THE SIMILARITY PROBLEM FOR REPRESENTATIONS OF C^{*}-ALGEBRAS

JOHN W. BUNCE ${ }^{1}$

Abstract

Let $\pi: A \rightarrow B(H)$ be a bounded homomorphism of a C^{*}-algebra into the bounded operators on a Hilbert space. We prove that, if π is cyclic, there is a *-representation $\theta: A \rightarrow B(H)$ and a bounded one-to-one positive operator P such that $P \theta(a)=\pi(a) P$. We include applications to θ-derivations and invariant operator ranges for operator algebras.

1. Introduction. Let $\pi: A \rightarrow B(H)$ be a continuous representation of a C^{*}-algebra A into the bounded operators on a Hilbert space H. In this paper, we are concerned with whether or not there exist a ${ }^{*}$-representation $\theta: A \rightarrow B\left(H_{\theta}\right)$ and a bounded invertible operator $S: H_{\theta} \rightarrow H$ such that $S \theta(a)=\pi(a) S$ for all $a \in A$. That is, must π be similar to a ${ }^{*}$-representation? In the context of C^{*}-algebras, the question was first raised by Kadison in [11]. It was shown in [5] that π is similar to a^{*}-representation if A is a strongly amenable C^{*}-algebra. It was shown in [3] and [4] that if π is a cyclic representation of A on a separable Hilbert space, then there exist a one-to-one selfadjoint densely defined unbounded operator U on H and a *-representation θ of A on H such that

$$
U \pi(a) x=\theta(a) U x
$$

for all $a \in A$ and x in the domain of U.
In this paper, we use a result of Pisier [12] and ideas of Christensen [7] and Ringrose [14] to prove that if $\pi: A \rightarrow B(H)$ is a cyclic representation, then there exist a *-representation $\theta: A \rightarrow B(H)$ and a one-to-one bounded positive operator P on H such that $P \theta(a)=\pi(a) P$, for all $a \in A$. We include applications to two related problems: Is every generalized derivation (in the sense of [1]) of A inner? Is every invariant operator range for A the range of an operator in the commutant of A ?
2. The main results. The key to our results is the following theorem of Pisier [12, Corollary 2.3].

Theorem 2.1. If $u: A \rightarrow B$ is a bounded linear map between C^{*}-algebras, then for all $a_{1}, a_{2}, \ldots, a_{n}$ in A we have

$$
\left\|\sum_{i=1}^{n} u\left(a_{i}\right)^{*} u\left(a_{i}\right)+u\left(a_{i}\right) u\left(a_{i}\right)^{*}\right\| \leqslant 6\|u\|^{2}\left\|\sum_{i=1}^{n} a_{i}^{*} a_{i}+a_{i} a_{i}^{*}\right\| .
$$

Received by the editors February 29, 1980.
AMS (MOS) subject classifications (1970). Primary 46L05.
Key words and phrases. The similarity problem, derivations, invariant operator range, Pisier's inequality.
${ }^{1}$ This research was partially supported by NSF Grant MCS 77-01850.

If u is a homomorphism, then, as in [7, Theorem 4.1], the above inequality can take a different form.

Corollary 2.2. Let $\pi: A \rightarrow B(H)$ be a continuous representation. Then for a_{1}, $a_{2}, \ldots, a_{n} \in A$ we have

$$
\left\|\sum_{i=1}^{n} \pi\left(a_{i}\right)^{*} \pi\left(a_{i}\right)\right\| \leqslant 12\|\pi\|^{4}\left\|\sum_{i=1}^{n} a_{i}^{*} a_{i}\right\|
$$

Proof. By [2, Theorem 1] we can extend π to $\pi_{0}: A^{* *} \rightarrow B(H), \pi_{0}$ a homomorphism with the same norm as π. Let $a_{i}=v_{i} h_{i}$ be the polar decomposition of a_{i}, $h_{i}^{2}=a_{i}^{*} a_{i}$ and v_{i} a partial isometry in $A^{* *}$. Then

$$
\begin{aligned}
\left\|\sum_{1}^{n} \pi\left(a_{i}\right)^{*} \pi\left(a_{i}\right)\right\| & =\left\|\sum \pi\left(h_{i}\right)^{*} \pi_{0}\left(v_{i}\right)^{*} \pi_{0}\left(v_{i}\right) \pi\left(h_{i}\right)\right\| \\
& \leqslant\left\|\sum\right\| \pi\left\|^{2} \pi\left(h_{i}\right)^{*} \pi\left(h_{i}\right)\right\| \\
& \leqslant\|\pi\|^{2}\left\|\sum \pi\left(h_{i}\right)^{*} \pi\left(h_{i}\right)+\pi\left(h_{i}\right) \pi\left(h_{i}\right)^{*}\right\| \\
& \leqslant 6\|\pi\|^{4}\left\|\sum h_{i}^{*} h_{i}+h_{i} h_{i}^{*}\right\| \\
& =12\|\pi\|^{4}\left\|\sum h_{i}^{2}\right\|=12\|\pi\|^{4}\left\|\sum_{1}^{n} a_{i}^{*} a_{i}\right\| .
\end{aligned}
$$

As in [14, p. 303], [6, p. 239] or [7], the following theorem follows from the inequality in Corollary 2.2.

Theorem 2.3. Let $\pi: A \rightarrow B(H)$ be a continuous representation and let g be a state on $B(H)$. Then there exists a state f on A such that

$$
g\left(\pi(a)^{*} \pi(a)\right)<12\|\pi\|^{4} f\left(a^{*} a\right) .
$$

In the following theorem, π_{f} is the GNS representation constructed from f.
Theorem 2.4. Let $\pi: A \rightarrow B(H)$ be a continuous representation, $x_{0} \in H,\left\|x_{0}\right\|=$ 1. Then there exist a state f on A and a bounded operator $S: H_{f} \rightarrow H,\|S\|$ $\leqslant \sqrt{12}\|\pi\|^{2}$, such that $S \pi_{f}(a)=\pi(a) S$ for all $a \in A$ and $($ Range $S) \supseteq \pi(A) x_{0}$.

Proof. Use Theorem 2.3 with $g(b)=\left(b x_{0}, x_{0}\right)$ for all $b \in B(H)$. Then

$$
\left\|\pi(a) x_{0}\right\| \leq \sqrt{12}\|\pi\|^{2} f\left(a^{*} a\right)^{1 / 2}
$$

Let $K_{f}=\left\{a \in A: f\left(a^{*} a\right)=0\right\}$, and define $S: A / K_{f} \rightarrow H$ by $S\left(a+K_{f}\right)=\pi(a) x_{0}$. Then this determines $S: H_{f} \rightarrow H$ with $\|S\|<\sqrt{12}\|\pi\|^{2}$. For any $a, b \in A$ we have $S \pi_{f}(a)\left(b+K_{f}\right)=\pi(a) \pi(b) x_{0}=\pi(a) S\left(b+K_{f}\right)$. So $S \pi_{f}(a)=\pi(a) S$.

Corollary 2.5. Let $\pi: A \rightarrow B(H)$ be a continuous representation with a cyclic vector. Then there exist a^{*}-representation $\theta: A \rightarrow B(H)$ and a bounded, one-to-one, positive operator P on H such that $P \theta(a)=\pi(a) P$ for all $a \in A$ and $\|P\|$ $\leqslant \sqrt{12}\|\pi\|^{2}$.

Proof. Let $x_{0} \in H$ be a cyclic unit vector for π. Then by Theorem 2.4 there is an operator $S: H_{f} \rightarrow H,\|S\| \leqslant \sqrt{12}\|\pi\|^{2}$, such that $S \pi_{f}(a)=\pi(a) S$ and Range S $\supseteq \pi(A) x_{0}$. Then $\operatorname{ker}(S)^{\perp}$ is a reducing subspace for $\pi_{f}(A)$. Let $\rho(a)=$ $\pi_{f}(a)\left|\operatorname{ker}(S)^{\perp}, T=S\right| \operatorname{ker}(S)^{\perp}$. Then $T \rho(a)=\pi(a) T$, and T is one-to-one with dense range. Let $T^{*}=W P$ be the polar decomposition of $T^{*} ; W$ is unitary and P is positive one-to-one with $\|P\|<\sqrt{12}\|\pi\|^{2}$. Then $T=P W^{*}$ and $P W^{*} \rho(a)=$ $\pi(a) P W^{*}$. Let $\theta(a)=W^{*} \rho(a) W$. Then $\theta: A \rightarrow B(H)$ is a ${ }^{*}$-representation and $P \theta(a)=\pi(a) P$.
3. Applications. Let A be a C^{*}-algebra, $\theta: A \rightarrow B(H)$ a ${ }^{*}$-representation. Let D : $A \rightarrow B(H)$ be a linear map satisfying $D(a b)=\theta(a) D(b)+D(a) \theta(b)$. The map D has been called a θ-derivation [1]. We cannot show directly that D is inner, but we can show, assuming that θ has a cyclic vector, that there is a closed densely defined operator h such that $D(a)=h \theta(a)-\theta(a) h$ on the domain of h. It then follows from [7, Corollary 5.4] and [6, Proposition 2.1], that there is a bounded operator t on H with $D(a)=\theta(a) t-\theta(a) t$ for $a \in A$. The situation is then the same as for derivations of C^{*}-algebras into a containing $B(H)$ [7, Corollary 5.4].

We construct the unbounded operator h as follows. Let $\pi: A \rightarrow B(H \oplus H)$ be defined by

$$
\pi(a)=\left(\begin{array}{cc}
\theta(a) & D(a) \\
0 & \theta(a)
\end{array}\right)
$$

It is then easily seen that π is a homomorphism. It follows from [13] that D is automatically continuous, so that π is continuous. Let y_{0} be a cyclic unit vector for $\theta(A)$ and apply Theorem 2.4 to π and $x_{0}=\left(0, y_{0}\right)$. There thus exists a bounded operator $S: H_{f} \rightarrow H \oplus H$ such that $S \pi_{f}(a)=\pi(a) S$ and Range $S \supseteq \pi(A) x_{0}=$ $\left\{\left(D(a) y_{0}, \theta(a) y_{0}\right): a \in A\right\}$. Then since π_{f} is a ${ }^{*}$-representation, we also have $\pi_{f}(a) S^{*}=S^{*} \pi\left(a^{*}\right)^{*}$ and $S S^{*} \pi\left(a^{*}\right)^{*}=\pi(a) S S^{*}$. Writing $S S^{*}$ as a 2-by-2 operator matrix, this becomes

$$
\left(\begin{array}{cc}
P & Q \\
R & T
\end{array}\right)\left(\begin{array}{cc}
\theta(a) & 0 \\
D\left(a^{*}\right)^{*} & \theta(a)
\end{array}\right)=\left(\begin{array}{cc}
\theta(a) & D(a) \\
0 & \theta(a)
\end{array}\right)\left(\begin{array}{ll}
P & Q \\
R & T
\end{array}\right) .
$$

The (2,2)-entry of this equation yields that $T \theta(a)=\theta(a) T$ for all $a \in A$. The (1, 2)-entry says that

$$
D(a) T=Q \theta(a)-\theta(a) Q
$$

If $T x=0$ for $x \in H$, then

$$
\left(\left(\begin{array}{cc}
P & Q \\
P & T
\end{array}\right)\binom{0}{x},\binom{0}{x}\right)=(T x, x)=0
$$

so $0 \oplus \operatorname{ker} T \subseteq \operatorname{ker}\left(S S^{*}\right)=(\text { Range } S)^{\perp}$. So if $T x=0$, then

$$
0=\left(\binom{0}{x},\binom{D(a) y_{0}}{\theta(a) y_{0}}\right)=\left(x, \theta(a) y_{0}\right)
$$

for all $a \in A$. So since y_{0} is cyclic for θ it follows that $x=0$, and T is a positive, one-to-one, operator. By replacing Q by a scalar translate, we can assume that Q is invertible. Since $T \in \theta(A)^{\prime}$ we have that $D(a)=Q T^{-1} \theta(a)-\theta(a) Q T^{-1}$ on the
range of T. Since Q is invertible it is easily seen that $Q T^{-1}$ is closed. The following theorem then follows from this, [7, Corollary 5.4] and [6, Proposition 2.1].

Theorem 3.1. Let $\theta: A \rightarrow B(H)$ be a cyclic*-representation of the C^{*}-algebra A. Then any θ-derivation $D: A \rightarrow B(H)$ is inner.

We now consider a different problem. Let A be a C^{*}-subalgebra of $B(H)$, and let $T \in B(H)$ be such that Range T is an invariant linear manifold for A. The invariant operator range problem asks if there is a bounded operator T^{\prime} in the commutant of A such that Range $T=$ Range T^{\prime}. To my knowledge, this problem was first raised by Dixmier at the 1967 Baton Rouge C^{*}-algebra conference. It was noted by Foias that the invariant operator range problem is true if every continuous representation of a C^{*}-algebra is similar to a *-representation [10]. Our next theorem proves that, conversely, if every invariant operator range for a C^{*}-algebra comes from an operator in the commutant, then every cyclic representation is similar to a *-representation.

Theorem 3.2. Let $\pi: A \rightarrow B(H)$ be a continuous representation with a cyclic vector. If every invariant operator range for a C^{*}-algebra comes from an operator in the commutant, then π is similar to a^{*}-representation.

Proof. By Corollary 2.5 we know that there is a *-representation $\theta: A \rightarrow B(H)$ and a bounded, positive, one-to-one operator P on H such that $P \theta(a)=\pi(a) P$. Then $\theta(a) P=P \pi\left(a^{*}\right)^{*}$, so $\theta(A)$ leaves the range of P invariant. By assumption, there is then a bounded operator $R \in \theta(A)^{\prime}$ such that Range $R=$ Range P. Since R and $\left|R^{*}\right|$ have the same range, we may assume that R is positive and one-to-one. There then exist linear tranformations L_{1} and L_{2} such that $R x=P L_{1} x, P x=$ $R L_{2} x$ for all $x \in H$, and an application of the closed graph theorem shows that L_{1} and L_{2} are bounded. Since P and R are one-to-one it follows that L_{1} and L_{2} are inverses. Then $\theta(a) R L_{2}=R L_{2} \pi\left(a^{*}\right)^{*}$, and $R \theta(a) L_{2}=R L_{2} \pi\left(a^{*}\right)^{*}$, so $\theta(a) L_{2}=$ $L_{2} \pi\left(a^{*}\right)^{*}$, or $\pi(a)=L_{2}^{*} \theta(a)\left(L_{2}^{*}\right)^{-1}$, where L_{2} is a bounded operator with a bounded inverse.

The positive results on the similarity problem that were obtained in $\S 2$ do not seem to be sufficient to prove the invariant operator range problem, but the following partial results can be proved.

Theorem 3.3. Let $T \in B(H)$ be such that $T(H)$ is invariant for a C^{*}-subalgebra A of $B(H)$. Then for any $x_{0} \in H$, there is an operator $P \in A^{\prime}$ such that

$$
T x_{0} \in P(H) \subseteq T(H)
$$

Proof. It clearly suffices to assume that $T \geqslant 0$ and T is one-to-one, for otherwise we may cut A down to the closure of $T(H)$. We proceed as in $[10, \mathrm{p}$. 890]. For $a \in A$ and $x \in H$, there is a unique $y \in H$ such that a $T x=T y$. Let $\pi(a) x=y$. Several applications of the closed graph theorem show that $\pi: A \rightarrow$ $B(H)$ is a continuous homomorphism, with $a T=T \pi(a)$ for all $a \in A$. By Theorem 2.4, there is a bounded operator S such that $S \theta(a)=\pi(a) S$, for θ a *-representation of A, and $\pi(A) x_{0} \subseteq$ Range S. By restricting θ to $\operatorname{ker}(S)^{\perp}$, we may assume that
S is one-to-one. From the four equations

$$
\begin{aligned}
a T & =T \pi(a), \\
T a & =\pi\left(a^{*}\right)^{*} T,
\end{aligned} \quad \theta(a)=\pi(a) S, S^{*}=S^{*} \pi\left(a^{*}\right)^{*}, ~ l
$$

we obtain that

$$
\begin{aligned}
T S S^{*} T a & =T S S^{*} \pi\left(a^{*}\right)^{*} T=\operatorname{TS} \theta(a) S^{*} T \\
& =T \pi(a) S S^{*} T=a T S S^{*} T .
\end{aligned}
$$

So $T S S^{*} T$ is in the commutant of A. Let P be the positive square root of $T S S^{*} T$. Then $P \in A^{\prime}$, and Range $P=$ Range $T S \supseteq\left\{T \pi(a) x_{0}: a \in A\right\}$ so $A T x_{0} \subseteq$ Range $P \subseteq$ Range T.

Corollary 3.4. Let $T \in B(H)$ be such that $T(H)$ is invariant for a C^{*}-subalgebra A of $B(H)$. Then $T(H)$ is also invariant for the weak closure of A.

Proof. Let $x \in T(H)$ and choose, by Theorem 3.3, an operator $P \in A^{\prime}$ such that $x \in P(H) \subset T(H)$. Then for all $a \in A^{\prime \prime}, a x \in a P(H) \subseteq P(H) \subseteq T(H)$, so $T(H)$ is invariant for $A^{\prime \prime}$.

We close with the following theorem, which is probably known to many people.
Theorem 3.5. Let A be a nuclear C^{*}-algebra. Then any continuous representation $\pi: A \rightarrow B(H)$ is similar to a^{*}-representation.

Proof. By [9], $A^{* *}$ has an ultraweakly dense C^{*}-subalgebra B which is the norm-closed linear span of an amenable group G of unitaries. By [2, Theorem 1] we can extend π to $\pi_{0}: A^{* *} \rightarrow B(H)$ with π_{0} an ultraweak to ultraweak continuous homomorphism with the same norm as π. By an old result of Dixmier [8], there is a bounded invertible operator S such that $\theta(u)=S^{-1} \pi_{0}(u) S$ is a continuous unitary representation of G. Then $S S^{*} \pi_{0}\left(u^{*}\right)^{*}=\pi_{0}(u) S S^{*}$ for all $u \in G$. It follows that $S S^{*} \pi_{0}\left(a^{*}\right)^{*}=\pi_{0}(a) S S^{*}$ for all a in $A^{* *}$. Let P be the positive square root of $S S^{*}$. Define a map $\rho: A \rightarrow B(H)$ by $\rho(a)=P^{-1} \pi(a) P$. Since $P \pi\left(a^{*}\right)^{*} P^{-1}=P^{-1} \pi(a) P$, it is immediate that ρ is a *-representation of A.

References

1. C. A. Akemann and B. E. Johnson, Derivations of non-separable C^{*}-algebras (preprint).
2. B. A. Barnes, The similarity problem for representations of a B^{*}-algebra, Michigan Math. J. 22 (1975), 25-32.
3. \qquad , When is a representation of a Banach *-algebra Naimark-related to a*-representation?, Pacific J. Math. 72 (1977), 5-25.
4. \qquad , Representations Naimark-related to *-representations; a correction (preprint).
5. J. W. Bunce, Representations of strongly amenable C^{*}-algebras, Proc. Amer. Math. Soc. 32 (1972), 241-246.
6. E. Christensen, Extensions of derivations, J. Functional Anal. 27 (1978), 234-247.
7. \qquad , Extensions of derivations. II (preprint).
8. J. Dixmier, Les moyennes invariantes dans les semi-groupes et leurs applications, Acta Math. (Szeged) 12 (1950), 213-227.
9. G. A. Elliott, On approximately finite-dimensional von Neumann algebras. II, Canad. Math. Bull. 21 (1978), 415-418.
10. C. Foias, Invariant para-closed subspaces, Indiana Univ. Math. J. 21 (1971/72), 887-906.
11. R. V. Kadison, On the orthogonalization of operator representations, Amer. J. Math. 77 (1955), 600-620.
12. G. Pisier, Grothendieck's theorem for non-commutative C^{*}-algebras with an appendix on Grothendieck's constants, J. Functional Anal. 29 (1978), 397-415.
13. J. R. Ringrose, Automatic continuity of derivations of operator algebras, J. London Math. Soc. 5 (1972), 432-438.
14. \qquad , Linear mappings between operator algebras, Symposia Mathematica 20 (1976), 297-316.

Department of Mathematics, University of Kansas, Lawrence, Kansas 66045

