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Knoxville, TN 37996-1301 Missoula, MT 59812-1008
vose@Qcs.utk.edu wright@cs.umt.edu

ABSTRACT

This paper is the first part of a two part series. It proves a number of direct relationships
between the Fourier transform and the simple genetic algorithm. (For a binary representation,
the Walsh transform is the Fourier transform.) The results are of a theoretical nature and are
based on the analysis of mutation and crossover. The Fourier transform of the mixing matrix
is shown to be sparse. An explicit formula is given for the spectrum of the differential of the
mixing transformation. By using the Fourier representation and the fast Fourier transform, one
generation of the infinite population simple genetic algorithm can be computed in time O(c?1°%23),
where c is arity of the alphabet and / is the string length. This is in contrast to the time of O(c%)
for the algorithm as represented in the standard basis. There are two orthogonal decompositions
of population space which are invariant under mixing. The sequel to this paper will apply the
basic theoretical results obtained here to inverse problems and asymptotic behavior.

1 Introduction

That there is some sort of connection between Genetic Algorithms and the Walsh transform has
been a part of GA folklore for a number of years. Folklore asserts that schema utilities are
somehow put in a more perspicuous form via the Walsh transform, and, that schemata determine
GA behavior via the schema theorem.

This perception may have been engendered by Bethke’s Ph.D. dissertation (Bethke, 1981) where
the Walsh transform was used as a tool to construct deceptive functions. Bethke’s Walsh-schema,
analysis of functions is certainly beautiful on its own merits; schema fitness is expressed with
remarkable compactness by Walsh coefficients and low order schemata require the least number
of coefficients, facilitating analysis of deception by way of Walsh coefficients.

Deception has been and will continue to be an important concept in the analysis of genetic al-
gorithm behavior. At the same time, deception is not necessarily germane in every circumstance

'Part of this work was done while the second author was visiting the Computer Science Department of the
University of Tennessee.



(Grefenstette, 1993), deception is not necessarily correlated with high order Walsh coefficients
(Goldberg, 1990), neither is the Walsh transform necessarily the appropriate tool for the con-
struction or analysis of deceptive functions (Deb & Goldberg, 1993). Moreover, the degree to
which schemata determine the course of genetic search via the schema theorem has been seri-
ously called into question (Vose, 1993). The folklore connecting GAs and the Walsh transform is
tenuous at best.

Traditionally, the Walsh transform has been applied to fitness. An early paper of Goldberg (1989)
attempts to calculate the expected value of fitness, expressed in terms of Walsh coefficients,
following the application of genetic operators. While to some extent successful, his paper is
representative of early work in this area however; the effects of operators on Walsh coefficients
may have been considered, but the analysis relies on heuristic arguments and does not involve
the direct application of the Walsh transform to crossover and mutation, or to any of their
associated mathematical objects. For example, Weinberger (1991) applies Fourier analysis to
fitness landscapes and relates the Fourier coefficients to the autocorrelation function of a random
walk on the landscape, but his work does not relate Fourier analysis to crossover operators. Aizawa
(1997) extends earlier work on epistasis variance and crossover correlation by showing how the
crossover correlation can be computed using Walsh coefficients, but she does not apply transform
analysis to the mixing operators (mutation and recombination) themselves.

In contrast, our results are based on the direct application of the Walsh transform to mixing
(mutation and recombination). At some stage the fitness function does get transformed, but that
step is not the fulcrum of our analysis. It appears as an accommodation to the representation
which arises naturally from other considerations related to mixing. Moreover, the connections
we develop between the Walsh Transform and the genetic algorithm are compelling; they hold in
every case (for any mutation, crossover, and fitness), they reveal fundamental structure (i.e., the
eigenvalues of the mixing operator’s differential), they provide the most efficient methods known
to calculate with the infinite population model (in the general case), they provide the only method
known to simulate evolution backwards in time, and they are proven as mathematical theorems.

Previous applications of the Walsh transform to mixing are, to our knowledge, sparse. The paper
of Vose and Liepins (1991) was perhaps the first, demonstrating that the twist of the mixing matrix
is triangularized by the Walsh transform. In a related paper, Koehler (1995) gives a congruence
transformation defined by a lower triangular matrix that diagonalizes the mixing matrix for 1-
point crossover and mutation given by a rate (the mixing matrix is defined at the end of section 2).
The paper of J. N. Kok and P. Floreen (1995) is one of the more recent, independently obtaining
several results which Vose presented at ICGA’95 in the advanced theory tutorial. Their paper also
considers representing variance, representations by way of bit products, and nonuniform Walsh-
schema transforms. Finally, Koehler, Bhattacharyya & Vose (1998) applies the Fourier transform
to mixing in generalizing results concerning the simple genetic algorithm which were previously
established for the binary case. That paper extends the analysis to strings over an alphabet of
cardinality ¢, where ¢ is an arbitrary integer greater than 1.

The goal of this paper and its sequel is to show how the Walsh transform appertains to the
simple genetic algorithm in a natural and inherent way, particularly revealing the dynamics of
mixing, and, as a special case, the dynamics of mutation. Through a series of results, a theoretical



foundation will be laid which explains and exploits the interplay between the Walsh transform
and the simple GA. This paper extends the previous account of our work (given in Vose & Wright,
1996) in three ways. First, it is far more complete, including details and explanations, second, it
contains further results, and third, it is more general, providing a framework that extends directly
to higher cardinality alphabets.

In a companion paper, “The Simple Genetic Algorithm and the Walsh Transform: part II, The
Inverse”, the theoretical groundwork developed here will be brought to bear on inverse problems
and asymptotic behavior.

2 Basics

The formalism used is that of random heuristic search with heuristic G (see Vose & Wright,
1994, and Vose, 1996, the most comprehensive account is in Vose, 1998). This section reviews
technical details, though the focus is on the case of fixed length c-ary strings. As first explained
in Koehler, Bhattacharyya & Vose (1998), it is the Fourier transform, not the Walsh transform,
that is appropriate in the general cardinality case (i.e., when ¢ > 2). However, when ¢ = 2 the
Fourier transform is the Walsh transform; by working with the Fourier transform in the body of
this paper we therefore implicitly deal with the Walsh transform while simultaneously providing
a framework that extends directly to higher cardinality alphabets.

This paper explicitly deals with the Walsh transform by focusing on the binary case (¢ = 2) in the
examples and the concrete results. The notation and several of the abstract results, however, will
be stated in greater generality (for arbitrary ¢) to make plain how the analysis extends. Refined
and completed by Vose, the extension of transform analysis to the general cardinality case began
as joint work with Gary Koehler and Siddhartha Bhattacharyya (1998).

2.1 Notation

Square brackets [--:] are, besides their standard use as specifying a closed interval of numbers,
used to denote an indicator function: if expris an expression which may be true or false, then

[ezpr]

1 if expr is true
0 otherwise

The search space € consists of c-ary strings of length £. Let n = ¢’. Integers in the interval [0,7)
are identified with elements of €2 through their c-ary representation. This correspondence allows
them to be regarded as elements of the product group

Q = Z.x---XZ,
e ——
£ times



where Z. denotes the integers modulo c¢. The group operation on this product (addition modulo c)
is denoted by @, and the operation of componentwise multiplication (modulo ¢) is denoted by ®.
Componentwise subtraction (modulo ¢) is denoted by ©, and 0 & z is abbreviated as —z. When
elements of 2 are bit strings (i.e., ¢ = 2), both @ and © are the componentwise “exclusive-or”
operation, and ® is componentwise “and”. The notation k abbreviates 1 © k. The operation ®
takes precedence over @ and ©, and all three bind more tightly than other operations, except for
k — k which is unary and has highest precedence.

An element k of Q will also be thought of as a column vector in R’ (its c-ary digits are the
components), and in that case is represented with least significant c-ary digit at the top.

Angle brackets <---> denote a tuple, which is to be regarded as a column vector, diag(z) denotes
the square diagonal matrix with ¢ th entry x;. Indexing always begins with zero. Superscript T'
denotes transpose, superscript C' denotes complex conjugate, and superscript H denotes conjugate
transpose. Let 1 denote the column vector of all 1’s. The j th basis vector e; is the jth column

of the identity matrix. The space perpendicular to a vector v is v=.

For example, if ¢ = 3 and ¢ = 5, then the string 21021 corresponds to the integer whose decimal
representation is 196, and to the column vector <1 2 0 1 2 >. In string notation, —21021 =
12012, 21021 & 11220 = 02211, 21021 ® 11220 = 21010, and 21021 & 11220 = 10101.

Given k € €, let those i for which k ® ¢ > 0 be ig < 41 < -+ < iym_1 where m = #k, and
where #k denotes the number of nonzero c-ary digits of k. The injection corresponding to k is the
¢ x m matrix K defined by K;; = [i = i;]. To make explicit the dependence of {2 on the string
length £, it may be written as “Q. The embedding corresponding to k is the image under K of ™)
(regarding elements of ") and Q) as column vectors) and is denoted €. Integers in the interval
[0, ¢™) correspond to elements of 2 through K. Note that € is an Abelian (commutative) group
(Birkhoff and MacLane, 1953) under the operation @, and, more generally, is a commutative ring
with respect to & and ®.

For example, consider the binary case (¢ = 2) with ¢ = 6 and k = 26 = 011010, which gives m = 3
and

OO O OO
OO = O OO
O O O O O



integer element of 30 corresponding element of (2o

0 000 000000
1 001 000010
2 010 001000
3 011 001010
4 100 010000
5 101 010010
6 110 011000
7 111 011010

As illustrated above, embedding an element of ") corresponds to distributing its bits among the
locations where & is nonzero.

An element k €  is called binary (even if ¢ > 2) provided that k; > 0 = k; = 1 (recall that k
is naturally a column vector). The utility of embeddings follows from the fact that if k is binary
then each i € €2 has a unique representation i = u @ v where u € ), and v € Q. This follows
from the identity i =ik DiR k =u P v.

The symbol \ denotes set subtraction (A\ B is the set of elements in A which are not in B). The
notation

f

B
represents the function f restricted to the domain B.

2.2 Selection

Define the simplex to be the set
A = {<zo,.,zn1>:2;€R, 2; >0, X =1}
An element p of A corresponds to a population according to the rule
p; = the proportion of ¢ contained in the population

The cardinality of each generation is a constant r called the population size. Hence the propor-
tional representation given by p unambiguously determines a population once r is known. The
vector p is referred to as a population vector.

Given a fitness function f:Q — R, define the fitness matriz F to be the n x n diagonal matrix
Fi; = f(i). Since f is positive, F' is invertible. It follows that the function F(z) = Fa /17 Fx is
also invertible and

F:AN— A

The image of a population vector p under F is called a selection vector. The ith component
of F(p) is the probability with which i is to be selected (with replacement) from the current
population p.



2.3 Mutation

The symbol p will be used for three different (though related) things. This overloading of u does
not take long to get used to because context makes its meaning clear. The benefits are clean and
elegant presentation and the ability to use a common symbol for ideas whose differences are often
conveniently blurred.

First, u € A can be regarded as a distribution describing the probability p; with which 7 is selected
to be a mutation mask (additional details follow).

Second, p : €2 — €2 can be regarded as a mutation function which is nondeterministic. The result
p(x) of applying p to x is = @ ¢ with probability p;. The ¢ occurring in x @ i is referred to as a
mutation mask.

Third, p € [0,0.5) can be regarded as a mutation rate which implicitly specifies the distribution
i according to the rule

pi = (p/(c—1)* (1—p)t—#

The distribution p need not correspond to any mutation rate, although that is certainly the
classical situation. Any element u € A whatsoever is allowed. The effect of mutation is to alter
the positions of string x in those places where the mutation mask ¢ is nonzero. For arbitrary
p € A, mutation is called positive if p; > 0 for all i. Mutation is called zero if p; = [i = 0].

2.4 Crossover

It is convenient to use the concept of partial probability . Let ( : A — B and suppose ¢ : A —
[0,1], where > ¢(a) = 1. To say “& = ((a) with partial probability ¢(a)” means that & = b with
probability Y ,[¢(a) = b] ¢(a).

The description of crossover parallels the description of mutation; the symbol X will be used for
three different (though related) things.

First, binary X € A can be regarded as a distribution describing the probability X; with which ¢
is selected to be a crossover mask (additional details will follow).

Second, X : Q2 x 2 — Q can be regarded as a crossover function which is nondeterministic. The
result X(z,y) is  ®i @i ®y with partial probability X;/2 and is y ® i ® 1 ® 2 with partial
probability X;/2. The i occurring in the definition of X(x,y) is referred to as a crossover mask.
The application of X(x,y) to x,y is referred to as recombining x and y.

The arguments x and y of the crossover function are called parents, the pair 2 ® i ®i®y and
Yy ®i@i® x are referred to as their children. Note that crossover produces children by exchanging
the components of parents in those positions where the crossover mask i is 1. The result X(z,vy)
is called their child. Thus, the probability that z results as a child from recombining parents =



and y is

Z([z:x®i@%®y]>;+[z:y®z’@%®x]§"> :; %[22:6@2’@5@?;]

7

Third, X € [0, 1] can be regarded as a crossover rate which specifies the distribution X according
to the rule

T Xt; if 1>0
v 1—-X+Xty if i=0

where binary ¢ € A is referred to as the crossover type. Classical crossover types include 1-point
crossover, for which

b 1/(¢—1) if k€ (0,0), i=2F-1
v 0 otherwise

and uniform crossover, for which t; = 2~¢. However, any binary ¢t € A whatsoever is allowed as
a crossover type.

2.5 The heuristic G

The simple genetic algorithm is given by applying the heuristic corresponding to selection (twice)
to produce = and y as parents, followed by mutation of z and y, followed by crossover of the
results of mutation. The pair selected are called parents, and the end result (only one of the two
strings resulting from crossover is kept) is their child. The mizing matriz M is defined by the
probability that child 0 is obtained:

Xk + Xz ) _ '
My = Z MiMka[($@l)®k@k®(y@j):O]

i7j7k

The probability that child u is obtained from parents x and y is Moy you, Which follows from
the following

(zow) @) koke (you) ®j) =0
(z0)RkOk® (Y®j)) O Uk kU) =0
NRkDEk® (ydj)ou=0]
NRkok® (Y& j) =u

It
It
It
It

xr D
xrd

Under very general conditions, it does not matter whether mutation is preformed before or after
crossover, because the mixing matrix would be the same (see Koehler, Bhattacharyya & Vose,
1998).

For example, a 2-bit representation (¢ = 2 and ¢ = 2) with uniform crossover with rate X and
mutation rate p has mixing matrix M given by the following symmetric matrix (only the upper



half is shown)

(L= p? (- )2 (1 )2 L (= )1 - X) - X/4
* p—p? (p—p?) (1= X)+X/4 11/2
* * o=’ 1t/2
* * * u?

Let o be the permutation matrix with ¢, j th entry given by [j © ¢ = k]. Then (oxz); = Tigk-
Define the mizing scheme M : A — A by

M(z) =<...,(cix) Moz, ...>

The 7 th component function G; of the simple genetic algorithm’s heuristic is the probability that
1 is the end result of selection, mutation, and crossover. In vector form it is

G(p) = Mo F(p)

where p is the current population vector.

3 The Fourier Transform

To streamline notation, let e(x) abbreviate 2™V =12/ The Fourier matriz is defined by

Wi = 1/2( 7)

The Fourier matrix is symmetric and unitary (W# = WY = W~ where superscript C' denotes

complex conjugate, and superscript H denotes conjugate transpose). The Fourier transform is the
mapping x — Wz, When ¢ = 2, all objects are real, the conjugation may therefore be dispensed
with, and the Fourier transform reduces to the Walsh transform determined by the matrix

T .

WiJ = n_1/2(—1)2 J

In order to keep formulas simple, it is helpful, for matrix A and vector z, to represent WACW¢
and Wx® concisely. The former is denoted by A and the latter by . The matrix A is referred
to as the Fourier transform of the matrix A. If y is a row vector, then § denotes y“W¢ (which is
referred to as the Fourier transform of y).

3.1 Basic Properties

Let x be a column vector, y a row _vector, and Aa square matrix. If v and v are any of these, then

H

U=u, u+v=7a+0, w0 =1uv, ul = uwl=a- 1. spec(@) = spec(u®) whenever operations

o



are defined. These properties follow easily from the definitions. Moreover if A is symmetric, then
Aij=Aji

Define the twist A* of a n x n matrix A by
(A%ig = Ajoi—i

Let id denote the identity operator A — A, let x denote the twist operator A — A*, let H
denote the conjugate transpose operator A — AH and let A denote the transform operator
A — A. Vose (1998) has proved that the set of operators {H, A, *} generate a group under
composition (the algebraic convention of applying operators from left to right is followed) with
relations AH = HA, HxH = xx = A x A\, and HH = AA = **x = id. Though tedious, this may
be verified in a straightforward manner by direct calculation.

The following theorem is one of the key links between the simple genetic algorithm and the Fourier
transform. Another, as will be seen later, is the effect that the Fourier transform has on the mixing
matrix M and on its twist M™.

Theorem 3.1
ok = /n diag(e=y)

Sketch of proof:
@)is = 'Y eliTu) [0 & u = k] (7))
u,v
= n! Z e(iTu) e(—(k+ u)Tj)
= o PZe(=kTin Y el (i - )
= W_g; \/HZ W_woWuic;
= VaW_; WTW)o e,
= VnW_y,li=j]

The group {ox} of permutation matrices is inherently related to mixing through the definition
M(z)p = (opz)T M(opz)
As described in (Vose, 1990), it follows that {o}} is the linear group which commutes with mixing,
opM(z) = M(opx)

A crucial property of the Fourier transform is that it simultaneously diagonalizes this linear
group (this is theorem 3.1). In fact, this property can be used to obtain the Walsh transform



as follows. A theorem of linear algebra states that if a family of normal matrices commutes,
then they are simultaneously diagonalizable by a similarity transformation (Gantmacher, 1977).
Using a constructive proof of this theorem, a unitary matrix may be computed for the similarity
transformation. Vose (1998) has done this in the binary case for the family {o}}, obtaining the
Walsh matrix as the result. In other words, the Walsh transform can be obtained via fundamental
symmetries which are embedded in the very definition of mixing. This generalizes to the general
cardinality case; the columns of the Fourier matrix are related to fundamental symmetries which
are embedded in the very definition of mixing, they form an orthonormal system of eigenvectors
for the family {0} for general ¢ > 0.

As might be suspected, this inherent relationship of the Fourier transform to mixing (theorem 3.1)
indicates a fruitful direction to explore. The following section demonstrates the amazing ability
of the Fourier transform to unravel the complexity of mixing. A consequence (to be considered
later) is an explicit formula for the spectrum of the differential of the mixing scheme.

3.2 Applications to M

Theorem 3.2 ]\//—T—x,y = [a:Tyzo]gﬁxﬁyZ(Xk—i-XE) [t@k=0Ay®k=0]
k

Sketch of proof:

WMWY _,, = o > e(—aTu—v"y) z% pi fry (X +X5) [(u@ i) @k Ok ® (v j) = 0]
u,v i,j,

= o Y (3 Y el—aTu -y ) (e ) o k= @ (e )

7]]@' u,v

The condition of the characteristic function is equivalent to k ® (u@®i) =k ® (v@® j) = 0. Hence
the innermost sum is

Z e(—zTu o) Z e(—yTvej) = e@li+yy)) Z e(—zTu) Z e(—y"v)

k@u=0 E®@v=0 u€Qp v e Qg

= ne(@li+y’Hrok=0Ay2k=0]

Incorporating these simplifications yields

7‘7 k
n _. . _
= Shady Y (X [r@k=0Ay&k=0]
k

10



Note what has been accomplished by theorem 3.2. The mixing matrix M, which is dense when
mutation is positive, has a sparse Fourier transform! The only entries M, , which can be nonzero
are those for which [#7y = 0]. Moreover, the number of these is

ZCZ—#I _ Zcé—k Z[#x:k]
x k T
= ZcEk<£>(c—1)k
k
= JZ(i)(l—i)k
k

= d2-1/¢)"

Therefore, the proportion of nonzero entries is (2/c—1/c?)?, which converges to zero exponentially
fast as ¢ increases (since ¢ > 2).

The following two corollaries are fairly straightforward consequences (for detailed proofs, see
Koehler, Bhattacharyya & Vose, 1998).

Corollary 3.3 If mutation is zero, then M = M.
Corollary 3.4 M* is lower triangular. If mutation is zero, then M™ is upper triangular.

Theorem 3.2 has further theoretical implications which will be explored later on. Note what has
been accomplished by corollary 3.4. Direct access to the spectrum of M™* has been obtained since
M* is triangularized by taking its transform (and spec(M*) = spec(M*)%). We will also see later
how M* is a crucial component of the differential d M of the mixing scheme M.

The present goal, however, is to demonstrate the utility of the Walsh transform in simplifying
the representation of a concrete mixing matrix. Towards that end, the following lemma will be
useful. For the remainder of this subsection (section 3.2) the binary case is assumed (i.e. ¢ = 2).

175

Lemma 3.5 Z (—1)”“"Tj a) = (1- a)lT’” 1+ a)lTI

J

Sketch of proof: Inducting on 17z, the base case follows from the binomial theorem. Let k = 2°
be such that k@ 2z > 0. Write ras = k@2 ®k = KK 2 @k = Ky ®k, and write j as
j = u®v where u € Qp = {0,k} and v € Q. Note that y € 1. The left hand side of the
proposition is

Z (_1)sza1Tj _ Z (_1)xTua1Tu Z (_1)xTva1Tv

jGEQ ue{0,k} v €Ny

11



= (1-a) Y (—prETegt

w e t=lg
= (1-a) Y (-)rwav™t
w e g_lQ
Applying the inductive hypothesis (since 17y < 172) completes the proof. O

Proposition 3.6 If mutation is affected by a mutation rate, then fi, = 272 (1-— 2,u)1T"’“"

Sketch of proof:

02~ CaTi o 1T 1T PRY _\aTi (M 17
Hpe = XTI = e (+=)
Applying proposition 3.5 to the right hand side completes the proof. O

The next proposition, which handles the remaining factor in theorem 3.2 for the case of 1-point
crossover, relies on the following auxiliary functions

0 if =0
hi(z) = {

sup{i:2'®@x >0} otherwise
{ it =0
lo(z) = ,
inf{i:2'®x >0} otherwise
Intuitively, the function hi(z) returns the index of the high order bit of z, and lo(z) returns

the index of the low order bit. The notation (expr)™, used in the next proposition, denotes
max {0, expr}.

Proposition 3.7 For I-point crossover, if x @ y =0, then

X .
Z XkEB:r - (]— - X) 5:1:,0 + /—1 (10<y) - hl(x))Jr
k€ Qzgy

Sketch of proof: Let m denote a variable over the domain {2¢ —1:0 < i < £}. Note that for a
given value of m there is a corresponding value of ¢, and vice versa. It follows from the definition

12



of the 1-point crossover type that the left hand side of proposition 3.7 is

Z (1 —=X) bzpr0 + L[Hm.x@k:m]

k€ Qzey (=1

X
= (1-X)&o + ;o7 D e@k=mAko(1leToy) =0

m,k
Note that
rR@yY=0Nzcdk=m = k®(107TQ7) = (z&dm)(rxdy) =z3mMdmey

Hence the characteristic function in the sum above simplifies to [z € Q,, A y € Qm]. The
observation

D e AyeQm = Y [yeQm = (lo(y) - hi(2)*
m hi(z) <1t
completes the proof. O

Collecting together the previous results yields

o~

Proposition 3.8 For 1-point crossover and mutation rate p, M;; is given by

. . . + . . . +

o - 17iq; o 52‘,0 + 5]'70 X (10(]) - h1(2>) + (10(2) — hl(]))
The special case of proposition 3.8 corresponding to ¢ = 0 was first proved by Gary J. Koehler
(1994) (this has since been generalized, see Koehler, Bhattacharyya & Vose, 1998). Proposition 3.6
is also due to him (though by a much more complicated argument). Proposition 3.8 is noted here
as a concrete example of how the Walsh transform drastically simplifies representation.

For example, the Walsh transform of the (2-bit representation) mixing matrix given earlier is

1 5 b s—n (G-wP2-x
= 3 h 0 (3 — 1)*x
- 1 1 2
53— M (3 — )X 0
(3 —1?*(2-x) 0 0

As predicted (see the discussion preceding corollary 3.3), M is sparse, containing 9 nonzero entries.
The Walsh transform of the twist of the (2-bit representation) mixing matrix given earlier is given
by

13
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As predicted by corollary 3.4, it is lower triangular.

3.3 Applications to dM

The main application of theorem 3.2 is to the differential dM of the mixing scheme M. Some
preliminary observations prepare the way.

Observe that (ol M* 0uw)ij = (M*)icujou = Mjciuci- Next note that the 4, jth entry of dM,
is given by

‘ Ly Ty Mu@i,v@i = Z (5u,jxv + 5v,jxu) Mu@i,v@i = 2 Z Ty Mj@i,u@i
u

) u,v

This establishes
Theorem 3.9 dM, =25 a;-f M* o, 2y

Notice how the twist M* of the mixing matrix, as well as the permutation group {o,}, appear
naturally in the differential as given by theorem 3.9. In view of theorem 3.1 and corollary 3.4,
one would expect the Fourier transform to be particularly revealing of properties of the mixing
scheme M. We will see that is the case to some extent below, and the sequel to this paper will
demonstrate it in full.

The next proposition is a stepping stone towards determining the spectrum of d M, and will also
be useful when the Fourier basis is considered in the next section.

Proposition 3.10 (dj/l\m)i,j = 2y/n (M~ *)ij Tioj
Sketch of proof: By theorem 3.1, (,,);; = 0, e(—j u), so by theorem 3.9 and the properties of

the transform listed in section 3.1,

(d//\zx)i,j = 22 CM Tu)ij Tu

= 23 2 Y Giwe(uli) (M* )y b0 e(—57 )
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—

= 2 wye(ul (i 7)) (M)

= 2V/n(M*)i; (Wa)ie;

The next proposition is useful because the mixing scheme M is defined with respect to an ambient
space (R™) of dimension larger than its domain A. The differential of M at z is the unique linear
transformation d M, satisfying

Mz+y) = M(z) + dMyy + o(y)

This relation indicates that 4y and x are in the domain of M, hence 17 (z +y) =17z =1. It
follows that y € 11. Therefore, dM, |;. is the relevant linear map (unless a domain larger than
A is being considered). The following result helps clarify what happens when dM is restricted to
1+

Proposition 3.11 Suppose Ax = Ax. Then

spec(A) = spec(AT| ) U {\}
L
Sketch of proof: Since x is an eigenvector of A, it follows that AT : 2+ — z+. Without loss of
generality z is a unit vector. Let {b1,...,b,} be an orthonormal basis with b, = x, and let these

vectors form the columns of B. Observe that if j < n then BTATBe; = B~1ATb; ¢ B~Y(at) C

e;-. Hence
T
BTATB = <C :) and BTAB = (C 0)

0 * %

Note that BT ABe, = B" Az = AB~'b,, = \e,,. Thus the last diagonal element in the matrices
above is A. Since, with respect to the chosen basis, elements of z- have the form

()

it follows that C represents AT on z. Since the spectrum is invariant under change of basis, it
follows from the representation for BT AT B that spec(A”) = spec(C) U {\}. The observation
that a matrix has the same spectrum as its transpose completes the proof. O

Because it is of potential interest to consider M on a domain larger than A, the following result
is stated in greater generality.

Theorem 3.12 The spectrum of dM,, is the spectrum of M* multiplied by 2-1Tx. In particular,
for x € A, it is independent of x and is given by 2 times the Oth column of M. If moreover
mutation is positive, then the largest eigenvalue is 2 and all other eigenvalues are in the interior
of the unit disk.
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Sketch of proof: Because the spectrum is invariant under conjugation by W (a change of basm)
it suffices to consider the spectrum of d/\/l By corollary 3.4 and proposition 3.10, de is
lower triangular, having spectrum given by its diagonal entries which are 2,/n (W)” Zo. By a
straightforward computation 2 (]\/4\*)” Vniy = ZM\,LO 172 (use *A = A %), which establishes
the first part of theorem 3.12.

Since (M*)T1 = 1, it follows from proposition 3.11 that

spec(M*| ) = spec(M™) \ {1}

1L

As noted above, (W)” = M\—z’,o, so, by theorem 3.2, the spectral radius of M* restricted to 1+
is

su% Vniij = Z(Xk-i-Xg) [k®j=0]

i>
If p is positive and j > 0, cancellation occurs in the sum defining /n fi; and so it must have
modulus less than 1. Next note that the subscripts in the sum above are of the form v and v & j
where u,v € €=. Since ()= is a group, u = v & j is impossible; it would lead to the contradiction
UV =j € ij. The sum can therefore have no repeated terms and is at most 1. Hence the
spectral radius of M* restricted to 11 is less than 1/2. O

To summarize some of the most notable results of this section,

Theorem 3.2 shows how the Fourier transform simplifies M in the general case.

Proposition 3.8 specializes this to the Walsh transform in the concrete binary case corre-
sponding to one-point crossover and mutation given by a rate.

Corollary 3.4 shows the Fourier transform triangulates M *.

Theorem 3.12 reveals the spectrum of d M as a column of 2M.

As has been explained in this section, the Fourier transform emerges in a natural way when one
considers mixing. There are further connections however, as the following sections will show.

4 The Fourier Basis

In the binary case (¢ = 2), the hyperplane containing A is a translate in the direction of the
first column of W of the linear span of the other columns. This observation hints that a natural
basis for representing G might be given by the columns of W (i.e., €y, ..., €,-1). Moreover, and far
more telling, the results of the previous section demonstrate how the Fourier transform — which
essentially corresponds to a change of basis — profoundly simplifies M in the general case. The
development of how G transforms in this representation (i.e., with respect to this basis) is the
subject of this section.
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The approach taken is through the differential of M. The following theorem explains how dM
transforms the Fourier basis B = {ép, ..., €,—1}.

Theorem 4.1 d./\/lgjeAi = 2@]\7'7_]'@ and eAdeMeAj = 2\/5]\//}\*@_]' @T

Sketch of proof: By proposition 3.10 and the properties of the transform listed in section 3.1,
Mz & = W(ch/\/l;jWei)CC
= WdM_e
= 2/ W Y (M), dheien
k

= 2\/5(]\%)10@]1 Weia;

The proof of the first equation is completed by observing, when applied to a real symmetrlc
matrix, that * A\C = * AHT = H*x AT = xx AT = A*T. Therefore (M"‘)Z@JZ = M —i=M; ;.
The second equation is a consequence of the first,

&'dMz = &AM (Y epel) WE
k
= gldMs Y een”
k
= Y &' (dMg er) ek
k
= 2Vn Yy My ;& g’
k
= 2VnM;e)€iaj"

The proof is completed by using the relation A = % A . a

Theorem 4.2 dM, y is symmetric and linear in x and y. Moreover,
1
M(z) = M(y) = dMawy (2 —y)

1Tam, = 217z17
1"M(z) = (17xz)?

Sketch of proof: Symmetry in x and y follows from linearity and the fact that symmetry holds on
a basis (via theorem 4.1; keep in mind that since M is symmetric, M; _; = Mj ;). Linearity is

17



a consequence of theorem 3.9. The second formula is a consequence of symmetry, linearity, and
the first. The third formula follows from theorem 3.9 and a simple calculation (use the fact that
17 M* = 17). The last formula follows from the third and first. The first formula is a consequence
of theorem 3.9 and a simple calculation:

M(z) = Z eizk: Tk Z Mjcikei 2
1
- Zk:xkzez ZJ:(UgM*Uk)mﬂfj
- Zxkzl:ez (elal M* oy 2)
— ieiengUgM*kakx
i k

1

|

We are now positioned to derive how G transforms in the coordinates corresponding to the Walsh
basis B. Whereas in the binary case (¢ = 2) real space suffices, the nonbinary case (¢ > 2) involves
a transform matrix with complex entries. We must therefore move to complex space.

Transforming the representation

Z TjCj
and then replacing x by Z in the resulting expression yields

~C ~

2776
The ability to pass between these two representations for x will be useful. By theorem 4.2 we can
write M(x) as

1

Using the second representation for x given above and expanding by the bilinearity of d./\/l(.)(-)
allows this to be written as

72:’130 CAM 6
.7

Appealing to the first formula of theorem 4.1 and making the change of variables i & j = k leads
to

M) = Vnd e > 285 Mer
k 7

This derivation establishes

Theorem 4.3 The k th component of M(x) with respect to the basis B = {€p,...,en_1} is

Z :I: $k@z 7 Z@k
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The next step is to calculate how F transforms in the coordinates corresponding to B. Observe
that

/\CA

Fr = Z(Fx)jej = Z(F:c)jej

Therefore
C C

— N — DN —
17Fz = Z(Fa:)j 1'e; = \/ﬁZ(Fx)] &'é; = Vn(Fx),
J

J

This leads to

Theorem 4.4 Let F' = diag(f) be the fitness matriz. The kth component of F(x) with respect
to the basis B is

flong®/(VafT2¢)

Sketch of proof: Since (ﬁ) ;= ejT}?' Z, the discussion preceding theorem 4.4 shows it suffices that

e?ﬁ = ]?Haj/\/ﬁ
This follows from theorem 3.1 by the following calculation,
IF o= (WO FWC
= (MCRWC
= ¢ diag(f) W®
= fTdiag(e;) W€
= (/W) (Wdiag () W)
= fHdiag/(z/_\j)
= fMoj/vn
O
Theorems 4.3 and 4.4 show that computing G in Fourier coordinates (i.e., computing with respect

to the basis B) is far more efficient than computing it in the standard basis. Consider the binary
case (¢ = 2) for example. The ith component of M(x) involves the quadratic form

(Uix)TMO'i.CC

With positive mutation, M is dense and each computation is O(n?). Moreover, there are n
such components to consider, giving G at least O(n?) complexity. In comparison, the cost of the
corresponding component in Walsh coordinates is the size of ), since the representation given
by theorem 4.3 has nonzero terms only when i’ (k ©4) = 0 (this follows from theorem 3.2) which
implies i € Q, (in the general cardinality case, the number of nonzero terms is the same because
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i (k©1i) = 0 implies that at every position i is either zero or matches k). Hence the total expense
is bounded by the order of

anrd(ﬂk) = ZQlTk = Z2“Z[1Tk:u] = Z2“<5> = plog23
k u k u

k

This compares favorably with O(n?). In Walsh coordinates, selection is the dominant cost. By
theorem 4.4 it is O(n?), but this cost need not be incurred since transforming between coordinate
systems via the fast Walsh transform (or fast Fourier transform in the general case) costs only
O(nlnn) and selection can be computed in standard coordinates at a cost of O(n).

There are reasons far more profound than computational efficiency, O(n'°823) vs O(n?), that the
Fourier basis B appertains to the simple genetic algorithm. The next paper in this series will show
how the Walsh basis can be applied to effectively triangulate the equations which correspond to
mixing. A number of interesting consequences to having access to the triangularized system will
be explored there.

This paper closes with the following section which is specialized to the binary case. The subject
is how Walsh coordinates induce a decomposition of A into regions of space which are invariant
under mixing.

5 Invariance

Before proving the invariance theorem, we discuss the relationship of mutation to the standard
basis so as to provide a frame of reference.

If p is a population vector which does not have components in the direction of every basis vector,
then p represents a population in which some string types are missing. In particular, string 7 is
missing from the population exactly when p; = 0. After mixing however, every string is expected
to be represented, provided that mutation is positive, since any string has a nonzero probability
of being produced by mutation and surviving crossover (being crossed with itself).

Hence there is no proper subset of the basis vectors whose linear span is invariant under M. If
some components of p were zero, those components become positive in the vector M(p). This is
perhaps intuitive, since mutation “spreads out” the initial population to contain, in expectation,

instances of every string type.

Nevertheless, in Walsh coordinates there are invariant subspaces — exponentially many of them —
even when mutation is positive. That result is the subject of this section.

If S is a set of vectors, let £S denote their linear span. The invariance theorem is:

Theorem 5.1 For all k, both L{é;:i € Qy} and L{€;: j ¢ Q} are invariant under M.
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Sketch of proof: We consider the second space first. Let = }_ a;€; be an element of £L{€; : j ¢ Q;}.
Thus i € Q, = «a; = 0. By theorem 4.3, for such ¢

eAZ-T/\/l(:L") = 2l Z oy i Moy i
uEQi

Since §; C 4, the coefficients «a,, are zero.

Next let = = > a;é; be an element of L£{¢; : i € Q}. For j ¢ Q) we have as before,

é\JTM(IIZ‘) = 2£/2 Z auau@jMu,u@j
UEQj

where nonzero terms are subscripted by elments of ;. Since j ¢ Q) = a; = 0, every term will
be zero provided that
’LLEQJ‘ — U¢Qk V u@]%gk

This implication follows from the fact that u® (u® j) = j ¢ Q. O

Space has, for every choice of k € €2, the orthogonal decomposition

Theorem 5.1 shows each factor space is invariant under mixing. Since mixing preserves A, the
intersection of these spaces with A is also invariant. As a special case, each region is invariant
under mutation.

Conclusion

This paper demonstrates a number of theoretical connections between the Walsh transform and
the simple genetic algorithm. By working with the Fourier transform, of which the Walsh trans-
form is a special case, we have carried out the investigation within a framework that extends
directly to higher cardinality (nonbinary) alphabets.

A number of abstract theoretical results have been obtained which will be useful in supporting
further inquiry into the basic nature and properties of the simple genetic algorithm and its asso-
ciated mathematical objects. We briefly indicate below how the results of this paper are relevant
in a wider context.

The major connections presented in this paper of the Walsh transform to the simple genetic
algorithm are through:

1. Diagonalization of the linear group commuting with M.

2. Simplification of M (a dense matrix becomes sparse).
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3. Triangulation of M™* (giving access to its spectrum).
4. Explicit determination of the spectrum of dM.
5. Complexity advantages of computations using the basis B.

6. Orthogonal decompositions of space invariant under mixing.

The linear group {0y} occurring in the definition of the mixing scheme identifies the Walsh trans-
form as an inherent — not an arbitrary — object related to the simple genetic algorithm. This is
the implication of the first connection enumerated above. The Walsh transform simultaneously
diagonalizes this group. In other words, the columns of the Walsh matrix are related to funda-
mental symmetries which are embedded in the very definition of mixing; they are an orthonormal
system of eigenvectors for the family {oy}.

The infinite population algorithm (i.e., G) has recently been receiving increasing attention for
various reasons. Not the least of these is the fact that the finite population model contains G
as a defining component (see, for example, Juliany & Vose, 1994, and Vose, 1996). For both
analysis and computation, significant progress has been achieved when the mathematical objects
involved can be simplified. The second connection enumerated above is progress of that type. We
have shown how the Fourier transform makes the fully positive (for nonzero mutation) matrix
M sparse. Moreover, M is a fundamental component of both the infinite and finite population
models as it occurs in the definition of M which is a composition factor of G.

Getting a handle on the spectrum of M* is of basic importance to better understanding d M, and,
as the sequel to this paper will demonstrate in complete detail, to determining the behavior of the
mixing operator. The third connection enumerated above gives access to this spectrum. One of
its concrete applications is the fourth connection; explicit determination of the spectrum of dM.
As shown in Koehler, Bhattacharyya & Vose (1998) and Vose & Wright (1995), this spectrum is
related to the stability of fixed points of G (in fact, its connection to stability of fixed points lead
to the discovery that minimal deceptive problems (Goldberg, 1987) are incomplete with respect
to determining GA hard functions for the two bit infinite population model, see Juliany & Vose,
(1994).

Working out how selection and mixing transform in the Fourier basis leads to the fifth connection
enumerated above, providing the most efficient methods known to calculate with the infinite
population model in the general case. The Fourier basis is crucial to decreasing the time involved
in working with examples, to extending the size of simulations, and to conducting a wider range
of computational experiments. The increase in efficiency provided is from O(n?) to O(n!-5%%).

Interpreting the final connection, determining decompositions of space invariant under mixing, is
beyond the scope of this paper. Suffice it to mention that Vose has worked out how it relates to
quotient maps and the interpretation of genetic operators as taking place on equivalence classes
(the connections, however, are in some respects complicated and would require more space than is
feasible to include either here or in the sequel). The interested reader is referred to (Vose, 1998).
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The sequel to this paper will apply basic theoretical results of this paper, and the Fourier basis in
particular, to further demonstrate how the Fourier transform in general, and the Walsh transform
in particular, appertains to the theory of the simple genetic algorithm. The focus there is on
inverse problems and asymptotic behavior.
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