeneic heterolo-
gous immunity (18, 76, 77). Notably, TNFR2 plays an important 
role for low-affinity-primed memory CD8+ T  cells mediating 
optimum recall responses. During heterologous rechallenge, 
low-affinity-primed memory effectors upregulated TNFR2 
surface expression to mediated graft rejection, whereas blockade 
of TNFR2 significantly attenuated graft rejection and prolonged 
graft survival (18). These data indicated that TNFR2 is required 
and critical for memory CD8+ T  cells recovery in immune 
responses.

TNFR2 Is Required for Cytotoxic T Lymphocyte  
(CTL) Activity
Granzyme B is a serine protease expressed by CTL and together 
with the pore forming protein, perforin, mediates apoptosis in 
target cells (78). Notably, TNFR2 engagement with TNF-α induces 
the expression of granzyme B in CD8+ T cells, when costimula-
tion with CD86 is provided simultaneously. TNFR2 was also 
shown to be upregulated on granzyme B+CD8+ T cells in aging 
mice and humans (79), indicating that the TNF/TNFR2 signaling 
pathway in CD8+ T cell could reinforce the cells’ cytotoxic activity 
to induce target cells apoptosis via the release of granzyme B.

A second way for CTL to induce apoptosis is via cell-surface 
Fas–Fas ligand (FasL) interactions between CTL and infected 
cells. FasL is expressed predominantly on activated lymphocytes 

and is able to induce programmed cell death in most Fas-
expressing cells (80, 81). The number of FasL-expressing CD8+  
intrahepatic lymphocytes isolated from various strains of hepatic 
adenovirus-infected TNFR2−/− mice were found to be signifi-
cantly reduced compared with wild-type mice (82). Furthermore, 
TNFR2−/− intrahepatic lymphocytes were significantly less effi-
cient in killing adenovirus-infected hepatocyte target cells than 
intrahepatic lymphocytes obtained from adenovirus-infected 
wild-type mice (82). These data provide evidence suggesting 
that TNFR2 can potentiate FasL-mediated cytotoxicity for 
CD8+ Teffs.

TnFR2 is as an Apoptosis Signal on 
Activated CD8+ Teffs
Tumor necrosis factor receptor type II is essential for both 
optimal proliferation during CD8+ T cell activation and for the 
induction of AICD that terminates the proliferative response (59). 
Previous study had shown that TNFR2−/−CD8+ T cells exhibited 
consistently high resistance to AICD, leading to worsen colonic 
inflammation (73), indicating that TNFR2 is a critical negative 
regulator of activated CD8+ T cells by promoting AICD to ter-
minate the immune response. Moreover, TNFR2 signaling was 
reported to lead to the degradation of TNF receptor-associated 
factor 2 (TRAF2) (83), which were important in the regulation 
of the receptor signaling (83–86). Notably, TRAF2 is known as 
a pro-survival signal (87), which is required for the recruitment 
of cellular inhibitor of apoptosis proteins (cIAP)-1 and -2 to 
the TNFR2 signaling complex (88) and activates nuclear factor 
(NF)-κB to mediate its anti-apoptotic effects (89–91). The over-
expression of TRAF2 in wild-type CD8+ T cells did not affect the 
percentage of apoptotic cells, whereas the silencing of TRAF2 in 
activated TNFR2−/−CD8+ T cells could render them as sensitive to 
AICD as activated wild-type CD8+ T cells (59). Collectively, these 
results provide evidence that the TNFR2 signaling pathway is 
involved in regulating AICD and that TRAF2 depletion induced 
by TNFR2 is critical to this process.

COnCLUSiOn

Tumor necrosis factor receptor type II is an attractive molecular 
marker to identify both CD8+Foxp3+ Tregs and CD8+ Teffs. 
For CD8+Foxp3+ Tregs, TNFR2 is necessary for the induction 
of Foxp3 and regarded as a functional marker of their sup-
pressive ability. For CD8+ Teffs, TNFR2 serves as an activator 
for proliferation and cytotoxic ability in the early stage of an 
immune response and as an apoptosis signal for activated CD8+ 
Teffs to terminate the immune response. Both CD8+Foxp3+ 
Tregs and CD8+ Teffs could express high levels of TNFR2 and 
were involved in various diseases. It is noteworthy that there 
is an antagonistic relationship between CD8+ Tregs and CD8+ 
Teffs. The TNF-TNFR2 signaling pathway potentially activates 
both of them, so targeting TNFR2 may impair the function 
of protective Tregs or Teffs as a side effect in the treatment of 
diseases (4). Furthermore, studies have shown that TNFR2 is a 
potential therapeutic target with remarkable success in cancer 
immunotherapy. A TNFR2 antagonists could specifically inhibit 
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CD4+Foxp3+ Tregs expansion in the tumor microenvironment, 
whereas it had little inhibitory effects on CD4+ Tregs in periph-
ery or from healthy donors, and killed human ovarian tumor 
cells directly. However, little is known about TNFR2 agonists 
or antagonists aimed at altering TNFR2 expression on tumor-
associated CD8+ Tregs and CD8+ Teffs. Further understanding 
of TNFR2 expression on CD8+ T  cells and the pathways that 
are active and important in different disease-related micro-
environments will provide better understanding of its impacts 
on TNF-mediated pathology, and may help in the development 
of more effective targeted therapeutics.

Furthermore, recent evidence indicated that the relation-
ship between TNF/TNFR2 and T  cell responses is complex 
and, at times, paradoxical. There is controversy to the specific 
effects of TNF on different T cell subsets (92). The explanation 

for such contradictory outcomes may lay in how downstream 
signaling pathways are activated and drive disease (92). 
Consequently, a precise understanding of the level and/or ratio 
of TNFR2 expressed on different T cell subsets will help in the 
use of TNFR2 agonists or antagonists as therapies.
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