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Abstract

The analysis of massive graphs is now becoming a very
important part of science and industrial research. This
has led to the construction of a large variety of graph
models, each with their own advantages. The Stochastic
Kronecker Graph (SKG) model has been chosen by the
Graph500 steering committee to create supercomputer
benchmarks for graph algorithms. The major reasons
for this are its easy parallelization and ability to mirror
real data. Although SKG is easy to implement, there
is little understanding of the properties and behavior of
this model.

We show that the parallel variant of the edge-
configuration model given by Chung and Lu (referred
to as CL) is notably similar to the SKG model. The
graph properties of an SKG are extremely close to
those of a CL graph generated with the appropriate
parameters. Indeed, the final probability matrix used
by SKG is almost identical to that of a CL model. This
implies that the graph distribution represented by SKG
is almost the same as that given by a CL model. We
also show that when it comes to fitting real data, CL
performs as well as SKG based on empirical studies
of graph properties. CL has the added benefit of a
trivially simple fitting procedure and exactly matching
the degree distribution. Our results suggest that users
of the SKGmodel should consider the CL model because
of its similar properties, simpler structure, and ability
to fit a wider range of degree distributions. At the very
least, CL is a good control model to compare against.
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1 Introduction

With more and more data being represented as large
graphs, network analysis is becoming a major topic
of scientific research. Data that come from social
networks, the Web, patent citation networks, and power
grid structures are increasingly being viewed as massive
graphs. These graphs usually have peculiar properties
that distinguish them from standard random graphs
(like those generated from the Erdös-Rényi model).
Although we have a lot of evidence for these properties,
we do not have a thorough understanding of why these
properties occur. Furthermore, it is not at all clear
how to generate synthetic graphs that have a similar
behavior.

Hence, graph modeling is a very important topic
of study. There may be some disagreement as to the
characteristics of a good model, but the survey [1] gives
a fairly comprehensive list of desired properties. As
we deal with larger and larger graphs, the efficiency
and speed as well as implementation details become
deciding factors in the usefulness of a model. The
theoretical benefit of having a good, fast model is quite
clear. However, the benefits of having good models go
beyond an ability to generate large graphs, since such
models provide insight into structural properties and
the processes that generate large graphs.

The Stochastic Kronecker graph (SKG) [2, 3], a gen-
eralization of recursive matrix (R-MAT) model [4], is a
model for large graphs that has received a lot of atten-
tion. It involves few parameters and has an embarrass-
ingly parallel implementation (so each edge of the graph
can be independently generated). The importance of
this model cannot be understated — it has been cho-
sen to create graphs for the Graph500 supercomputer
benchmark [5]. Moreover, many researchers generate
SKGs for testing their algorithms [6, 7, 8, 9, 10, 11, 12,
13, 14, 15].

Despite the role of this model in graph benchmark-
ing and algorithm testing, precious little is truly known
about its properties. The model description is quite sim-
ple, but varying the parameters of the model can have
quite drastic effects on the properties of the graphs be-
ing generated. Understanding what goes on while gen-
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erating an SKG is extremely difficult. Indeed, merely
explaining the structure of the degree distribution re-
quires a significant amount of mathematical effort.

Could there be a conceptually simpler model that
has properties similar to SKG? A possible candidate is a
simple variant of the Erdös-Rényi model first discussed
by Aiello, Chung, and Lu [16] and generalized by Chung
and Lu [17, 18]. The Erdös-Rényi model is arguably the
earliest and simplest random graph model [19, 20]. The
Chung-Lu model (referred to as CL) can be viewed as
a version of the edge configuration model or a weighted
Erdös-Rényi graph. Given any degree distribution, it
generates a random graph with the same distribution
on expectation. (The version by Aiello et al. only
considered power law distributions.) It is very efficient
and conceptually very simple. Amazingly, it has been
overlooked as a model to generate synethetic instances,
and is not even considered as a “control model” to
compare with. (This is probably because of the strong
ties to a standard Erdös-Rényi graph, which is well
known to be unsuitable for modeling social networks.)
A major benefit of this model is that it can provide
graphs with any desired degree distribution (especially
power law), something that SKG provably cannot do.

Our aim is to provide a detailed comparison of the
SKG and CL models. We first compare the graph prop-
erties of an SKG graph with an associated CL graph.
We then look at how these models fit real data. Our ob-
servations show a great deal of similarity between these
models. To explain this, we look directly at the proba-
bility matrices used by these models. This gives insight
into the structure of the graphs generated. We notice
that the SKG and CL matrices have much in common
and give evidence that the differences between these are
only (slightly) quantitative, not qualitative. We also
show that for some settings of the SKG parameters, the
SKG and associated CL models coincide exactly.

1.1 Notation and Background

1.1.1 Stochastic Kronecker Graph (SKG)
model The model takes as input the number of nodes
n (always a power of 2), number of edges m, and a
2 × 2 generator matrix T . We define ℓ = log2 n as the
number of levels. In theory, the SKG generating matrix
can be larger than 2 × 2, but we are unaware of any
such examples in practice. Thus, we assume that the
generating matrix has the form

T =

[
t1 t2
t3 t4

]

with t1 + t2 + t3 + t4 = 1.

Each edge is inserted according to the probabilities1

defined by
P = T ⊗ T ⊗ · · · ⊗ T

︸ ︷︷ ︸

ℓ times

.

We will refer to PSKG as the SKG matrix associated
with these parameters. Observe that the entries in PSKG

sum up to 1, and hence it gives a probability distribution
over all pairs (i, j). This is the probability that a single
edge insertion results in the edge (i, j). By repeatedly
using this distribution to generate m edges, we obtain
our final graph.

In practice, the matrix PSKG is never formed explic-
itly. Instead, each edge is inserted as follows. Divide the
adjacency matrix into four quadrants, and choose one
of them with the corresponding probability t1, t2, t3, or
t4. Once a quadrant is chosen, repeat this recursively
in that quadrant. Each time we iterate, we end up in a
square submatrix whose dimensions are exactly halved.
After ℓ iterations, we reach a single cell of the adjacency
matrix, and an edge is inserted. This is independently
repeated m times to generate the final graph. Note that
all edges can be inserted in parallel. This is one of the
major advantages of the SKGmodel and why it is appro-
priate for generating large supercomputer benchmarks.

A noisy version of SKG (called NSKG) has been re-
cently designed in [21, 22]. This chooses the probability
matrix

P = T1 ⊗ · · · ⊗ Tℓ,

where each Ti is a specific random perturbation of the
original generator matrix T . This has been provably
shown to smooth the degree distribution to a lognormal
form.

1.2 Chung-Lu (CL) model This model can be
thought of as a variant of the edge configuration model.
Let us deal with directed graphs to describe the CL
model. Suppose we are given sequences of n in-degrees
d1, d2, . . . , dn, and n out-degrees d′1, d

′

2, . . . , d
′

n. We have
∑

i di =
∑

i d
′

i = m. Consider the probability matrix
PCL where the (i, j) entry is did

′

j/m
2. (The sum of all

entries in PCL is 1.) We use this probability matrix to
make m edge insertions.

This is slightly different from the standard CL
model, where an independent coin flip is done for every
edge. This is done by using the matrix mPCL (similar
to SKG). In practice, we do not generate PCL explicitly,
but have a simple O(m) implementation analogous
to that for SKG. Independently for every edge, we

1We have taken a slight liberty in requiring the entries of T to sum
to 1. In fact, the SKG model as defined in [3] works with the matrix
mP , which is considered the matrix of probabilities for the existence
of each individual edge (though it might be more accurate to think of
it as an expected value).
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choose a source and a sink. Both of these are chosen
independently using the degree sequences as probability
distributions. This is extremely simple to implement
and it is very efficient.

We will focus on undirected graphs for the rest of
this paper. This is done by performing m edge inser-
tions, and considering each of these to be undirected.
For real data that is directed, we symmetrize by remov-
ing the direction.

Given a set of SKG parameters, we can define the
associated CL model. Any set of SKG parameters
immediately defines an expected degree sequence. In
other words, given the SKGmatrix PSKG, we can deduce
the expected in-(and out)-degrees of the vertices. For
this degree sequence, we can define a CL model. We
refer to this as the associated CL model for a given set
of SKG parameters. This CL model will be used to
define a probability matrix PCL. In this paper, we will
study the relations between PSKG and PCL. Whenever
we use the term PCL, this will always be the associated
CL model of some SKG matrix PSKG.

1.3 Our Contributions The main message of this
work can be stated simply. The SKG model is close
enough to its associated CL model that most users of
SKG could just as well use the CL model for generating
graphs. These models have very similar properties both
in terms of ease of use and in terms of the graphs they
generate. Moreover, they both reflect real data to the
same extent. The general CL model has the major
advantage of generating any desired degree distribution.

We stress that we do not claim that the CL model
accurately represents real graphs, or is even the “right”
model to think about. But we feel that it is a good
control model, and it is one that any other model should
be compared against. Fitting CL to a given graph is
quite trivial; simply feed the degree distribution of the
real graph to the CL model. Our results suggest that
users of SKG can satisfy most of their needs with a CL
model.

We provide evidence for this in three different ways.
1. Graph properties of SKG vs CL: We construct an

SKG using known parameter choices from the Graph500
specification. We then generate CL graphs with the
same degree distributions. The comparison of graph
properties is very telling. The degree distribution are
naturally very similar. What is surprising is that the
clustering coefficients, eigenvalues, and core decomposi-
tions match exceedingly well. Note that the CL model
can be thought of as a uniform random samples of
graphs with an input degree distribution. It appears
that SKG is very similar, where the degree distribution
is given implicitly by the generator matrix T .

2. Quantitative comparison of generating matrices

PSKG and PCL: We propose an explanation of these
observations based on comparisons of the probability
matrices of SKG and CL. We plot the entries of these
matrices in various ways, and arrive at the conclusion
that these matrices are extremely similar. More con-
cretely, they represent almost the same distribution on
graphs, and differences are very slight. This strongly
suggests that the CL model is a good and simple ap-
proximation of SKG, and it has the additional benefit
of modeling any degree distribution. We prove that un-
der a simple condition on the matrix T , PSKG is identical
to PCL. Although this condition is often not satisfied by
common SKG parameters, it gives strong mathematical
intuition behind the similarities.

3. Comparing SKG and CL to real data: The pop-
ularity of SKG is significantly due to fitting procedures
that compute SKG parameters corresponding to real
graphs [3]. This is based on an expensive likelihood
optimization procedure. Contrast this with CL, which
has a trivial fitting mechanism. We show that both
these models do a similar job of matching graph param-
eters. Indeed, CL guarantees to fit the degree distri-
bution (up to expectations). In other graph properties,
neither SKG nor CL is clearly better. This is a very
compelling reason to consider the CL model as a con-
trol model.

In this paper, we focus primarily on SKG instead of
the noisy version NSKG because SKG is extremely well
established and used by a large number of researchers
[6, 7, 8, 9, 10, 15, 11, 12, 13, 14]. Nonetheless, all
our experiments and comparisons are also performed
with NSKG. Other than correcting deficiencies in the
degree distribution, the effect of noise on other graph
properties seems fairly small. Hence, for our matrix
studies and mathematical theorems (§4 and §5), we
focus on similarities between SKG and CL. We however
note that all our empirical evidence holds for NSKG as
well: CL seems to model NSKG graphs reasonably well
(though not as perfectly as SKG), and CL fits real data
as well as NSKG.

1.4 Parameters for empirical study We focus
attention on the Graph500 benchmark [5]. This is
primarily for concreteness and the relative importance
of this parameter setting. Our results hold for all the
settings of parameters that we experimented with. For
NSKG, there is an additional noise parameter required.
We set this to 0.1, the setting studied in [21].

• Graph500: T = [0.57, 0.19; 0.19, 0.05], ℓ ∈ {26,
29, 32, 36, 39, 42}, and m = 16 ·2ℓ. We focus on a much
smaller setting, ℓ = 18.
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(a) Degree distribution (b) Clustering coefficients (c) Eigenvalues of adjacency matrices

(d) Assortativity (e) Core decompositions

Figure 1: Comparison of the graph properties of SKG generated with Graph500 parameters and an equivalent
CL.

2 Previous Work

The SKG model was proposed by Leskovec et al. [23],
as a generalization of the R-MAT model, given by
Chakrabarti et al. [4]. Algorithms to fit SKG to
real data were given by Leskovec and Faloutsos [2]
(extended in [3]). This model has been chosen for
the Graph500 benchmark [5]. Kim and Leskovec [24]
defined a variant of SKG called the Multiplicative
Attribute Graph (MAG) model.

There have been various analyses of the SKG model.
The original paper [3] provides some basic theorems
and empirically shows a variety of properties. Groër
et al. [25], Mahdian and Xu [26], and Seshadhri et al.
[21] study how the model parameters affect the graph
properties. It has been conclusively shown that SKG
cannot generate power-law distributions [21]. Seshadhri
et al. also proposed noisy SKG (NSKG), which can
provably produce lognormal degree distributions.

Sala et al. [27] perform an extensive empirical study
of properties of graph models, including SKGs. Miller
et al. [28] give algorithms to detect anomalies embedded

in an SKG. Moreno et al. [29] study the distributional
properties of families of SKGs.

A good survey of the edge-configuration model and
its variants is given by Newman [30] (refer to Section
IV.B). The specific model of CL was first given by
Chung and Lu [17, 18]. They proved many properties
of these graphs. Properties of its eigenvalues were given
by Mihail and Papadimitriou [31] and Chung et al. [32].

3 Similarity between SKG and CL

Our first experiment details the similarities between an
SKG and its equivalent CL. We construct an SKG using
the Graph500 parameters with ℓ = 18. We take the
degree distribution of this graph, and construct a CL
graph using this. Various properties of these graphs are
given in Fig. 1. We give details below:

1. Degree distribution (Fig. 1a): This is the stan-
dard degree distribution plot in log-log scale. It is no
surprise that the degree distributions are almost identi-
cal. After all, the weighting of CL is done precisely to
match this.
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(a) Degree distribution (b) Clustering coefficients (c) Eigenvalues of adjacency matrices

(d) Assortativity (e) Core decompositions

Figure 2: The figures compares the graph properties of NSKG generated with Graph500 parameters and an
equivalent CL.

2. Clustering coefficients (Fig. 1b): The clustering
coefficient of a vertex i is the fraction of wedges centered
at i that participate in triangles. We plot d versus
the average clustering coefficient of a degree d vertex
in log-log scale. Observe the close similarity. Indeed,
we measure the difference between clustering coefficient
values at d to be at most 0.04 (a lower order term with
respect to commonly measured values in real graphs
[33]).

3. Eigenvalues (Fig. 1c): Here, we plot the first 25
eigenvalues (in absolute value) of the adjacency matrix
of the graph in log-scale. The proximity of eigenvalues
is very striking. This is a strong suggestion that graph
structure of the SKG and CL graphs are very similar.

4. Assortativity (Fig. 1d): This is non-standard
measure, but we feel that it provides a lot of structural
intuition. Social networks are often seen to be assorta-
tive [34, 35], which means that vertex of similar degree
tend to be connected by edges. For d, define Xd to be
the average degree of an average degree d vertex. We
plot d versus Xd in log-log scale. Note that neither SKG

nor CL are particularly assortative, and the plots match
rather well.

5. Core decompositions (Fig. 1e): The k-cores of a
graph are a very important part of understanding the
community structure of a graph. The size of the k-core
is the largest induced subgraph where each vertex has
a minimum degree of k. This is a subset S of vertices
such that all vertices have k neighbors in S. These
sizes can be quickly determined by performing a core

decomposition. This is obtained by iteratively deleting
the minimum degree vertex of the graph. The core plots
look amazingly close, and the only difference is that
there are slightly larger cores in CL.

All these plots clearly suggest that the Graph500
SKG and its equivalent CL graph are incredibly close
in their graph properties. Indeed, it appears that most
important structural properties (especially from a social
networks perspective) are closely related. We will show
in §6 that CL performs an adequate job of fitting real
data, and is quite comparable to SKG. We feel that
any uses of SKG for benchmarking or test instances
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generation could probably be done with CL graphs as
well.

For completeness, we plot the same comparisons
between NSKG and CL in Fig. 2. We note again that
the properties are very similar, though NSKG shows
more variance in its values. Clustering coefficient values
differ by at most 0.02 here, and barring small differences
in initial eigenvalues, there is a very close match. The
assortativity plots show more oscillations for NSKG, but
CL gets the overall trajectory.

4 Connection between SKG and CL matrices

Is there a principled explanation for the similarity
observed in Fig. 1? It appears to be much more than
a coincidence, considering the wide variety of graph
properties that match. In this section, we provide an
explanation based on the similarity of the probability
matrices PSKG and PCL. On analyzing these matrices,
we see that they have an extremely close distribution of
values. These matrices are themselves so fundamentally
similar, providing more evidence that SKG itself can be
modeled as CL.

We begin by giving precise formulae for the entries
of the SKG and CL matrices. This is by no means new
(or even difficult), but it should introduce the reader
to the structure of these matrices. The vertices of the
graph are labeled from [n] (the set of positive integers
up to n). For any i, vi denotes the binary representation
of i as an ℓ-bit vector. For two vectors vi and vj , the
number of common zeroes is the number of positions
where both vectors are 0. The following formula for
the SKG entries has already been used in [4, 23, 25].
Observe that these entries (for both SKG and CL) are
quite easy to compute and enumerate.

Claim 4.1. Let i, j ∈ [n]. Let the number of zeroes in

vi and vj be zi and zj respectively. Let the number of

common zeroes be cz. Then

PSKG(i, j) = tcz1 tzi−cz
2 t

zj−cz
3 t

ℓ−zi−zj+cz
4 , and

PCL(i, j)=(t1 + t2)
zi(t3 + t4)

ℓ−zi(t1 + t3)
zj (t2 + t4)

ℓ−zj .

Proof. The number of positions where vi is zero but vj

is one is zi − cz. Analogously, the number of positions
where only vj is zero is zj−cz. The number of common
ones is ℓ − zi − zj + cz. Hence, the (i, j) entry of the

PSKG is tcz1 tzi−cz
2 t

zj−cz
3 t

ℓ−zi−zj+cz
4 .

Let us now compute the (i, j) entry in the corre-
sponding CL matrix. The probability that a single edge
insertion becomes an out-edge of vertex i in SKG is
(t1 + t2)

zi(t3 + t4)
ℓ−zi . Hence, the expected out-degree

of i is m(t1 + t2)
zi(t3 + t4)

ℓ−zi . Similarly, the expected
in-degree of j ism(t1+t3)

zj (t2+t4)
ℓ−zj . The (i, j) entry

of PCL is (t1+ t2)
zi(t3+ t4)

ℓ−zi(t1+ t3)
zj (t2+ t4)

ℓ−zj .�

The inspiration for this section comes from Fig. 3.
Our initial aim was to understand the SKG ma-
trix, and see whether the structure of the values
provides insight into the properties of SKG. Since
each entry in this probability matrix is of the form

tcz1 tzi−cz
2 t

zj−cz
3 t

ℓ−zi−zj+cz
4 , there are many repeated val-

ues in this matrix. For each value in this probability
matrix, we simply plot the number of times (the multi-
plicity) this value appears in the matrix. (For PSKG, this
is given in red) This is done for the associated PCL in
blue. Note the uncanny similarity of the overall shapes
for SKG and CL. Clearly, PSKG has more distinct val-
ues2, but they are distributed fairly similarly to PCL.
Nonetheless, this picture is not very formally convinc-
ing, since it only shows the overall behavior of the dis-
tribution of values.

Figure 3: Distribution of entries of PSKG and PCL.

Fig. 4 makes a more faithful comparison between
the PSKG and PCL matrices. As we note from Fig. 3, PCL

has a much smaller set of distinct entries. Suppose the
distinct values in PCL are v1 > v2 > v3 . . .. Associate a
bin with each distinct entry of PCL. For each entry of
PSKG, place it in the bin corresponding to the entry of
PCL with the closest value. So, if some entry in PSKG

has value v, we determine the index i such that |v − vi|
is minimized. This entry is placed in the ith bin. We
can now look at the size of each bin for PSKG. The size
of the ith bin for the PCL is simply the multiplicity of
vi in PCL.

Observe how these sizes are practically identical for
large enough entry value. Indeed the former portion of

2This can be proven by inspecting Claim 4.1.
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these plots, for value < 10−20, only accounts for a total
of < 10−5 of the probability mass. This means that the
fraction of edges that will correspond to these entries
is at most 10−5. We can also argue that these entries
correspond only to edges joining very low degree vertices
to each other. In other words, the portion where these
curves differ is really immaterial to the structure of the
final graph generated.

Figure 4: Bin sizes for PSKG and PCL

This is very strong evidence that SKG behaves like a
CL model. The structure of the matrices are extremely
similar to each other. Fig. 5 is even more convincing.
Now, instead of just looking at the size of each bin, we
look at the total probability mass of each bin. For PSKG

matrix, this is the sum of entries in a particular bin. For
PCL, this is the product of the size of the bin and the
value (which is the again just the sum of entries in that
bin). Again, we note the almost exact coincidence of
these plots in the regime where the probabilities matter.
Not only are the number of entries in each bin (roughly)
the same, so is the total probability mass in the bin.

We now generate a random sample from PSKG and
one from PCL. Fig. 6 shows MATLAB spy plots of the
corresponding graphs (represented by their adjacency
matrices). One of the motivations for the SKG model
was that it had a fractal or self-similar structure. It ap-
pears that the CL graph shares the same self-similarity.
Furthermore, this self-repetition looks identical for the
both SKG and CL graphs.

5 Mathematical justifications

We prove that when the entries of the matrix T satisfy
the condition t1/t2 = t3/t4, then SKG is identical to

Figure 5: Probability mass of the bins

the CL model.

Theorem 5.1. Consider an SKG model where T satis-

fies the following:

t1
t2

=
t3
t4
.

Then PSKG = PCL.

Proof. Let α = t1/t2 = t3/t4, and let t3 = βt2. Then,
t1 = α2βt4; t3 = αβt2; and t2 = αt4. Note that since
t1 + t2 + t3 + t4 = 1,

(5.1) (α2β + α+ αβ + 1)t4 = 1

We use the formula given in Claim 4.1 for the (i, j)
entry of the SKG and CL matrices.

By simple substitution, the entry for SKG is

(t4α
2β)cz (t4α)

zi−cz (t4αβ)
zj−cz t4

ℓ−zi−zj+cz

= tℓ4α
zi+zjβzj(5.2)
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Figure 6: Spy plots of SKG drawn from PSKG and CL graph drawn from PCL

Analogously, for the CL matrix, the entry has value

(t1 + t2)
zi(t3 + t4)

ℓ−zi(t1 + t3)
zj (t2 + t4)

ℓ−zj

= [t4(α
2β + α)]zi [t4(αβ + 1)]ℓ−zi ×

[t4(α
2β + αβ)]zj [α(α+ 1)]ℓ−zj

= t2ℓ4 (α2β+α)zi(αβ+1)ℓ−zi(α2β+αβ)zj (α+1)ℓ−zj

= t2ℓ4 αzi+zjβzj (αβ + 1)zi(αβ + 1)ℓ−zi ×

(α+ 1)zj (α+ 1)ℓ−zj

= t2ℓ4 αzi+zjβzj (α2β + α+ αβ + 1)ℓ

= tℓ4α
zi+zjβzj [t4(α

2β + α+ αβ + 1)]ℓ

= tℓ4α
zi+zjβzj

The last part follows from (5.1). This is exactly the
same as (5.2). �

6 Fitting SKG vs CL

Fitting procedures for SKG model have been given in
[3]. This is often cited as a reason for the popularity of
SKG. These fits are based on algorithms for maximizing
likelihood, but can take a significant amount of time to
run. The CL model is fit by simply taking the degree
distribution of the original graph. Note that the CL
model uses a lot more parameters than SKG, which
only requires 5 independent numbers. In that sense,
SKG is a very appealing model regardless of any other
deficiencies.

We show comparisons of the CL, SKG, and NSKG
models with respect to three different real graphs. For

directed graphs, we look at the undirected version where
directions are removed from all the edges. The real
graphs are the following:

• soc-Epinions: This is a social network from the
Epinions website, which tracks the “who-trusts-whom”
relationship [36]. It has 75879 vertices and 811480
edges. The SKG parameters for this graph from [3] are:
T = [0.4668 0.2486; 0.2243 0.0603], ℓ = 17.

• ca-HepTh: This is a co-authorship network from
high energy physics [36]. It has 9875 vertices and 51946
edges. The SKG parameters for this graph from [3] are:
T = [0.469455 0.127350; 0.127350 0.275846], ℓ = 14.

• cit-HepPh: This is a citation network from high
energy physics [36]. It has 34546 vertices and 841754
edges. The SKG parameters from [3] are: T =
[0.429559 0.189715; 0.153414 0.227312], ℓ = 15.

The comparisons between the properties are given,
respectively, in Fig. 7, Fig. 8, and Fig. 9. In all of these,
we see that CL (as expected) gives good fits to the
degree distributions. For soc-Epinions, we see in Fig. 7a
that the oscillations of the SKG degree distribution
and how NSKG smoothens it out. Observe that the
clustering coefficients of all the models are completely
off. Indeed, for low degree vertices, the values are off by
orders of magnitude. Clearly, no model is capturing the
abundance of triangles in these graphs. The eigenvalues
of the model graphs are also distant from the real
graph, but CL performs no worse than SKG (or NSKG).
Core decompositions for soc-Epinions (Fig. 7d) show
that CL fits rather well. For ca-HepPh (Fig. 8d) CL
is marginally better than SKG, whereas for cit-HepTh
(Fig. 9d), NSKG seems be a better match.
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Figure 7: The figure compares the fits of various models for the social network soc-Epinions.

All in all, there is no conclusive evidence that SKG
or NSKG model these graphs significantly better than
CL. We feel that the comparable performance of CL
shows that it should be used as a control model to
compare against.

7 Conclusions

Understanding existing graph models is a very impor-
tant part of graph analysis. We need to clearly see the
benefits and shortcomings of existing models, so that
we can use them more effectively. For these purposes,
it is good to have a simple “baseline” model to compare
against. We feel that the CL model is quite suited for
this because of its efficiency, simplicity, and similarity
to SKG. Especially for benchmarking purposes, it is a

good candidate for generating simple test graphs. One
should not think of this as representing real data, but
as an easy way of creating reasonable looking graphs.
Comparisons with the CL model can give more insight
into current models. The similarities and differences
may help identify how current graph models differ from
each other.
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