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THE SIMILARITY PROBLEM FOR INDEFINITE STURM––LIOUVILLE

OPERATORS WITH PERIODIC COEFFICIENTS

ALEKSEY KOSTENKO

Abstract. We investigate the problem of similarity to a self-adjoint operator for J -positive Sturm–

Liouville operators L = 1
ω

(

−
d2

dx2 +q

)

with 2π -periodic coefficients q and ω . It is shown that

if 0 is a critical point of the operator L , then it is a singular critical point. This gives us a new

class of J -positive differential operators with the singular critical point 0 . Also, we extend the

Beals and Parfenov regularity conditions for the critical point ∞ to the case of operators with

periodic coefficients.
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[5] B. ĆURGUS, On the regularity of the critical point infinity of definitizable operators, Integr. Equ. Oper.

Theory 8 (1985), 462–488.
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