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Abstract

As virtual environment (VE) technology becomes accessible to (and affordable for) an
ever-widening audience of users, the demand for VE applications will increase. Tools
that assist and facilitate the development of these applications, therefore, will also be
in demand. To support our efforts in quickly designing and implementing VE applica-
tions, we have developed the Simple Virtual Environment (SVE) library. In this article,
we describe the characteristics of the library that support the development of both
simple and complex VE applications. Simple applications are created by novice pro-
grammers or for rapid prototyping. More-complex applications incorporate new user
input and output devices, as well as new techniques for user interaction, rendering, or
animation. The SVE library provides more-comprehensive support for developing new
VE applications and better supports the various device configurations of VE applica-
tions than current systems for 3-D graphical applications. The development of simple
VE applications is supported through provided default interaction, rendering, and user
input and output device handling. The library’s framework includes an execution
framework that provides structure for incrementally adding complexity to selected
tasks of an application, and an environment model that provides a layer of abstraction
between the application and the device configuration actually used at runtime. This
design supports rapid development of VE applications through incremental develop-
ment, code reuse, and independence from hardware resources during the develop-
ment.

1 Introduction

The development of VE applications is an area inviting experimentation.
In particular, the field is open to new applications, different device configura-
tions, new techniques for rendering, interaction, and model maintenance. Such
experimentation is most productive when new ideas and designs can be imple-
mented quickly and then compared to previous implementations. However,
developing even simple VE applications with limited or no software support
requires a considerable amount of expertise and development time. In addition,
it is quite difficult to reuse modules of VE applications in projects that use dif-
ferent configurations.

To support the rapid development of novel VE applications that may intro-
duce new environments, behaviors, or software techniques, we have developed
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the Simple Virtual Environment (SVE) library and run-
time system. We designed SVE to meet the following
goals.

1. Provide software support for the creation of simple
VE applications by novice developers.

2. Provide a framework for extending simple VE ap-
plications to include additional technology or
more-complex behavior.

3. Allow an application to be developed indepen-
dently from the system configuration used at run-
time.

Supporting the rapid development of simple VE appli-
cations is critical for quickly bringing people up to speed
with the technology and interaction and rendering tech-
niques common to VE applications. A framework for
extensions to the default behavior allows for rapid, fo-
cused experimentation with new techniques in different
aspects of the application; further, it allows these new
techniques to be easily incorporated into VE applications
that can benefit from them. One area of experimentation
is determining, for a particular VE application, the best
configuration of input devices (such as tracking, glove,
and button devices) and output devices (such as head-
mounted displays (HMDs), stereoscopic or single-view
projection screens, monitors, handheld displays, and
audio speakers). Our design allows a variety of device
configurations to be specified at runtime by providing a
separation between the devices used and the environ-
ment model, and by defining how the device input af-
fects the model.

Like many 3-D scene-rendering systems, the SVE li-
brary provides a runtime system that generates a first-
person point of view of a 3-D environment, described by
a scene graph of geometric objects, and the library al-
lows the user to fly through the environment (in the us-
er’s gaze direction) as a response to user input. The li-
brary, therefore, supports the rapid development of
architectural walkthrough applications, as described by
Brooks (1986). The main effort of developers for these
types of VE applications is spent generating the geomet-
ric model of the environment using an independent
CAD software package. To optimize the rendering pro-
cess so that a high display rate can be obtained, the SVE

run-time system utilizes many common algorithms and
model representations, such as pregenerating display lists
and geometric transformations for objects, and quickly
culling objects not in view using simple bounding-
sphere or -box representations of objects.

What sets SVE apart from other 3-D rendering sys-
tems is that it provides comprehensive support for exten-
sions that can be developed independently and easily
integrated, and that it allows for a variety of input and
output device configurations to be selected for a particu-
lar application with little or no additional programming.
Device independence is achieved by using the SVE envi-
ronment model as the interface between input and out-
put devices and the application. The environment model
describes the dynamic state of the application’s 3-D en-
vironment and includes a representation of the user in
the environment.

As Figure 1 shows, the SVE framework provides the
environment model and an execution cycle that ensures
default routines are invoked at the right time to handle
input, output, and other actions that examine and/or
modify the environment model. The SVE system also
provides distributable components to interface with de-
vices connected to remote computers. In addition, the
figure demonstrates that the SVE framework allows an
application to provide its own routines, invoked by the
execution-cycle module, to handle devices, interactions,
animations, and rendering by interfacing with the envi-
ronment model.

After discussing related work in the next section, we
present the design of the environment model and the
user representation in that model. We demonstrate how
our design allows for a wide variety of display and user
input devices and configurations, which can be changed
with little or no additional application programming. In
Section 4, we describe how the framework of the library
supports extensions in all aspects of VE applications,
how the framework supports new complex mechanisms
such as interaction techniques and polling device han-
dling, and how the environment model provides a com-
mon database that allows extensions to interface with
each other as well as the system. We conclude by sum-
marizing the aspects of the SVE system that make it an
effective development tool.

188 PRESENCE: VOLUME 9, NUMBER 2



2 Related Work

As the technology for VE applications became
available and was integrated, software systems and tools
were created to support the development of applications
using the technology. The first of such systems was the
RB2 (Reality Built for 2) system created at VPL (Blan-
chard, 1990), which provided for the development of
simple VE applications by novices to VE technology.
Application developers, though, were constrained by a
limited set of data-transformation nodes provided by the
visual programming interface, Body Electric, which al-
lowed for modifications to the scene and viewpoint as
reactions to input data. The MR toolkit (Shaw et al.,
1993), a widely used VE application development library
developed at the University of Alberta, allowed for com-
plex VE applications by providing the components nec-
essary to transform existing 3-D visualization applica-
tions into immersive VE applications. The toolkit
provided a low-level interface to distributed components
of the VE application. Later additions provided support
for geometric objects with behaviors, programmed using
OML (Object Modeling Language, which was also de-
veloped at the University of Alberta), and provided sup-

port for a high-level description of the OML objects and
their interaction in the environment using the Environ-
ment Manager (EM) tool (Wang, Green, & Shaw,
1995). Developing applications using the MR toolkit
can be done at a low level, which does not provide ge-
ometry and rendering support, or at a high level using
EM and OML. Using EM and OML, however, requires
extra effort in learning a new language for describing
organization and behaviors. Low-level application code
can instance high-level OML objects, but it is not clear
that a high-level application programmed and config-
ured using EM is extensible to include low-level code,
such as application-specific rendering or interface tech-
niques.

Many VE application-support software systems de-
compose the VE application into components that can
be executed concurrently, perhaps as part of a distrib-
uted system. One such system, VEOS (Bricken, 1994),
partitions the VE application into self-contained entities
that have an internal ‘‘persist’’ behavior and a ‘‘react’’
behavior that takes action on events identified by its ‘‘in-
teract’’ behavior. The self-contained and hierarchical
nature of the entities (entitities can be contained in other
entities), and the use of the LISP language to define be-

Figure 1. The SVE framework.

Kessler et al. 189



haviors, provides a modular design that allows for an
efficient distributed application. However, performance
shortfalls of the system have led to its discontinued use.
Another such system is VR-DECK (Codella et al.,
1993), which provides for events to be passed between
software components that may be distributed about a
network. A VE application is defined by a set of compo-
nents and their event connections. However, the com-
ponents do not share a common view of the environ-
ment and each must rely on other components to
produce the information about the environment re-
quired for the component’s task.

The DIVE (Carlsson & Hagsand, 1993; Hagsand,
1996), AVIARY (Snowdon, 1994), and dVS (Ghee,
1995) systems provide a task-level decomposition of a
VE application. Each system provides components com-
mon to VE applications, such as tracking device interfac-
ing, geometric object maintenance, and visualizer com-
ponents that render the user’s view. An application is
created by programming application components that
introduce and manipulate geometric objects in the envi-
ronment shared by the other components by using input
from input-collection components. These systems pro-
vide for the development of complex, distributed VE
applications but require considerable work to extend (as
new components need to be written). Like the MR tool-
kit, the dVS system has a higher level add-on, called
dVISE, which allows for the specification of interactive,
animated environments in ASCII-text world definition
files. Therefore, application development is done at a
low level using dVS routines, or at a high level, after
learning the dVISE environment model. Because dVS is
not designed with ease of use in mind, extending past
the capabilities provided by dVISE will require a large
step in understanding the support system.

The Alice system (Pausch, 1995) provides an environ-
ment to rapidly prototype VE applications. An applica-
tion developed using Alice consists of a number of
scripts written in Python, an object-oriented, interpreted
language, and possibly subroutines written in C or C11

which are referred to by the Python script. The Alice
system provides Python classes that can be instantiated
to introduce geometric objects into the environment
and to define behaviors for geometric objects. Due to its
interpretive nature, VE applications written using Py-

thon and the Alice system can be quickly altered to in-
troduce new interactions and behaviors, but they will
provide slower simulation speeds than compiled code.
The rendering and view-determination tasks are de-
coupled from the simulation to achieve high frame rates
independent of the simulation computation, but this
decoupling prohibits extensions by the application de-
veloper to the rendering techniques used for the geo-
metric objects.

The Avocado framework (Tramberend, 1999) also
provides a script interface, using Scheme, which can ac-
cess subroutines or objects written in C11. The frame-
work is primarily designed to share scene graphics and
application data in a distributed VE system, but it does
not describe a framework for user representation in the
environment model or for independence from input de-
vices.

A few 3-D graphical application development toolkits
exist that allow the designer to describe a 3-D model at a
higher level than 3-D graphics libraries that simply draw
primitives such as lines and polygons. These toolkits in-
clude Inventor (Strauss, 1993), Performer (Rohlf &
Helman, 1994), Mirage (Tarlton & Tarlton, 1992), and
Java3D (Sowizral et al., 1998). They provide a collec-
tion of object types that represent graphical shapes,
lights, and groupings, which the application can create
instances of and include in a scene graph. The Inventor
and Mirage toolkits also include camera object types that
determine the eye point and gaze direction in the scene
for display rendering. The Java3D API improves on the
camera model by including a ‘‘view platform’’ object in
the scene graph, which is associated with a view object
that defines how the user’s view is generated from the
point of view of the view platform. The view object can
be configured for head-mounted display or head-
tracked, fixed display configurations. On the other hand,
Performer treats the viewing parameters separately from
the scene graph.

Although these toolkits can be used to develop VE
applications with the addition of software to interface
with the tracking, input, and output devices used, they
are primarily designed for scene animation and visualiza-
tion on a flat screen. On the other hand, the WorldTool-
Kit (WTK) library developed by Sense8 (1998) provides
a 3-D scene renderer that does provide for incorporating
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tracking device input and other input to manipulate the
viewpoint and geometric objects in the environment, as
well as allowing for different display outputs. However,
developers using the WTK library must maintain in their
program the association of the user’s viewpoint, body-
monitoring devices, and the objects in the environ-
ment—associations that the SVE environment model
maintains automatically. In addition, the SVE library
provides a more complete framework for extensions and
supporting application behavior.

The Bamboo system (Watsen & Zyda, 1998) supports
the development of networked VE applications through
a mechanism to combine required modules designed for
specific subtasks of the application, and through provid-
ing a structure to the execution of those modules. Al-
though it provides an extensible execution framework, it
does not provide a structured model of the environment
that, in the SVE library, serves as a common interface
between the modules. Consequently, the Bamboo sys-
tem depends on modules that provide the rendering of
the environment and the support of simple interactions
to be designed to interact with each other. In the SVE
library, these basic functions of a VE application are pro-
vided by default routines (which can be replaced or aug-
mented) that use the common environment model.

3 The SVE Environment Model

The SVE environment model was designed to pro-
vide a separation between an SVE application and the
interface configuration of the application. An SVE appli-
cation can be easily configured to use any number of
positional tracking devices, including six-DOF trackers,
gloves that report finger movements, and conventional
mouse and keyboard control. In addition, an SVE appli-
cation can be configured to generate a display for an
HMD, a stationary display (desktop or wall-projected),
or a handheld display. For example, the SVE library has
been used to develop an immersive, airplane environ-
ment displayed on an HMD to a person being treated
for a fear of flying (Hodges et al., 1996). Another appli-
cation built using SVE—this one providing scientific
visualization of 3-D information—used a desktop, stereo

display (Obeysekare, 1996). The configuration can in-
clude selection from a range of rendering features, such
as lighting, Gouraud shading, and texture mapping, to
match the capabilities of the hardware running the appli-
cation. When appropriate, an application can have a dif-
ferent behavior for different configurations, but for most
common situations, the design of the SVE environment
model makes special handling of different configurations
generally unnecessary.

The separation of an application from its configura-
tion increases the speed with which developers can cre-
ate new applications by allowing development when the
destination hardware configuration is not completely
available, and by allowing experimentation with different
configurations. For example, most of the development
of a simulated animal’s behavior in reaction to its envi-
ronment and the user’s distance and gaze direction can
be accomplished without testing the application with the
developer in a tracked HMD. Instead, the user’s posi-
tion and orientation can be controlled by mouse input.
In addition, allowing an application to easily switch be-
tween configurations would make it easy to compare a
user’s response to an environment presented in an HMD
with the environment projected in stereo onto a wall.

The SVE environment model contains a default set of
elements that represent the user’s presence in the envi-
ronment. This user model serves as the interface be-
tween an application and the system configuration of a
display and a set of input devices. Using this model, an
application can easily determine the user’s head, hand,
or eye position and gaze direction as determined by the
devices used in the configuration. We describe the de-
sign of the environment model and the user model in
the next section. The use of particular displays and posi-
tional tracking devices is handled by automatically intro-
ducing a small group of elements into the environment
and user model. In Section 3.2, we describe the ele-
ments introduced to represent display configurations
and how they are used by the application. In Section
3.3, we describe how the system calculates the viewing
parameters for rendering the user’s view(s) for a particu-
lar display configuration. Finally, in Section 3.4, we de-
scribe the elements introduced to handle tracking, de-
vice input.
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3.1 Modeling the Environment
and the User

By their very nature, VE applications define an en-
vironment within which a user can explore and interact.
This environment generally contains geometric objects,
possibly with additional characteristics such as behavior
or state, ambient and localized audio, and a representa-
tion of the user. Like many 3-D rendering systems, the
SVE environment is modeled as a coordinate-system
graph, or scene graph, of geometric objects. Each node
of the graph has one parent node and any number of
child nodes. The edge between a node, A, and its parent,
B, is associated with a coordinate system transformation,
TB;A, that transforms geometric points described in A’s
coordinate system into B’s coordinate system. The trans-
formations are stored as 4 3 4 matrices that generally
perform affine transformations (translation, rotation,
scale, and so on) on 3-D points that make up the ob-
ject’s geometry. Details on the use of transformation
matrices in coordinate system graphs are given in the
Appendix. In short, one can think of a node in the graph
as representing a rigid geometry that is attached with a
position and orientation offset (given by the transforma-
tion) to its parent geometry. An object’s position (or,
more precisely, the position of its origin) can be com-
puted by composing the transformations between the
object and the root of the coordinate system graph. In
fact, an object in the SVE object tree may simply be a
placeholder for a special position or coordinate system in
the environment, having no visible geometry to be ren-
dered. For example, the user representation in the SVE
environment model is a collection of empty geometric
objects that define the position of key components of
the user. We will call this type of geometric object a
placeholder object (PHO), although its special designa-
tion does not connote any special handling by the SVE
system.

Virtual environment displays can be described as 3-D
graphical displays that immerse a user within a 3-D envi-
ronment. The presence of the user may define simply a
viewpoint and gaze direction, or may include representa-
tions of the user’s body, such as a hand, which may inter-
act with the environment. The SVE environment model,

therefore, automatically includes a subtree of PHOs rep-
resenting relevant parts of the user’s body, including the
head, eyes, hands, and even fingers, if needed by the ap-
plication. (The SVE user representation is similar to the
coordinate system graph described by Robinett & Hol-
loway, 1995.) This subtree is shown in Figure 2, at-
tached as a child of a Workspace object that defines the
location of the user’s space in the encompassing environ-
ment. The purpose of each object in the tree is described
in Table 1. Note that the graph shown in the figure is
the initial state of the user representation. An application
is free to change the graph, as appropriate. For example,
if the user ‘‘enters’’ an airplane object, the Workspace
object could be attached to the airplane object (by mak-
ing the airplane object the parent of the Workspace ob-
ject) so that the user will move with the airplane.

The user model serves as the interface between the
application and the devices used in the configuration for
positional user input and display output. An application
can discover the position and orientation of the user’s
head by asking for the position and orientation of the
origin of the Head PHO in the world environment, its
‘‘world position.’’ This information can be easily ob-
tained by calling an SVE routine that calculates the
transformation matrix, TW;HMD, from the Head coordi-
nate system to the World coordinate system. If a tracking
device is attached to the user’s head, the Head object
will move appropriately. If, instead, the user moves the
entire user representation using the mouse, the Head

Figure 2. Default object tree in the SVE environment model.
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object will simply follow the User object, which will ro-
tate with the movement of the mouse. In both configu-
rations, the application uses the same method to deter-
mine the position and orientation of the user’s head.
Similarly, the application can implement interactions
between the tip of the user’s index finger and other geo-
metric objects regardless of how the finger is controlled
(by a tracked glove device, by a hand tracker and assum-
ing a rigid hand, or by assuming a fixed distance from
head to finger tip).

3.2 Handling Different Display
Configurations

The SVE system can render one or more views,
each of which are defined by an eyepoint (or eyepoints
for field-sequential stereo images), a viewplane, and the
root of an object tree to display. By default, the SVE sys-
tem creates one view whose eyepoint corresponds to the
Eye (and, if necessary, the Other Eye) PHO(s) in the
user model, whose object tree is rooted at the World

Table 1. Objects in the Default SVE User Representation (Only the Index Finger Shown)

Object Represents (SVE name) Parent

World The base coordinate system of the entire environment. (SVE WORLD) none
Workspace The space that the user moves in. The origin of this object’s coordinate system

generally represents a point on the floor in the workspace of the user. That
point corresponds with a point in the virtual environment, defined by the coor-
dinate-system transformation of this object to the World object. (ORIGIN)

World

User The user in the environment. The origin of this object generally represents the
position of the eyepoint in the most basic configuration (no tracking input
devices, display on a desktop monitor), as the origins of all objects in the user
tree generally are at the same point. (USER)

Workspace

Head The head of the user, perhaps wearing an HMD. (SVE HMD) User
Hand The primary hand of the user. (SVE hand) User
Other Hand The secondary hand of the user. (SVE other hand) User
Eye The eyepoint of the user. The position of this object may represent the left or right

eye, or the single eyepoint for monoscopic viewing. (SVE eye)
Head

Other Eye A second eyepoint for display configurations that render both the left and right
eyes of a stereo view. (SVE other eye)

Head

Cursor A position that follows the hand, perhaps at a certain offset distance. Used for
interactions with the environment. (SVE cursor)

Hand

Wrist The wrist (and perhaps lower arm). Used for configurations that have wrist-bend
sensors and that place a tracking device on the lower arm. (SVE wrist)

Hand

Palm The palm of the hand, origin at the wrist attachment. (SVE palm) Wrist
Index The first segment of the index finger, origin at the attachment with the palm (the

metacorpophalangeal joint). (SVE index)
Palm

Index pip The second segment of the index finger, origin at the proximal interphalangeal
joint. (SVE index pip)

Index

Index dip The last segment of the index finger, origin at the distal interphalangeal joint.
(SVE index dip)

Index pip

Index tip The tip of the index finger. (SVE index tip) Index dip
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object. The viewplane of the new view is represented by
the View Plane PHO, which is placed according to the
display configuration. Our approach is similar but more
general than the method presented by Southard (1995),
as it does not enforce a particular tracking-device con-
figuration and it ensures that the near and far clipping-
plane distances are scaled with the eye PHO coordinate
system. In addition to the standard view(s) from the us-
er’s eyepoint(s), an application may create new views
that correspond to different perspectives, or views of
entirely different environments.

For each view, the system calculates a viewing transfor-
mation that is used to transform geometric objects from
their local coordinate system to the eye’s coordinate sys-
tem so that the primitives of the geometry are rendered
from the user’s point of view. The view’s perspective is
produced using a viewing transformation that is defined
by the position and orientation of the object(s) repre-
senting the eyepoint(s), the object representing the
viewplane, and the dimensions of the window, which are
defined in the viewplane’s coordinate system.

Our technique for defining the viewing configuration
is different from the camera model used by Robinett &
Holloway (1995), as well as many 3-D rendering sys-
tems such as Inventor (Strauss, 1993) and Alice (Pausch,
1995). In the camera model, the window through which
the user sees the environment is placed at a set distance
from the user’s eye position. The camera model is appro-
priate for VE applications that use an HMD—where the
window to the virtual world can be statically located in
relation to the user’s eye as the location and orientation
of the HMD device is known, the window is positioned
according to the specification of the HMD, and the lo-
cations of each of the user’s eyes in relation to the HMD
device can be approximated. However, this model does
not support the ‘‘fishtank’’ display configuration (Deer-
ing, 1992)—where the window to the virtual world re-
mains stationary within the user’s workspace as it repre-
sents a computer monitor, projection screen, or desktop
display—or handheld displays (Rekimoto, 1997), where
the window to the virtual world is rendered to a hand-
held display that moves with the user’s hand motions.

Figure 3. Placement of the viewplane object in the SVE environment model for various display

configurations. (Some default objects are not shown.)
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Our method also provides more flexibility than the
Java3D API viewing configuration (Sowizral et al.,
1998), which supports HMD and fishtank display con-
figurations, in that the viewplane and eye, as well as
trackers, are treated as first-class objects rather than at-
tributes of a ‘‘View object,’’ that is an attribute of a
‘‘View Platform’’ object in the scene. Therefore, con-
figurations such as multiple wall-projections using a
single eyepoint or handheld displays are better sup-
ported by the SVE model.

The introduction of the viewplane object fits well in
our design of the user representation in the environment
model. Our design is intended to provide a model that
could be more easily related to an application designer’s
understanding of the user’s presence in the environ-
ment, rather than a model based on a particular tracking
device set-up or display type. As is shown in Figure 3,
the viewplane object is placed differently in the user
model depending on the type of display being used.
However, the process through which the viewing trans-
formation is generated is the same: The window extents
are transformed into eye coordinates and are used, along
with near and far clipping-plane distances, to define a
viewing volume. (See Figure 4.)

In addition to the positions of the View Plane object,
other display configuration parameters give the extents
of the window on the plane. For HMD configurations,
the viewplane object is positioned to correspond to the
optical projection plane of the HMD (with window ex-
tent values that provide the correct vertical and horizon-
tal field-of-view angles for the HMD) and is ‘‘rigidly
attached’’ to the Head object. For fishtank displays, the
viewplane is the representation in the virtual world of
the monitor screen in the real world. The viewplane does
not move with the user’s head, but stays stationary in the
user’s reference frame. Therefore, the viewplane object is
attached to the Workspace object (or the User object, if
the display and the user are attached to a platform that
moves about the workspace). For handheld displays, the
viewplane object is attached to the Hand or Other Hand
object, and so on. The accuracy of the stereo rendering
for the fishtank configuration or the registration of the
handheld display to the physical world is, of course, de-

pendent on the accuracy of position values given for the
viewplane and tracking-reference frame.

3.3 Calculating Model and Viewing
Transformations

Given a view that includes components represent-
ing the eyepoint and viewplane, the SVE system gener-
ates a model transformation that generates 3-D points in
eye coordinates from points in world coordinates and a
viewing transformation that generates 3-D points by the
graphics pipeline to clip against a 2 3 2 3 2 viewing vol-
ume. The model transformation is constructed differ-
ently from systems using a camera model, while the
viewing transformation that is constructed is a standard
transformation for off-axis window viewing. The three
coordinate systems (world, eye, and uniform) are de-
picted in Figure 5.

The model transformation is determined by con-
structing a transformation from eye coordinates to world
coordinates, and then inverting it. The eye-coordinate
system is described in the world-coordinate system by an
eyepoint (the world position of the eye object) and an
orientation coincident with the orientation of the view-
plane (given by the world orientation of the viewplane
object). Since the eyepoint is assumed to be at the origin

Figure 4. Object specification of view volume.
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of the eye-coordinate system, and the direction of the
eye gaze is determined by the viewplane (the eye looks
in the direction of the viewplane), the orientation of the
eye-coordinate system is not meaningful for generating
the model transformation. Any orientation difference
between the eye- and world-coordinate systems will,
however, affect the position of geometry associated with

the eye object and its children. If the viewplane object is
in a subtree of the eye object, as might be the case for an
eye-tracked display system, the calculated world position
of the viewplane and its window corners will automati-
cally take into account the orientation of the eye-coordi-
nate system. The off-axis projection transformation used
for the viewing transformation is based on coordinates
for the corners of the display that are on a plane perpen-
dicular to the z axis. Because the window corners are
given in the x-y plane of the viewplane-coordinate sys-
tem, the model transformation includes the viewplane-
to-world orientation transformation.

The model transformation must be a rigid-body trans-
formation, which preserves distances and angles. This is
because the underlying graphics system (Irix GL or
OpenGL) performs lighting calculations before applying
the viewing transformation (called the ‘‘Projection Ma-
trix’’), which are based on distance and angle relation-
ships to geometry. Light positions, like vertex positions,
are given in world coordinates. The world-to-eye trans-
formation, therefore, should not change angles or dis-
tances, if the effect of lights on the geometry is to be
correct. For this reason, only the position of the eye-
point and the orientation of the viewplane are used in
the model transformation.

The model transformation can be calculated by con-
structing a rotation matrix from the normalized column
vectors of the viewplane object-to-world matrix transfor-
mation and premultiplying that with a matrix that trans-
lates by values for the location of the eye-coordinate sys-
tem origin in world coordinates. The resulting
transformation matrix, which transforms points in eye
coordinates into corresponding points in world coordi-
nates, is inverted. Equation (1) shows the column vector
of the viewplane object-to-world matrix, TW;VP, for col-
umn i, which is normalized in Equation (2). The eye-
point, EP, is obtained from the last column of the eye
object-to-world matrix, TW;E (Equation (3)). The
world-to-eye transformation, TEye;W, is the inverse of
the eyepoint translation and the viewplane rotation,
which is the transpose of the rotation multiplied by the
translation in the negative direction of the eyepoint. The
SVE system actually generates the model transformation
from the result of these operations, as shown in Equa-
tion (5).

Figure 5. World, eye, and clipping coordinate systems.
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The viewing transformation is a standard transforma-
tion that maps points in the viewing volume in eye coor-
dinates to a uniform volume, 21 , x , 1, 21 , y , 1,
and 21 , z , 1. This mapping allows points outside of
the viewing volume to be easily clipped from the render-
ing process, and for easy depth determination (in which
the distance from z 5 21 is the depth). The viewing
transformation is constructed using the near and far clip-
ping-plane distances, and the points through which the
corners of the viewing-volume pyramid pass through the
near clipping plane. These corner points, given by the
diagonally opposite points (L (left), B (bottom), 2N
(near)) and (R (right), T (top), 2N (far)), are deter-
mined from the intersections at z 5 2N of lines from
the origin (the eye) and the world positions of the cor-
ners of the viewplane window, transformed through the
model transformation.

Although the scale difference between the eye- and
world-coordinate systems does not affect the model
transformation (unless the viewplane object is in a sub-
tree of the eye object), the near and far clipping-plane

distances are affected by an eye scale difference. The
scale at which the world is viewed roughly describes the
amount of detail the viewer is interested in. At a small
scale, the viewer is interested in high detail close by. At a
large scale, the viewer is interested in low detail over
large distances. The near clipping plane defines what can
be seen close up, and the distance between the near and
far clipping planes defines the amount of detail that can
be seen (by defining the number of discrete depth lev-
els). The scale of the eye object describes the scale at
which the world is being viewed. For example, if the eye
is attached to a model of an airplane cockpit, the world is
being viewed from the current scale of the airplane.
Changes in the airplane’s scale should not affect whether
the cockpit controls are clipped out or rendered at the
correct depth. For this to be the case at any scale, the
near and far clipping planes must be given in the eye-
coordinate system as distances towards the viewplane in
a direction normal to the view plane.

The near and far clipping-plane distances are calcu-
lated by determining the unit vector normal to the view-
plane in world coordinates, multiplying that by the
world-to-eye coordinate transform, TE;W, and dividing
the near and far clipping distances by the length of the
resulting vector. As shown in Equation (6), the first two
steps reduce to multiplying the normalized third column
of TW;VP by the inverse of the eye-to-world transforma-
tion (only the top left 3 3 3 submatrix needs to be in-
verted). The near and far distances, N and F, are then
calculated as shown in equation (7).
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The viewing matrix transformation is constructed by
premultiplying a shear matrix, which moves the center of
the viewplane window to the 2z axis, by a scale matrix,
which moves the sides of the view-volume pyramid to
coincide with the x 5 z, x 5 2z, y 5 z, and y 5 2z
planes, and finally premultiplying the result by a projec-
tion matrix. These matrices are given in Equation (8).
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This is the transformation generated by the ‘‘win-
dow’’ command in SGI’s Graphics Library (transposed,
as matrices are postmultiplied in GL) (McLendon,
1991). This transformation is different from the one
presented by Deering (1992) only in that, here, the eye-
point is at the origin rather than the viewplane being on
the x-y plane, as it is in Deering’s work. A 3-D point in
eye coordinates is transformed by this viewing matrix
transformation, and each component of the result is di-
vided by the fourth, w, component to obtain the corre-
sponding location in clipping coordinates:

PClip 5 TClip;Eye · TEye;W · TW;O · PO . (9)

The model and viewing transformations are used in
conjunction with the object’s world matrix transforma-
tion, as shown in Equation (9), to obtain a 3-D point in
clipping coordinates given a point in the object’s local
coordinates. Note that the model and viewing transfor-
mations are generated each frame, while the object-to-
world transformation is generated, cached, and regener-
ated only when one of the transformations between the
object and the root of the object tree changes.

3.4 Incorporating Tracker Information

The SVE environment model provides a frame-
work for defining an environment that includes geomet-
ric objects and a user representation independent of the
hardware configuration. However, one defining charac-
teristic of VE applications is the ability to associate track-
ing devices or other positioning interaction techniques,
to the user’s head or hand or to a particular geometric
object in the environment. A common method to intro-
ducing tracking information into an environment model
is to ‘‘attach’’ the information to a geometric object.
With this method, the position and orientation of the
‘‘attached’’ geometric object is set to the tracker’s posi-
tion and orientation. As a result, the coordinate system
of the object’s parent corresponds to the tracking de-
vice’s reference coordinate system. For example, the de-
fault user object tree would incorporate head-tracking
information by positioning the User object at the loca-
tion of the tracking device reference frame (the transmit-
ter, in the case of electromagnetic trackers), and ‘‘at-
tach’’ the Head object to the tracker. Unfortunately, this
method has a few potential problems:

• The Head and Cursor objects, as children of the
User object, must share the same reference frame.
This will not be possible if they are controlled by
different tracking devices that have separate refer-
ence frames.

• The Head object’s position would be overwritten
every frame when using head tracking. This opera-
tion prevents orientation corrections for the tracker
mounting on the physical HMD through setting the
Head object’s position to make that correction.

• If the application wishes to have an object that is not
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a child of the User object follow a tracking device,
the application would need to include a reference
frame object as that object’s parent and position it
to the appropriate location in the world.

Our solution to these problems is to incorporate
tracking information to control an object in the model
by inserting two new PHOs into the object tree at run-
time. (See Figure 6.) One object, called Tracker X Refer-
ence (where X is a unique ID), is created as a child of
the controlled object’s parent. This object represents the
tracking device reference frame. The other new object,
called Tracker X, is created as a child of Tracker X Refer-
ence, and represents the tracking information from the
tracking device. The object to be controlled is then
linked to the Tracker X object as a child. Given this
method, tracking devices can be introduced into the ap-
plication at run-time to cause any object in the model to
be tracked.

The locations of the reference frame of the device can
be initially given in relation to a coordinate system that
represents the user’s workspace (generally the Workspace
object). This method allows tracking devices of different
reference frames to be correctly used in a common
workspace reference frame. As shown in Equation (10),
the transformation from the tracker reference object to
its parent, Tp;ref, can be calculated from the world posi-
tion of the parent object, TW;p, the world position of a
workspace object (which could be the parent object),
TW;ws, and the given initial transformation from the ref-

erence coordinate system to the workspace-coordinate
system, Tws;ref :

Tp;ref 5 (TW;p)21 · TW;ws · Tws;ref (10)

4 Framework for Extension

Much of the success of the SVE library as a devel-
opment tool for VE applications can be attributed to the
library’s framework for providing basic services and for
extending those services in a modular and independent
manner. The mechanisms for extending the library in-
clude allowing for additional behaviors at appropriate
phases of the execution, allowing additional named data
values to be associated with components of the environ-
ment model, and providing a structured framework for
modules that provide interaction with input devices and
that provide for particular user-interaction techniques.
The SVE extension framework is an open architecture
that gives structure to extensions to make them modu-
lar, easy to develop, and reusable. The set of extension
opportunities provided by the framework is more com-
plete than that of other VE development systems. The
extensibility of the SVE library allows it to support a
wide variety of VE applications in the face of new envi-
ronment behaviors, hardware devices, and rendering and
interface techniques, which is critical in a field that is still
in the experimentation stage.

The mechanism used to allow for extensions is

Figure 6. Inserting tracker 1 to control object ‘‘MoveMe.’’
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through application-defined callback routines that are
provided to the SVE runtime system to be invoked at
certain phases of execution. Callback routines are com-
monly used for application-specific extensions to a sys-
tem. For example, event-driven 2-D interface managers
allow applications to respond to user interactions with
the interface (Myers, 1989) by defining callback rou-
tines. In the next section, we describe how callback rou-
tines are used by VE applications using the SVE library.
The library also allows the data associated with the envi-
ronment model to be extended through named proper-
ties assigned to geometric objects. This mechanism is
described in Section 4.2. Finally, the SVE library pro-
vides further structure in its framework to support more-
complex extensions (new polling input devices and inter-
action techniques). This part of the framework is
described in Section 4.3.

4.1 Callback Routines

The philosophy behind the SVE library design is to
provide reasonable default behavior in all aspects of the
VE application and to provide the capability of overrid-
ing or augmenting the defaults. For example, the default
reaction to pressing the middle mouse button, ‘‘flying’’
in the facing direction, can be changed to ‘‘walking’’
along a groundplane along the facing direction. The de-
fault mechanism used to cull from the rendering pipeline
geometric objects that are entirely out of the viewing
volume can be augmented to also cull objects that are
too small to be seen.

4.1.1 The Execution Cycle. The phases of the
SVE execution cycle are given in Figure 7. The applica-
tion overrides or augments the default behavior for a

Figure 7. The SVE execution cycle.

200 PRESENCE: VOLUME 9, NUMBER 2



particular phase by defining and registering a callback
routine. When the appropriate phase in the execution
cycle is reached, the application-defined callback will be
summoned, and parameters will be given to provide the
necessary context for the routine’s task. As the figure
shows, the application can define routines that respond
to particular events (such as mouse movement, button
and key presses, and geometric object selection), rou-
tines that provide animated behaviors, that perform a
task just before (or just after) a frame or a particular geo-
metric object is rendered to the display, or that deter-
mine if a geometric object should be culled from the
rendering pipeline altogether (and if its children in the
scene graph should be culled, as well). In addition, the
application can provide a callback routine that will be
called when a geometry file given to describe a geomet-
ric object is not understood by the SVE library, allowing
the application an opportunity to translate it into the
appropriate geometric primitives.

An application can register any number of callback
routines for a particular execution phase or event. When
the phase is reached, the routines are called in the re-
verse order in which they were given (LIFO, or stack,
order). During the ‘‘read and dispatch events’’ phase, a
limited number of events are removed from the event
queue, and each is dispatched by calling the routines
associated with the particular event type, in LIFO order,
until one indicates that it has ‘‘consumed’’ the event.
For example, a routine may respond to a button press
only when the user’s hand is inside a particular object,
consuming that event. Otherwise, the button-press
event is passed on to other routines that may respond
to it.

This method of ordering callbacks in LIFO order en-
ables incremental and modular development. New be-
haviors can be added without removing other, working
behaviors. If routines are designed to be mostly indepen-
dent (which is facilitated by limiting them to observing
and modifying the environment model), then they can
be developed independently and brought together after
they are fully developed and tested. In addition, a set of
routines that cooperate to perform a particular task can
be reused in different applications.

4.1.2 Examples. For example, different interac-
tion methods for navigating through an environment
were implemented using SVE callback routines and
compared to each other (Bowman, Koller, & Hodges,
1997). Similarly, new object-manipulation techniques
have been implemented and evaluated using the SVE
library, including a novel reaching technique (Bowman
& Hodges, 1997a) and an object-centric viewing tech-
nique (Koller, Mine, & Hudson, 1996).

Through the use of a set of SVE callback routines, the
VAnno toolset (Harmon et al., 1996) allows a user to
place several different types of audio annotations within
a 3-D environment. The toolset also offers a user-inter-
face component with which the user of the VE applica-
tion can record and place annotations, play or edit exist-
ing annotations, and specify system properties. This
toolset can be useful for applications in which several
users are collaborating on a design or analysis, and has
been used in a system called the Virtual Data Visualizer
(van Teylingen, Ribarsky & van der Mast, 1995) and in
an architectural-walkthrough application.

A stylus-interaction API developed for SVE applica-
tions (Bowman & Hodges, 1997b) introduces a set of
callback routines to handle the interaction of a tracked
stylus held by the user with certain geometric objects in
the environment. To use the stylus library, the program-
mer simply associates callbacks with these environment
objects using calls to the stylus API. The application
then receives events when the stylus enters or exits the
objects, or when the stylus button goes up or down
within the object.

4.1.3 Using Callbacks. The stylus-interaction
technique provided by the API can be used to imple-
ment simple buttons, menus, or image maps with drag-
gable icons. It is powerful enough to allow the replica-
tion of any 2-D, mouse-based interface in a virtual
environment, as well as many novel 3-D interfaces. It has
been used in a Virtual Venue application (Bolter et al.,
1995; Bowman, Hodges, & Bolter, 1998), which pro-
vides an ‘‘information-rich’’ virtual environment (the
Aquatics Center at Georgia Tech) to allow users to ex-
plore and learn more about the environment through
selecting objects of interest, floating icons, or spatial hy-
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perlinks on a handheld tablet. It has also been used in an
architectural design environment (Bowman & Hodges,
1997b). The usefulness of encapsulating callback rou-
tines that implement particular interaction techniques-
(like the stylus interaction) for inclusion in many applica-
tions prompted us to design a framework specifically for
interaction components and techniques. This framework
is described in Section 4.3.

Another common use of the callback framework is to
represent different phases in an application’s execution
with different sets of callback routines, and switching
between sets when changing phases. For example, an
airplane simulation developed to treat people who were
afraid of flying (through graded exposure to flying expe-
riences) was designed as a finite-state machine (FSM), in
which the nodes of the FSM represented states such as
taxiing, taking off, cruising, circling the airport, and
landing. (Figure 8 shows the patient’s view of the cabin
during taxiing.) The behavior of the airplane in the envi-
ronment (and associated sound effects) was imple-
mented in a set of animation callbacks, one for each
phase. When the application transitioned from one phase
to another, the current animation callback was removed,
and the appropriate animation callback enacting the be-
havior of the new phase was registered. This design and
implementation strategy allowed independent develop-
ment of each phase of the application and some flexibil-

ity to change the FSM by adding or removing phases of
the application.

Apart from simply invoking an application-defined
routine at the right point in the execution of the simula-
tion-rendering cycle, the value of defining callback rou-
tines is that they are provided the context needed for
their tasks. All callbacks are given a reference to a global
state structure which includes the scene graph of the
different views that the callback will likely alter or exam-
ine. The state structure also includes the time that the
current cycle and previous cycle began, which can be
used by the animation callbacks to synchronize their be-
haviors to a common clock. The state structure given to
an event callback includes the event that occurred and its
associated data. The rendering callbacks are called after
the rendering context has been initialized with the view-
ing parameters of the view being rendered. This allows
applications to call SVE routines to render particular
geometric objects or to call routines of the underlying
graphics library (GL or OpenGL), where graphics primi-
tives will be drawn to appear in the coordinate system of
the environment, or of the particular geometric object
being rendered.

Providing a rendering context to rendering callbacks
allows VE applications using the SVE library to easily
extend beyond the library’s rendering capability. This
feature was used in the VGIS (Virtual Geographic Infor-
mation System) application, which provides a 3-D im-
mersive or workstation-window view of terrain with em-
bedded information that can be queried and displayed
(Koller et al., 1995). The system was developed for
battlefield management, and therefore includes symbolic
representations of units and unit groups (Figure 9). Al-
though the SVE library was used to provide for user
modeling and interaction as well as rendering of simple
geometries, the terrain geometry had to be handled
separately to be rendered in real time. A custom algo-
rithm was developed (Lindstrom et al., 1996) to render
the terrain. The rendering operations and the rendering
used for an overlaid interface component (in the center
and corners of Figure 9) were implemented as rendering
callbacks. Another application used the SVE library to
render data-flow geometry generated by an AVS module
as a geometric object in the environment which could be

Figure 8. The virtual airplane application.
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viewed and manipulated like other objects (Williams et
al., 1995). This application demonstrates the value of
having rendering callback routines for individual objects.

4.1.4 Incorporating Remote Processes. The
SVE execution cycle is performed by a single process
model (although distributable components to perform
input gathering and audio output tasks are provided and
can be run in parallel). It has been argued (Shaw, 1993;
Pausch, 1995) that separate processes should be used for
the rendering process and the simulation process that
continually updates the environment model, so that the
frame rate of the display rendering is decoupled from the
simulation update rate. However, such a distributed de-
sign introduces subtle complexities. For example, if a
rendering process receives head-tracking information
directly from the tracking process (as in the DIVER sys-
tem (Gossweiler et al., 1993)), then a separate simula-
tion process will not be able to prevent the user’s head
from going through walls, even if it detects a collision
between the head position and the wall. Rather than
impose a solution to these issues, the SVE library utilizes
one process for simulation and rendering. As a result, an
application routine must be designed to complete
quickly for each execution, as it will not be preempted.
The application’s simulation process, however, could
simply exchange messages with a remote simulation pro-
cess that performs the actual computation. The SVE

library has been used in conjunction with RAVEL
(Kessler, Hodges, & Ahamad, 1998), a system that sup-
ports distributed, networked components of a VE appli-
cation. The SVE library was used in the development of
components that render the user’s view and components
that examine and manipulate the environment’s geomet-
ric model.

4.2 Properties

Different VE applications will often want to associ-
ate a different set of attributes to the geometric objects
that populate the environment. For example, a CAD
application may wish to designate certain objects as
‘‘parts’’ that have properties such as ‘‘material,’’ ‘‘manu-
facturer,’’ and ‘‘cost.’’ An application could maintain a
list of parts and their properties itself, but many VE sys-
tems provide a ‘‘user pointer’’ associated with every ob-
ject in the environment model, which can be used to
refer to the application’s object-specific information.
(For example, Java3D (Sowizral et al., 1998) provides
this feature.)

Using a user pointer, however, is not an option for a
module that is designed to extend a set of applications,
because some of those applications may depend on using
the user pointer themselves. For example, a module may
be developed to enforce the laws of physics for a set of
objects in the environment of any application it is in-
cluded with. That module may wish to associate with
objects properties such as ‘‘mass,’’ ‘‘velocity,’’ and ‘‘ac-
celeration.’’ In addition, some of these properties may
be defined by the application (such as ‘‘mass’’), and oth-
ers may be generated by the module (such as ‘‘veloc-
ity’’).

The SVE library provides a mechanism to associate a
named data item (or array of items) with any object in
the environment. Items can be characters, integers,
floating-point numbers, geometric object references, or
generic pointers. The item type of a property can be
queried. Array properties can store such information as
character strings and position matrices. An interest call-
back routine can be associated with the property and will
be called whenever the property changes. This mecha-
nism is similar to the object/property/event architec-

Figure 9. The virtual geographic information system application.
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ture of the WorldToolKit, release 8 (Sense8, 1998),
where property changes are identified as events. The
SVE library provides an additional capability which al-
lows for generate and update callbacks to be associated
with properties. A generate callback is called whenever
the value of the property is requested, and an update
callback is called whenever the property is set to a new
value (essentially an interest callback that is guaranteed
to be called first). These callbacks allow for external stor-
age of information and supports lazy updates, where
information is not recalculated as a result of a change
until it is requested. This capability provides for more-
efficient data storage and access, while providing a uni-
form method to access object information.

The property mechanism is implemented to allow effi-
cient access and update to properties, while also utilizing
memory resources efficiently. The property values are
stored in memory locations referred to by addresses in a
dynamic array that is associated with each geometric ob-
ject. The index of a particular property name is fixed
when the first value is stored using that property name.
(A property name’s index value can be used instead of
the property name in all future accesses to object proper-
ties of that name.) The dynamic array begins at the larg-
est multiple of ten that is smaller than the minimum in-
dex of an object’s property list, and ends at the smallest
multiple of ten that is larger than the maximum index of
the object’s properties. Therefore, the property value
array stored with each object will grow as properties are
associated with it. When the object does not have a value
for a property index that has been assigned, this
bounded array may contain elements that are not used.
In practice, however, it is expected that most objects will
contain almost the same set of properties in any one ap-
plication, and the number of array elements that are
empty will be small.

4.3 Modular Frameworks

As we have shown, applications developed with the
SVE framework can provide one or more callbacks and a
set of properties to create the behavior necessary for the
application’s appearance and tasks. In addition, the
framework supports the development of a module con-

taining callbacks and defining properties to perform a
particular task that can be reused in many applications.
In our experience developing VE applications, we have
identified two types of modules that occur frequently:
interaction techniques and polling device interfaces. Our
framework provides extra support for defining and using
these types of modules.

4.3.1 Interactors. A graphical 2-D application
generally contains many components for user interac-
tion, such as buttons, menus, and scroll bars. Develop-
ment tools for graphical interfaces define a set of interac-
tor classes from which actual components can be easily
instantiated to be used in the application. The SVE li-
brary supports the development of 3-D interactors
through an extension called SVIFT, the Simple Virtual
Interactor Framework and Toolkit (Kessler, 1999). This
framework allows for interactor types, or classes, to be
defined as a set of routines that handle instance creation,
event handling, resizing, extent queries, property
changes, and deletion. The SVE library supports the
instantiation of interactors through application code or
through file descriptions. Through this mechanism, a set
of routines that define the behavior of a user interaction
can be defined, grouped, and then reused in multiple
applications.

Although the SVIFT extension to SVE allows for
graphical interactors like floating buttons, labels, menus,
and containers to be defined, the framework supports
more-general interaction techniques. The framework
defines interactors as responding to events, such as but-
ton presses or geometric object selection, and environ-
ment model changes, such as the movement of an object
of the user model, by producing additional events or
making a change to the environment model. The frame-
work, therefore, supports interactors that act like tools,
such as a ‘‘ray gun’’ that can select objects, and interac-
tors that have no appearance, such as a position-con-
straint maintainer that does not allow a particular object
to move outside a plane, line segment, or volume.

Even though they may not have a geometry, all inter-
actors defined with this framework are associated with at
least one geometric object. Therefore, they can be in-
cluded in the environment model, have a position in the
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environment (perhaps as a PHO), and store properties.
In addition, an interactor can be designed to work with a
set of any geometric objects (which can include other
interactors). For example, this feature allows the menu
to contain buttons, submenu buttons, and noninterac-
tive separators with no extra work. Interactors provide
additional, responsive behavior to the environment, but
still include their state as part of the environment model,
which may be used by other interactors or application
routines.

4.3.2 Polling Devices. The SVE system, by de-
fault, handles the task of periodically polling devices,
such as trackers and mice, for their current state and in-
corporating that information in the environment model
or with associated events. If a new type of device is used,
however, new routines will need to be written to open
the device, poll for the current state, and close the de-
vice. The SVE library provides a framework for defining
this set of routines for a particular device and allowing
particular devices of that type to be instantiated. The
SVE runtime system will automatically open, poll, and
close instantiated devices through the provided routines
at the appropriate points of the execution cycle. Once
the routines for a particular device have been defined,
they can be easily reused by any other application wish-
ing to use the device.

5 Conclusion

The SVE library was designed to support the ex-
perimental development of VE applications, display
mechanisms, and interaction techniques. Many of the
characteristics of the library that make it a good tool for
developing experimental VE applications also make it a
good tool for general VE application development and
can be incorporated in other VE development tools. In
particular, using an environment model as a source of
input and a place for output provide a common interface
layer for VE tasks, and also provides the freedom to mix
and match different input and output devices to define
an application’s configuration. One key to this mecha-
nism is including a model of the user in the environment

which can be manipulated by user input devices and
used to drive output devices. Another key is allowing for
arbitrary, nongraphical properties to be stored with the
model.

The other aspect of the SVE library that makes it an
effective tool is its extensibility from a functional default
behavior. The library provides a runtime system that al-
lows, with almost no programming, for a simple, fly-
through VE application. The library also provides a
framework that allows for the independent development
of different mechanisms to render parts of the scene, to
respond to events and changes in the environment
model, to provide dynamic behaviors for parts of the
environment model, and to interface with new I/O de-
vices. Through this framework, new mechanisms can be
designed to be reusable in many applications, even if
they involve a group of routines implementing complex
interaction techniques.

The SVE library has been used to produce numerous
successful VE applications and VE techniques. As a re-
search project itself, it has changed from its original form
to meet the needs of the applications and application
developers. The library has undergone seven major revi-
sions, and is currently on version 2.1. New develop-
ments, such as the interactor framework (Kessler, 1999),
are being developed through the extension mechanism
of the library, rather than adding to the SVE library it-
self.

Appendix A

The SVE library maintains a model of the environment
as a collection of individual geometric objects and place-
holder objects (PHOs), which have no geometry, ar-
ranged in a rooted tree structure. The relationship be-
tween object nodes in the tree is one of attachment, in
which a child object has a location, orientation, and scale
in relationship to its parent object. Therefore, when a
parent moves, rotates, or changes scale, the position,
orientation, and scale of its children are affected accord-
ingly. This structure is known as a coordinate-system
graph, which is a certain type of scene graph. The object
nodes of the tree define a local coordinate system for its
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geometry through a spatial transformation from its par-
ent coordinate system (stored as a 4 3 4 matrix transfor-
mation for homogenous coordinates, which also allows
for other relationships such as shears along axes). The
SVE geometric object tree is not a general scene graph
because changes to the graphics state by an object’s de-
scription (such as a coordinate-system transformation or
color change) do not propagate to parent or sibling ob-
jects in the tree.

The transformations given in the coordinate-system
graph allow points of the geometry of all objects to be
transformed to the associated point in a single coordi-
nate system, such as the ‘‘world’’ coordinate system
(generally the root of the tree), or the coordinate system
of the user’s eye (represented as a PHO in the tree).
Therefore, the appropriate relationships between objects
can be seen by the user and detected by the program.
Using the notation in Foley et al. (1996), the matrix
transformation TB;A transforms a point in the child’s
(A) coordinate system to the corresponding point in the
parent’s (B) coordinate system. Thus, if points are repre-
sented as column vectors, we can write Equation (11):

PB 5 TB;A · PA. (11)

Two transformations can be composed into a single
transformation, as shown in Equation (12):

TC;A 5 TC;B · TB;A. (12)

The combined transformations from the coordinate
system of object O to the world-coordinate system of the
tree root, therefore, is represented as TW;O. Transforma-
tions ‘‘down’’ the object tree, where points given in a
parent’s coordinate system are transformed to a child’s
coordinate system, are represented as the inverse of the
child-to-parent transformation, or by reversing the sub-
scripts, as shown in Equation (13):

(TB;A)21 5 TA;B. (13)

The relationship between the coordinate systems of
any two nodes can be obtained by combining the coor-
dinate-system relationships between nodes along a path
up from one node to the root, and down along the path

to the other node, as shown in Equation (14):

TD;C 5 (TW;D )21 · TW;C

TD;C 5 TD;W · TW;C.
(14)

(See Robinett and Halloway (1992) for further discus-
sion of using coordinate-system graphs for the geometric
object representation in VE applications.)

The tree of geometric objects as a whole describes the
‘‘world’’ and can be defined using a world-description
file that the application loads after initialization, or by
adding geometric objects to the world tree one at a time
in the application, or by a combination of these methods.
Geometric objects have many properties, including a unique
name, a geometric description, parent and child links in the
tree, a local coordinate system, boundaries that surround the
object’s geometry, boundaries that surround the geometries
of the object and its children’s geometries, and flags that
indicate if an object is currently visible, highlighted, or select-
able. A PHO can serve as a coordinate system for its child
objects. Objects with geometries may be defined by an ob-
ject file, or may be created piece by piece in the application.
The object file can use the Wavefront format (OBJ) or an
SVE object format, which allows for objects with special
properties such as text, texture faces with changing images,
visibility limits, or boundaries that do not conform to the
object’s geometry.

Acknowledgments

The SVE library owes its existence to Don Allison, Doug Bow-
man, Elizabeth Bright, Eric Brittain, Jim Durbin, Kevin
Hamilton, Drew Kessler, David Koller, Rob Kooper, E. J. Lee,
Peter Lindstrom, Tom Meyer, Greg Newton, Jouke Verlinden,
Zach Wartell, and Ben Watson.

We would also like to thank the reviewers for their helpful sug-
gestions and comments.

References

Blanchard, C., Burgess, S., Harvill, Y., Lanier, J., Lasko, A.,
Obermann, M., & Teitel, M. (1990). Reality built for two:

206 PRESENCE: VOLUME 9, NUMBER 2



A virtual reality tool. ACM SIGGRAPH Special Issue on the
1990 Symposium on Interactive 3D Graphics, 35–36.

Bolter, J., Hodges, L. F., Meyer, T. C., & Nichols, A. (1995).
Integrating perceptual and symbolic information in VR.
IEEE Computer Graphics and Applications, 15 (4), 8–11.

Bowman, D., Hodges, L. F., & Bolter, J. (1998). The virtual
venue: User-computer interaction in information-rich virtual
environments. Presence: Teleoperators and Virtual Environ-
ments, 7 (5), 478–493.

Bowman, D., & Hodges, L. F. (1997a). An evaluation of tech-
niques for grabbing and manipulating remote objects in im-
mersive virtual environments. Proceedings of the ACM Sym-
posium on Interactive 3D Graphics, 35–38.

——— (1997b). Toolsets for the development of highly inter-
active and information-rich virtual environments. Interna-
tional Journal of Virtual Reality, 3(2), 12–20.

Bowman, D., Koller, D., & Hodges, L. F. (1997). Travel in
immersive virtual environments: An evaluation of viewpoint
motion control techniques. Proceedings of the IEEE Virtual
Reality Annual International Symposium (VRAIS) ’97, 45–
52.

Bricken, W., & Coco, G. (1994). The VEOS project. Presence:
Teleoperators and Virtual Environments, 1(2), 111–129.

Brooks, F. P., Jr. (1986). Walkthrough—A dynamic graphics
system for simulating virtual buildings. Proceedings of the
1986 Workshop on Interactive 3D Graphics, 9–21.

Carlsson, C., & Hagsand, O. (1993). DIVE—A platform for
multi-user virtual environments. Computers & Graphics,
17(6), 663–669.

Codella, C. F., Jalili, R., Koved, L., & Lewis, J. B. (1993). A
toolkit for developing multi-user, distributed virtual envi-
ronments. Proceedings of the IEEE Virtual Reality Annual
International Symposium (VRAIS), ’93, 401–407.

Deering, M. (1992). High resolution virtual reality. Proceed-
ings of ACM SIGGRAPH 92, 195–202.

Foley, J., van Dam, A., Feiner, S., & Hughes, J. (1996). Com-
puter Graphics: Principles and Practice (2nd ed. in C) (pp.
222–226). Reading, MA: Addison-Wesley.

Ghee, S. (1995). dVS: A distributed VR systems infrastructure.
ACM SIGGRAPH 95 Course Notes.

Gossweiler, R., Long, C., Koga, S., & Pausch, R. (1993).
DIVER: A distributed virtual environment research plat-
form. IEEE Symposium on Research Frontiers in Virtual Re-
ality, 10–15.

Hagsand, O. (1996). Interactive multiuser VEs in the DIVE
system. IEEE MultiMedia, 30–39.

Harmon, R., Patterson, W., Ribarsky, B., & Bolter, J. (1996).

The virtual annotation system. Proceedings of the IEEE Vir-
tual Reality Annual International Symposium (VRAIS), 96,
239–245.

Hodges, L. F., Rothbaum, B. O., Watson, B. A., Kessler, G.
A., & Opdyke, D. (1996). A virtual airplane for fear of flying
therapy. Proceedings of the IEEE Virtual Reality Annual In-
ternational Symposium (VRAIS) 96, 86–93.

Kessler, G. D., Hodges, L. F., & Ahamad, M. (1998). RAVEL,
a support system for the development of distributed, multi-
user VE applications. Proceedings of the IEEE Virtual Reality
Annual International Symposium (VRAIS) 98, 260–267.

Kessler, G. D. (1999). A framework for interactors in immer-
sive virtual environments. Proceedings of IEEE Virtual Real-
ity ’99, 190–197.

Koller, D., Lindstrom, P., Ribarsky, W., Hodges, L. F., Faust,
N., & Turner, G. A. (1995). Virtual GIS: A real-time 3D
geographic information system. Proceedings of Visualization
’95, 94–100.

Koller, D., Mine, M., & Hudson, S. (1996). Head-tracked
orbital viewing: An interaction technique for immersive vir-
tual environments. Proceeding of the ACM Symposium on
User Interface Software and Technology (UIST) ’96, 81–82.

Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L. F., Faust,
N., & Turner, G. A. (1996). Real-time, continuous level of
detail rendering of height fields. Proceedings of ACM SIG-
GRAPH 96, 109–118.

McLendon, P. (1991). Graphics Library Programming Guide
(p. c-4). Mountain View, CA: Silicon Graphics, Inc.

Myers, B. A. (1989, January). User-interface tools: Introduc-
tion and survey. IEEE Software, pp. 15–23.

Obeysekare, U., Williams, C., Durbin, J., Rosenblum, L.,
Rosenberg, R., Grinstein, F., Ramamurthi, R., Landsberg,
A., & Sandberg, W. (1996). Virtual workbench—A non-
immersive virtual environment for visualizing and interact-
ing with 3D objects for scientific visualization. IEEE Visual-
ization ’96 Annual Conference Proceedings, 345–349.

Pausch, R., Burnette, T., Capehart, A. C., Conway, M., Cos-
grove, D., DeLine, R., Durbin, J., Gossweiler, R., Koga, S.,
& White, J. (1995, May). Alice: Rapid prototyping for vir-
tual reality. IEEE Computer Graphics & Applications, pp.
8–11.

Rekimoto, J. (1997). NaviCam: A magnifying glass approach
to augmented reality. Presence: Teleoperators and Virtual En-
vironments, 6(4), 399–412.

Robinett, W., & Holloway, R. (1992). Implementation of fly-
ing, scaling, and grabbing in virtual worlds. Proceedings of
the 1992 Symposium on Interactive 3D Graphics, 189–192.

Kessler et al. 207



——— (1995). The visual display transformation for virtual
reality. Presence: Teleoperators and Virtual Environments,
4(1), 1–23.

Rohlf, J., & Helman, J. (1994). IRIS Performer: A High Per-
formance Multiprocessing Toolkit for Real-Time 3D Graph-
ics. Proceedings of SIGGRAPH 94, Orlando, FL, 381–394.

Sense8 Corporation. (1998). WorldToolKity Release 8 Techni-
cal Overview. Mill Valley, CA.

Shaw, C., Green, M., Liang, J., & Sun, Y. (1993). Decoupled
simulation in virtual reality with the MR toolkit. ACM
Transactions on Information Systems, 11 (3), 287–317.

Snowdon, D. N., & West, A. J. (1994). AVIARY: Design is-
sues for future large-scale virtual environments. Presence:
Teleoperators and Virtual Environments, 3(4), 288–308.

Strauss, P. (1993). IRIS inventor, a 3D graphics toolkit. ACM
SIGPLAN Notices (OOPSLA ’93 Conference Proceedings), 28
(10), 192–200.

Southard, D. A. (1995). Viewing model for virtual environment
displays. Journal of Electronic Imaging, 4(4), 413–420.

Sowizral, H. A., Nadeau, D. R., Bailey, M. J., & Deering, M.
F. (1998). Introduction to programming with Java3D.
ACM SIGGRAPH 98 Course Notes.

Tarlton, M. A., & Tarlton, P. N. (1992). A framework for dy-
namic visual applications. ACM SIGGRAPH Special Issue on
the 1992 Symposium on Interactive 3D Graphics, 161–164.

Tramberend, H. (1999). Avocado: A distributed virtual reality
framework. Proceedings of IEEE VR’99, 14–21.

van Teylingen, R., Ribarsky, W., & van der Mast, C. (1995).
The virtual data visualizer (Technical Report GIT-GVU-
95-16). Graphics, Visualization, and Usability Center.

Wang, Q., Green, M., & Shaw, C. (1995). EM—An environ-
ment manager for building networked virtual environments.
Proceedings of the IEEE Virtual Reality Annual Interna-
tional Symposium (VRAIS) ’95, 11–18.

Watsen, K., & Zyda, M. (1998). Bamboo—A portable system
for dynamically extensible, real-time, networked, virtual en-
vironments. Proceedings of the IEEE Virtual Reality Annual
International Symposium (VRAIS) ’98, 252–259.

Williams, C., Obeysekare, U., Kessler, D., Rosenblum, L., &
Hodges, L. F. (1995). Incorporating virtual environments
into scientific visualization using AVS and georgia tech’s
simple virtual environment library. Panel presentation at the
AVS ’95 conference.

208 PRESENCE: VOLUME 9, NUMBER 2


