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Abstract. In this paper, we study the signless Laplacian spectral radius of bicyclic graphs

with given number of pendant vertices and characterize the extremal graphs.

1. Introduction

Let G = (V,E) be a simple connected graph with vertex set V = {v1, v2, · · · , vn}
and edge set E. The order of a graph is the cardinality of its vertex set. The matrix
Q(G) = D(G) + A(G) is called the signless Laplacian matrix of graph G, where
D(G) = diag(du, u ∈ V ) is the diagonal matrix of vertex degrees of G and A(G) is
the adjacency matrix of G. It is known that Q(G) is a positive semi-definite matrix,
we call this matrix the Q-matrix and its largest eigenvalue is denoted by µ(G) or
µ for simplicity. For the background on the Laplacian eigenvalues of a graph, the
reader is referred to [20] and the references therein.

It is well known that the matrix L(G) = D(G)− A(G) is called the Laplacian
matrix, and λ(G) ≤ µ(G) (see, for example, [14]), the equality holds if and only if
G is bipartite.

A bicyclic graph is a connected graph with vertex number equal to edge number
minus one. A pendant path in a connected graph is a path attached to a connected
graph. For S ⊂ V , G[S] denotes the subgraph induced by S. For u ∈ V , du is the
degree of u, N(u) is the neighbor set of u.

Denote by Cn and Pn the cycle and the path on n vertices, respectively. We
will use Bn(k) to denote the set of bicyclic graphs on n vertices with k pendant
vertices. Let Cp and Cq be two vertex disjoint cycles. Suppose that v1 is a vertex
of Cp and vt is a vertex of Cq. Joining v1 and vt by a path v1v2 · · · vt of length t−1,
where t ≥ 1 and t = 1 means identifying v1 with vt, the resulting graph, denoted by
B(p, t, q). The set of bicyclic graphs obtained from B(p, t, q) by attaching trees is
denoted by B+

n (k). Let Pt+1, Pp+1 and Pq+1 be three vertex-disjoint paths, where
t, p, q ≥ 1 and at most one of them is 1. Identifying the three initial vertices and
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terminal vertices of them, respectively, the resulting graph is denoted by P (t, p, q).
The set of bicyclic graphs obtained from P (t, p, q) by attaching trees is denoted by
B++

n (k). Obviously, Bn(k) = B+
n (k)∪B++

n (k). For other notations in graph theory,
we follow [1].

The Laplacian spectral radius of unicyclic graphs is well studied. In [17], the up-
per and lower bounds for Laplacian spectral radius of unicyclic graphs were studied.
In [13], the author characterized the maximum Laplacian spectral radius of unicyclic
graphs with fixed girth. In [18], the Laplacian spectral radius of bicyclic graphs were
studied. In [16], the spectral radius of bicyclic graphs with given number of pendant
vertices were studied. The study of the signless Laplacian spectral radius attracts
researchers attention just recently. In [7], Fan et.al. studied the signless Laplacian
spectral radius of bicyclic graph with fixed order. In [6], the authors discussed the
smallest eigenvalue of Q(G) as a parameter reflecting the nonbipartiteness of the
graph G. Some other use of the signless Laplacian can be found in [12], [3]. For a
survey paper of this new direction, see [5].

In this paper, we study the Laplacian spectral radius of bicyclic graphs with
given pendant vertices. We also characterize the extremal graphs.

2. Some lemmas

Lemma 2.1([19]). Let G be a connected graph and u, v be two vertices of G.
Suppose v1, v2, · · · , vs ∈ N(v) \ (N(u) ∪ {u}) (1 ≤ s ≤ dv), and G∗ is the graph
obtained from G by deleting the edges vvi and adding the edges uvi (1 ≤ i ≤ s). Let
X = (x1, x2, · · · , xn)t be the principal eigenvector of Q(G), where xi corresponds to
vi (1 ≤ i ≤ n). If xu ≥ xv, then µ(G) < µ(G∗).

We generalize Lemma 2.1 next.

Lemma 2.2. Let G be a connected graph of order n and S, T be its two disjoint
nonempty vertex subset. Suppose S = {v1, v2, · · · , vs} and the neighbors of vi in
T are vi1, vi2, · · · , vili (li ≥ 1, i = 1, 2, · · · , s). Let X = (xv1 , xv2 , · · · , xvn

)t be the
Perron vector of Q(G), where xvk

corresponds to the vertex vk (1 ≤ k ≤ n). Suppose
xv1 = max{xvi

: i = 1, 2, · · · , s}. Let H be the graph obtained from G by deleting
edges vivij and adding the edges v1vij (i = 2, 3, · · · , s; j = 1, 2, · · · , li). Then we
have µ(G) < µ(H).

Proof. The proof is similar to that in [11], we present it here for completeness.
Obviously,

Xt(Q(H)−Q(G))X = Xt(D(H) + A(H)−D(G)−A(G))X

=
s∑

i=2

li∑
j=1

(
(xv1 + xvij

)2 − (xvi
+ xvij

)2
)
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=
s∑

i=2

li∑
j=1

(
(x2

v1
− x2

vi
) + 2xvij

(xv1 − xvi
)
)

≥ 0.

Thus,
µ(H) = max

||Y ||=1
Y tQ(H)Y ≥ XtQ(H)X ≥ XtQ(G)X = µ(G).

If µ(H) = µ(G), then the inequalities above should be equalities. So

µ(H) = XtQ(H)X = XtQ(G)X = µ(G).

Thus, µ(H)X = Q(H)X and Q(G)X = µ(G)X. Thus,

µ(H)xv1 = dH(v1) +
∑

w∈NH(v1)

xw.

µ(G)xv1 = dG(v1) +
∑

w∈NG(v1)

xw.

Since dH(v1) ≥ dG(v1),
∑

w∈NH(v1)
xw >

∑
w∈NG(v1)

xw, so we have µ(H)xv1 >

µ(G)xv1 . Since xv1 > 0, hence µ(H) > µ(G), a contradiction. 2

Now, we consider the graph Guv obtained from the connected graph G by
subdividing the edge uv, that is, by replacing uv with edges uw, vw, where w is
an additional vertex. We call the following two types of paths internal paths : (a)
A sequence of vertices v0, v1, · · · , vk+1 (k ≥ 2), where v0, v1, · · · , vk are distinct,
vk+1 = v0 of degree at least 3, dvi

= 2 for i = 1, · · · , k, and vi−1 and vi (i =
1, · · · , k + 1) are adjacent. (b) A sequence of distinct vertices v0, v1, · · · , vk+1(k ≥
0) such that vi−1 and vi (i = 1, · · · , k + 1) are adjacent, dv0 ≥ 3, dvk+1 ≥ 3 and
dvi = 2 whenever 1 ≤ i ≤ k.

Lemma 2.3([8], [2]). Let G be a connected graph and uv be some edge on the
internal path of G as we defined above. If we subdivide uv, that is, substitute it by
uw, wv, with the new vertex w, and denote the new graph by Guv, then µ(Guv) <
µ(G).

Lemma 2.4. Let G be a connected graph. Suppose v1 and v2 are vertices each
of degree at least three and v1v2 is an edge of G. Let G′ be the connected graph
obtained form G by contracting v1v2 (i.e., deleting the edge and identifying v1 and
v2). Then µ(G) < µ(G′).

Proof. The proof of the result is similar to Theorem 4.11 in [14] and we omit it. 2

Lemma 2.5([2]). Suppose G is a nontrivial simple connected graph. Let u be a
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vertex of G. For nonnegative integers k, l, let G(k, l) denote the graph obtained from
G by adding pendant paths of length k and l at u. If k ≥ l ≥ 1, then

µ(G(k, l)) > µ(G(k + 1, l − 1)).

Lemma 2.6. Let G be a connected graph and P be a pendant path in G. Suppose e
is an edge in P and G′ is the graph obtained from G by subdividing e, then we have
µ(G) < µ(G′).

Proof. Since G is a proper subgraph of G′, we have µ(G) < µ(G′). 2

3. Main results

Suppose the vertices of the graphs B(4, 1, 4), B(4, 1, 3), B(3, 1, 3) are labeled as in
Fig. 1.

Let B1 be the graph on n vertices obtained from B(4, 1, 4) by attaching k paths
of almost equal lengths (i.e., the lengths of these paths differ in size by at most
one) at u; B2 be the graph obtained from B(4, 1, 4) by attaching k paths of almost
equal lengths at u4; B3 be the graph obtained from B(4, 1, 4) by attaching k paths
of almost equal lengths at u6.

Let C1 be the graph on n vertices obtained from B(4, 1, 3) by attaching k paths
of almost equal lengths at u; C2 be the graph on n vertices obtained from B(4, 1, 3)
by attaching k paths of almost equal lengths at u2; C3 be the graph obtained from
B(4, 1, 3) by attaching k paths of almost equal lengths at u5; C4 be the graph
obtained from B(4, 1, 3) by attaching k paths of almost equal lengths at u4.

Let D1 be the graph on n vertices obtained from B(3, 1, 3) by attaching k paths
of almost equal lengths at u; D2 be the graph on n vertices obtained from B(3, 1, 3)
by attaching k paths of almost equal lengths at u2.
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Theorem 3.1. Let G be a bicyclic graph in B+
n (k). Then µ(G) ≤ µ(D1). The

equality holds if and only if G ∼= D1.

Proof. Let G be a bicyclic graph in B+
n (k). Comparing the eigencomponents of

the vertices on B(p, l, q), by Lemma 2.2, identifying the roots of the trees attached
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to B(p, l, q), the signless Laplacian spectral radius increases. Next, by Lemmas 2.3,
2.4, contracting the internal path and Lemma 2.5 to make all the pendant paths
having almost equal lengths, the signless Laplacian spectral radius again increases.
At last, subdividing the pendant paths several times if necessary to keep the order
of graphs unchanged, by Lemma 2.6, µ(G) increases.

So we conclude the following three cases hold.
(1). If p ≥ q ≥ 4 and l ≥ 1, then µ(G) ≤ max{µ(B1), µ(B2), µ(B3)}.
(2). If p = 4, q = 3 and l ≥ 1, then µ(G) ≤ max{µ(C1), µ(C2), µ(C3), µ(C3)}.
(3). If p = q = 3, l ≥ 1, then µ(G) ≤ max{µ(D1), µ(D2)}.
For case (1), we claim that max{µ(B1), µ(B2), µ(B3)} = µ(B1).
In fact, for B2, consider the eigencomponents corresponding to u and u4, say,

xu and xu4 . If xu ≥ xu4 , by Lemma 2.1, removing the k pendant paths to u, we
have µ(B2) < µ(B1). If xu < xu4 , by Lemma 2.1, deleting edges uu1, uu2 and
adding edges u4u1, u4u2, we also have µ(B2) < µ(B1). Similarly, for B3, consider
the eigencomponents corresponding to u and u6, we have µ(B3) < µ(B1).

For case (2), we claim that max{µ(C1), µ(C2), µ(C3), µ(C4)} = µ(C1).
In fact, for C2, consider the eigencomponents corresponding to u and u2, say,

xu and xu2 . If xu ≥ xu2 , by Lemma 2.1, removing the k pendant paths to u, we
have µ(C2) < µ(C1). If xu < xu2 , by Lemma 2.1, deleting edges uu3, uu4 and
adding edges u2u3, u2u4, we also have µ(C2) < µ(C1). Similarly, for C3, consider
the eigencomponents corresponding to u and u6, we have µ(C3) < µ(C1); for C4,
consider the eigencomponents corresponding to u and u4, we have µ(C4) < µ(C1).

For case (3), we claim that max{µ(D1), µ(D2)} = µ(D1).
This is similar to the above two cases.
At last, we claim that max{µ(B1), µ(C1), µ(D1)} = µ(D1).
In fact, for C1, by Lemma 2.3, contracting edge u1u5 and by Lemma 2.6, sub-

dividing the pendant edge one time, by Lemma 2.5, we get the graph D1 and
µ(C1)} < µ(D1).

For B1, contracting edge u1u5, u3u6 and by Lemma 2.6, subdividing the pendant
edge one time, by Lemma 2.5, we get the graph D1 and µ(B1)} < µ(D1). 2

Suppose the vertices of the graphs P (3, 1, 3), P (3, 1, 2), P (2, 1, 2) are labeled as
in Fig. 2.

Let E1 be the graph obtained from P (2, 1, 2) by attaching k paths of almost
equal lengths at u3; E2 be the graph obtained from P (2, 1, 2) by attaching k paths
of almost equal lengths at u4.

Let F1 be the graph on n vertices obtained from P (3, 1, 2) by attaching k paths
of almost equal lengths at u3; F2 be the graph on n vertices obtained from P (3, 1, 2)
by attaching k paths of almost equal lengths at u4; F3 be the graph obtained from
P (3, 1, 2) by attaching k paths of almost equal lengths at u5.

Let G1 be the graph on n vertices obtained from P (3, 1, 3) by attaching k paths
of almost equal lengths at u4; G2 be the graph on n vertices obtained from P (3, 1, 3)
by attaching k paths of almost equal lengths at u3.
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Theorem 3.2. Let G be a bicyclic graph in B++
n (k). Then µ(G) ≤ µ(E1). The

equality holds if and only if G ∼= E1.

Proof. Similar as in Theorem 3.1, we conclude that the following three cases holds.
(1). If p = l = 2 and q = 1, then µ(G) ≤ max{µ(E1), µ(E2)}.
(2). If p = 3, l = 2 and q = 1 or 2, then µ(G) ≤ max{µ(F1), µ(F2), µ(F3)}.
(3). If p ≥ l ≥ 3, q ≥ 1, then µ(G) ≤ max{µ(G1), µ(G2)}.
For case (1), we claim that max{µ(E1), µ(E2)} = µ(E1)
In fact, in E2, just consider the eigencomponents of u3 and u4, by Lemma 2.1,

we can get the claim.
For case (2), we claim that max{µ(F1), µ(F2), µ(F3)} = µ(F2).
In fact, in F1, just consider the eigencomponents of u3 and u1, by Lemma 2.1,

we get µ(F1) ≤ µ(F2); in F3, consider the eigencomponents of u1 and u5, by Lemma
2.1, we get µ(F3) ≤ µ(F2), as claimed.

For case (3), we claim that max{µ(G1), µ(G2)} = µ(G1).
In fact, in G2, just consider the eigencomponents of u3 and u1, by Lemma 2.1,

we can get the claim.
At last, we claim that max{µ(E1), µ(F2), µ(G1)} = µ(E1).
In fact, for F2, by Lemma 2.3, contracting edge u2u3 and by Lemma 2.6, sub-

dividing the pendant edge one time, by Lemma 2.5, we get the graph E1 and
µ(F2)} < µ(E1).

For G1, contracting edge u2u3, u5u6 and by Lemma 2.6, subdividing the pen-
dant edge one time, by Lemma 2.5, we get the graph E1 and µ(G1)} < µ(E1). 2

Lemma 3.3([4]). Let G be a graph on n vertices with at least one edge and the
maximum degree of G be ∆. Then µ(G) ≥ ∆ + 1. The equality holds if and only if
G is a star.

Lemma 3.4([9]). For a connected graph G, we have µ(G) ≤ max{du + mu : u ∈
V (G)}, where mu satisfies dumu =

∑
vu∈E(G) dv. The equality holds if and only if

G is regular or semiregular bipartite.

Theorem 3.5. Let G be a bicyclic graph in Bn(k). Then µ(G) ≤ µ(D1), the equal-
ity holds if and only if G = D1.
Proof. By Theorems 3.1, 3.2, we have µ(G) ≤ max{µ(D1), µ(E1)}. For D1, by
Lemma 3.3, we have µ(D1) ≥ k + 5. By Lemma 3.4, µ(E1) < k + 5. This implies
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the result. 2
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