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The Simplest Cubic Fields

By Daniel Shanks
3 2Abstract. The cyclic cubic fields generated by x   = ax   + (a + 3)x + 1  are studied in de-

tail. The regulators are relatively small and are known at once. The class numbers are al-
2 2ways of the form A    + 3B  , are relatively large and easy to compute. The class groups

are usually easy to determine since one has the theorem that if m is divisible only by
primes = 2 (mod 3), then the m-rank of the class group is even. Fields with different

3-ranks are treated separately.

1. The Simplest Cubic Fields. Godwin and Samet [1] tabulated the 830 totally
real cubic fields of discriminant D< 2 • 104. Godwin [2] computed their class num-
bers h and found that 764 of these fields (92%) have h = I. Borewicz and Safarevic
[3] reproduced Godwin's table and pointedly remarked that none of these class numbers
exceed 4.

It is clear that among cubic fields with larger D, those having relatively small regu-
lators will have larger h. In principle, we could exhibit some of these by extending
Godwin's tables to D < A • 104, or say D< 10s, but that would require a great deal of
intricate computation. An alternative project, much simpler computationally, and of
interest in its own right, is based upon the selection of a subset of these fields that are
especially easy to compute. With such a restriction, one may readily determine their
fundamental units and class numbers to much larger limits, say D< 101 °.

The simplest cubic fields are the cyclic fields, those having square discriminants:

(1) D=N2.

Like the quadratic fields, but unlike other cubic fields, all roots of the generating poly-
nomial are in the field, all primes q  either split completely in the field or do not
split at all, and the residue class of ¿/(mod N)  determines whether  q  splits or does
not.  But, unlike quadratic fields, if N is not 9 or a prime, there will be more than
one cubic field with this D, and the splitting criterion for a specific one of these
fields becomes a little more complicated.   Further, there are two fundamental units in
need of computation.   But these two complications may be eliminated if we restrict A'
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1138 DANIEL SHANKS

to certain primes P, namely, to primes of the form

(2) P = P{a) = a2 + 3a + 9

such as P(-l) = 7,P(1) = 13,P(2) = 19, • • • ,/>(410) = 169339.  Since (2) gives
nothing new for a < — 1 we will restrict a  to values > -I.

The cubic equation

(3) x3 =ax2 + {a + 3)x + 1

has the discriminant

(4) D = ia2 + 3a + 9)2,

and if a2 + 3a + 9  is prime, (4) is obviously also the discriminant of the field  ß(p)
where p  is a root of (3).  One may easily verify that the other two roots of (3) are

(5) p2 = -l/(l+p)   and   p3 = - 1/(1 +p2).

Since  pip2 -ap-a — 3)=l,p is a unit of Q{p), and since  p2{p\ - ap2 - a - 3)
= 1, 1 + p = - l/p2   is also a unit.  They are, in fact, independent fundamental
units, as may be verified by Godwin's criterion [4].  One therefore knows the regula-
tor

(6) R = log2 Ip I - log Ip I log 11(1 + p)l + log2 1(1 + p)\

a priori.  The formula (6) is invariant if p  is replaced by  p2   or  p3.  We may com-
pute R   explicitly with the trigonometric solution of (3).  Let

/ 97
(7) 0 = Iarctan1¡rT3-.

Then

(8) p = ^{2y/Pcosd + a),

and  p  is the positive root of (3) if the principal value is chosen in (7).
From (2), P = 1 (mod 3), and for all  q =£ P, the polynomial

x3 -ax2 - {a + 3)x - 1

splits completely (mod q) or is irreducible (mod q) according as

(9) q{P~l)t3 = 1 {modP),

or not—that is, according as q  is a cubic residue of P, or not.  If ÇK{s) is the
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SIMPLEST CUBIC FIELDS 1139

Dedekind Zeta function of K = Q{p), it follows that

(10) lim   ^(s)/?(s) = ft /(<?)
*=!+ q=2

where

/(9) = 1 for q = P,

(H) /(<?) = (^-f)2       for flCP-D/S = ! (modn

/(¿¡r) =-   otherwise.
q2 +q+l

On the other hand,

(12) lim   fJC(s)/f(s) = ^.
i=l + x^

Since we know R, we may therefore compute the class number h  by calculating the
product on the right side of (10) with sufficient accuracy.

Now, this product converges rather slowly (the first 15000 factors give an
accuracy of about 1 part in 2000, cf. [5]), but a great deal of accuracy is not needed
here since h  is an integer, and not a very big one if D < 1011.  Formulas (10) and
(11) are easily programmed on a computer.  With a computer, we evaluated the first
100 cases of these fields-from P{- 1) = 7, D = 49  to />(410) = 169339, D =
28675696921.  Table 1 lists these 100 primes P and class numbers h.

2.  Moderate Class Numbers.   In Table 1 one notes:   (a), the mean growth of h
as a function of a; and (b), the arithmetic restrictions upon h  in that all of these h
are of the form  3k + 1, and prime factors of the form  3k — 1   always occur with
even exponents.  The first property is analytic, having reference to  ÇK{s); it is discussed
briefly in this section.  The second property is algebraic, having reference to the class
group; it will be examined in Section 4.

Although the  h  in Table 1 are much larger than the  h < 4  computed by
Godwin that were referred to above, they are not exceptionally large considering the
size of their own discriminants D = (a2 + 3a + 9)2.  By (7) and (8),

(13) ^a+1+^ + ofè).

Then, by (6),

(14) * = log2fl + 3M«+0/J^\
a \ a     I
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1140 DANIEL SHANKS

and by (10) and (12) we have

a2 + 3a
(15) h

4 log2f{'-^-(¿)}n/«

a
-l

l
2
4

7
8

10
11
16
17
23
25
28
29
31
32
37
38
43
49
50

56
58

64
70
73

85
88
91
94
95
98

101
107

P
7

13
19
37
79
97

139
163
313
349
607
709
877
937

1063
1129
1489
1567
1987
2557
2659

3313
3547
4297
5119
5557
7489
8017
8563
9127
9319
9907

10513
11779

4
7
4
4
4
7
4

13
7

19
7
7
7

19
19
19
16
31
19
28
19
49
31
28
31
64
43

a
112
121
122
127
130
133
134
136
140
142
143
155
158
163
164
169
172

175
176
179
182
197
200
205
206
212
214
218
220
224
238
239
254

Table 1

P
12889
15013
15259
16519
17299
18097
18367
18913
20029
20599
20887
24499
25447
27067
27397
29077
30109
31159
31513
32587
33679

39409
40609
42649
43063
45589
46447
48187
49069
50857
57367
57847
65287

h
37

127
61
52
52
52
49

100
37

112
64
67
61
76
61
76
61
61

112
76
73
67

133
91

223
169
73

112
100
169

91
121
175

a
259
260
262
266
277
281
284
290
296
301
302
304
305
310
317
322
331

332
343
346
359

361
364
367
368
371

380
388
392
395
403
406
410

P
67867
68389
69439
71563
77569
79813
81517
84979
88513
91513
92119
93337
93949
97039

101449
104659
110563
111229
118687
120763
129967

131413
133597
135799
136537
138763
145549
151717
154849
157219
163627

166063
169339

h
217
127
172
343
148
349
124
208
511
364
133
229
208
364
403
139
553
244
325
421
292
553
259
277
247
400
547
325
217
316
193
304
277

Since R  is very small here, these  h  would be exceptionally large were it not for the
fact that q = 2  and  q = 3   are cubic nonresidues for all P{a), and therefore the
first two factors in the product are

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SIMPLEST CUBIC FIELDS 1141

(16) /(2)/(3) = i- j|.

Further, q = 5   is a cubic residue for only 1/5 of these P{a), not   1/3, and the same
deficiency holds for q = 1.

Jacobi determined if q  is a cubic residue of a prime p = 1 (mod 3) by writing

(17) 4p=i2+27M2.

Then, for q = 2 or 3, q  is a cubic residue iff M = 0 (mod q), while for q = 5 or 7
the criterion is LM = 0 (mod q).  We have

(18) 4?(a) = (2a + 3)2 + 27;

(note the geometric meaning of 8   in Eq. (7)).  Thus, 2 and 3 are never cubic residues
of P{a), 5 is a cubic residue only if a = 1 (mod 5) while 7 is a cubic residue only if
a = 2 (mod 7).  Since a2 + 3a + 9 = 0 (mod q) has no solution for q = 5   and two
solutions for q-1, for either of these  g   only 1/5 of the Pia) have  q  as a cubic
residue.   In general, for

q = 3N + 2    or    q = 3N + A,

it can be shown that N/{3N + 2) of the P{a) have t; asa cubic residue. This
fraction approaches 1/3 from below, the bias being due to the fact that the coefficient
M of (17) is never  = 0 (mod q)  for any of our P{a).

A rough mean value for our h  is given by

(19) h « 3P{a)/35 log2a.

The larger class numbers here occur for a = I (mod 5), a = 2 (mod 7), and especially

a = 16 (mod 35).

Note the examples:   P = 313, 15013, 88513, and 110563 in Table 1.   But even these
h  must be considered moderate for D  of this size; if 2  and   3  were both cubic
residues instead of nonresidues the class number would increase by a factor of 91/4.

3.  The Analogous Quadratic Fields.  It is of interest to compare our cubic fields
with the following, closely analogous real quadratic fields:

(20) Qiy/P) = Qip),

where  p  is a solution of

(21) x2=ax + l,

and P is a prime

(22) P = P{a) = a2 + A.
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1142 DANIEL SHANKS

Again,

(23) p = lA{y/J + a) = a + - + o( — \
a \a3)

is a fundamental unit, and so this time we have

v/a2 +4   i i / i \)      ~(24) A=^~ 1--—-+^)   Urn

where

21°gfl      I      a2loga       \aV\   q=2

f{q) =1 for  q = P,

(25) f{q) = q/{q - 1)  for ?C-D/a = , (mod F),

/(?) = Q/{Q + 1) otherwise.

Again, q = 2 is always a quadratic nonresidue and so

(26) ^2) = r
Again, there is a deficiency of quadratic residues:  q = 3  and  5  are quadratic residues
for   1/3 of the P{a), not 14, and similarly,

q = AN + 3    or    <? = 4A + 5

are quadratic residues for   (2A^ + 1)1 {AN + 3)  of the  P{a).  We now have a rough
mean value of h  that is approximately the square root of what it was in (19), namely,

h « 3\AP(O/10 1oga.

This time h  is prime to   2, not   3, but there are no other restrictions on h.   That is
the big difference.  It reflects a difference of structure in the class groups as we shall
see in the next section.

In Table 2 we give the 61 of these   QiZ/Pia))  and their class numbers up to the
same limit in a. This count, 61, is precisely what is called for by the Hardy-Little-
wood Conjecture.  The number of primes of the forms

P{a) = a2 + 3a + 32    and   P{a) = a2 + 22,

for a <A, are asymptotic, respectively, to

l.l2073tt(A)   and    0.68641 ttiA),

and  0.68641/1.12073 = 0.6124.  See [6].
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SIMPLEST CUBIC FIELDS 1143

Table 2

a
i
3

S
7

13
15
17

27
33
35
37
45

47

57
65

67
73
85
87
95
97

103
115
117
125
135
137

147
155
163

P
5

13
29
53

173
229
293
733

1093
1229
1373
2029
2213
3253
4229
4493
5333
7229
7573
9029
9413

10613
13229
13693
15629
18229
18773
21613
24029
26573

77ie Quadratic Analogue
n
i
i
i
i
i
3
1

3
5
.1

3

7
3
S
7

3
3
5
9
7
3

5
5

15

9
19

5

13

9

9

a
167
177
183
193
203
207
215
217
233
235
243
245

253
255
265
267
275
277
287
293
303
307
313
317
347
357
373

375
385
403
407

P
27893
31333
33493
37253
41213
42853
46229
47093
54293
55229
59053
60029
64013
65029
70229
71293
75629
76733
82373
85853
91813
94253
97973

100493
120413
127453
139133
140629
148229

162413
165653

h
5

19
9
5

7

15

13
9
9

IS

25
13

9
27
19
15
21

7
13
11
23

9
13
13
11
33
15

25
23

15
13

4. Class Groups. In Table 2, all 61 class groups are cyclic even though there are
some h there that are not square-free. However, not all such Qiy/P(a)) have cyclic
groups, since if we continued the table we would find

a = 4913,      P =24137573

which has the class group [7]   C(3) x C(39).  In contrast, we shall see that none of
the many h  in Table 1 divisible by 4, 25, or 121 correspond to cyclic groups.

In Table 1, h = 2, 5, 8, 10, and 22 never occur (besides all h  divisible by 3).
Cubic fields can have such h, however, since they are found [8] in Q{N1/3) for N= 11,
263, 389, 303, and 281, respectively.  But these are not cyclic fields.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1144 DANIEL SHANKS

The key question is this. Where do conjugate ideals lie in the class group of a
cyclic field? In a quadratic field, if e is an element of the group of order m, then
the conjugates of its ideals lie in em ~ ' since the product of the two elements must be
the identity em = I. Thus, in a quadratic field the conjugate is in the inverse in the
group. In a cubic field, both conjugates of e must either be in the subgroup S of
order m generated by e, or both conjugates must lie outside of S, since the product
of the 3 elements must be /.

Consider the first option.   If one conjugate of e  lies in  ex, the second conju-
2

gate must lie in  ex     and we have

(27) 1 + x + x2 =0(modm)

2
since  e • ex • ex    = e   = I.   Thus,

(28) (2x + l)2 = - 3 (modp)

for each prime divisor p  of m.  So, p = 3  or

(29) p = 1 (mod 3).

Therefore, all cases of h = A, 16, 28, 100, 121, etc., must have noncyclic groups.   One
can make a stronger statement:   Since conjugate elements have the same order, we
have the following

Theorem.   // m  is divisible only by primes = 2 (mod 3), the m-rank of the
class group of a cyclic cubic field must be even.

Proof.   Assume p = 2 (mod 3) and write the p-Sylow subgroup as the direct
product:

oo

n [c(pn)]\
n=l

Here, sn = 0  for all  n > some  nQ.  The p-rank r    of the class group is therefore

rp=    Z    Sn
m = 1

and the p"-rank is

Let

r n =   V  sm,   which we abbreviate as tin).
m = n

pn= n P
m = l
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SIMPLEST CUBIC FIELDS 1145

The number of elements Mn   of the subgroup of order <pn   is

M    =P        „nr(n) =p     nrin + l)
Mn       rn-\P rnfJ >

and therefore the number of order precisely pn  is

Mn~Mn-l  =Pn-1P("-l)r(n)[Pr(n)-l]-

Since conjugates have the same order, this number is divisible by 3 and we must have

r     = 0 (mod 2)    and so    sn = 0 (mod 2)
p

a •
for all n.  Let  m = íl.p¡ '.   Since the m-rank is given by  rm = min {r a.}   it is also
even. '

Therefore, we know the class groups of many of the cyclic fields in Table 1
immediately.

Examples in Table 1.

D= 1632   has the group  C(2) x C(2).

D = 74892   has the group  C{2) x C(14).

D = 189132   has the group  C(10) x C(10).

D = 578472   has the group  C(ll) x C(ll).

But D = 105132  cannot be settled without further computation since   [C(8)]2,
[C(4) x C(2)]2, or   [C(2)]6   are all allowed by the theorem.

On the other hand, the cyclic group of order  7  for D = 3132   has conjugate
elements in {e, e2, e4}   and in {e3, e6, e5}   and in e°, while for D = 10632   they
lie in {e, e3, e9}, etc.

The self-conjugate elements e, those with x = 1 in Eq. (27), and the associated
3-Sylow subgroup has recently been studied very completely in the theses of Gerth [9]
and Gras [10]. See also  [11], [12].

It follows that the class numbers h  of cyclic fields are always of the form

(30) h=A2+ 3B2. *

This is very restrictive since the number of such h <// is [13] asymptotic to

(31) 0.63891 H/y/\ogH,

*This was already known to Hasse 117] and others by considering the cubic field as a sub-
field of a cyclotomic field.
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1146 DANIEL SHANKS

and therefore these numbers have zero density.  That is not surprising since the N of
(1) also have zero density.  In our special case N = P{a)  we have the further restric-
tion that   3 \ h  and so   3 \ A   in (30) and (31) becomes

(31a) 0.42594 H/y/log H.

Clearly, the theorem can be generalized to cyclic fields of higher degree, but we
do not do so here.

The cyclotomic field of the pth root of unity is cyclic of degree p - 1.  In the
table by Newman [14] of h*, the first factor of the class number, one sees that most
of the large prime factors of h*  are of the form  kip -1) + 1.  In fact, D. H. Lehmer
utilized this in greatly accelerating these factorizations.   For example, a 24-digit factor
of h*{l99) was assumed to factor into  (198fcj + 1) (198fc2 + 1), and thereby
Lehmer found the prime divisors having

/tj = 1046937112,      k2 = 16000961681.

See [14].

5.   Hasse's Question.   In personal correspondence, Professor Hasse asked me for
an example of a completely split prime p  in an algebraic field whose divisors do not
lie in a cyclic subgroup of the class group.   Shortly thereafter I brought the question
to the attention of Robert Gold and Richard Lakein.  They put together the composite
biquadratic field  Q{y/— 23, V— 31) wherein the four divisors of 2 are in  C(3) x C(3).

The simplest answer to Hasse's question should have  h = A  in a field of degree
3-these are the smallest possible values.   It is our  D = 1632.  One can rewrite (3) as

(32) (jc - 1) (x + 2) {x - a - 1) = 2a + 3.

By (5), we have

(33) p2 - 1 = - (p + 2)/(p 4- 1),      p3-l =-(p_fl_l)(p+l),

and so   2a + 3   is the norm of (p — 1).   For a = 11, Pia) = 163, 2a + 3 = 52   one
therefore finds the three conjugate, nonprincipal, and inequivalent ideals of norm 5 to
be

(5,p-l),    (5,p + 2),    (5,p-12).

By further examination of the divisors of f{x) = x3 — llx2 — 14.x — 1, one finds
the ramifying and principal prime   (1 + p + p2)  of norm 163, and that all splitting
p < 163, namely, 5, 13, 17, 23, 31, 37, 53, 59, 61, 127, and 157 are nonprincipal and
disposed in the class group as Hasse required, (and in the most elegant way possible).
The first principal primes  > 163 are
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SIMPLEST CUBIC FIELDS 1147

(p-10),    (lOp+11),    (lip H- 1)

of norm 241.

6. The Next Notch. Returning to (3) it seems desirable to examine briefly some
of these fields where N = a2 + 3a + 9 is not prime. If N is square-free or 9 times
a square-free number, everything in Section 1 remains valid except for the splitting cri-
terion (9) and (11).  The next simplest possibility is this:

a = 9b, N = 9{9b2 + 3b + I)   or
(34)

a = 9b-3,      N = 9{9b2 - 3b + I)

with  9b2 ± 3b + 1 = p{b) = p  prime and  b p 0 (mod 3).  Such p  have  3  as a
cubic nonresidue and are  P 1 (mod 9).

Then if

(35) c = i2a + 3)/3,      e = (p - l)/3,

and

(36) d = ce (mod 9p),

it may be shown that (11) should be replaced by
f{q) =1 for  q = 3   and p

(37) fiq) = i-3y) for  qe = 1   or  d  or d2 (mod 9p),

Q2f{a) =-     otherwise.
q2 + q + 1

This is equally easy to compute.   One verifies that  h   is divisible by 3 but not

by 9, cf. [9], [10]. In Table 3 we list a, H = A/3   and p = A/9  up to the same
limit.

7.  Maximal 3-Ranks.  As is well known, if the a2 + A of (22) is a square-free
product of k  distinct primes, the 2-rank of that  Qiya2 + A)  is  k - 1   and there
are   2k~l   genera.   Similarly, in the last section the N = a2 + 3a + 9  of (3) is
divisible by two distinct primes and the 3-rank equals 1.  That is also true for other N
we have skipped over, such as

a = 13, N= 1 • 31;      a = 14, N = 13 ■ 19;      a = 19, N = 1 • 61;
(38)

a = 20,A=7-67;     a = 22, N = 13 • 43;      a = 26, N = 7 • 109.

The first five cases in (38) have A = 3   and the sixth has A = 12.
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1148 DANIEL SHANKS

Table 3

N = a2 + 3a + 9 = 9p,  h = 3H

a

6
9

15
18

36
42
45
60
63
72

99
114
123
150

7
13
31
43

157
211
241
421
463

601
1123
1483
1723
2551

H
i
i
i
i
4
4
4

7

7
16
13
37

19

28

171
177
198
207
225
231
234
303
315
330
333
357
393
414

3307
3541
4423
4831
5701
6007
6163

10303
11131
12211
12433
14281
17293
19183

H
100

52
91
67
52

112
49

208
76

103
103
91

112

133

But now consider the a = 9b - 3 = 24 of (34) for  b = 3  that we have also
skipped over.  Here, N = 9 • 73, and unlike the previous section, we now have  73 = 1
(mod 9) while 3 is a cubic residue of 73.  One finds A = 9.  But, by the same argu-
mentation as in Section 4, the class group of a cyclic cubic field cannot be  C{9) and
we must have  C{3) x C(3) with a   3-rank equal to 2.

By Leopoldt's theory of genera in abelian fields [15], as developed in detail by
Gerth and Gras, a cyclic cubic field with  k  ramifying primes has a 3-rank r3   that
satisfies

(39) 1 < r3 < 2(!t - 1).

For  k = 2, r3   is 1 or 2 and  r3 = 2  iff both primes are cubic residues of each other.
In Table 4, we list all such N = 9p  or PiP2   up to the same limit in a  where we
have the maximal  r3 = 2.  Under  ß(p)  we list the class groups except for a = 329
and four larger a  where we merely list the class number thus:   (A).   In these five
cases the 2-Sylow subgroup or the 3-Sylow subgroup is uncertain without further
computation although we do know that r3 = 2  and r2 = even.

We conclude this section with (a):   specific data on the  C{3) x C(3) for N =
9 • 73 to illustrate a surprising phenomenon; (b):   brief mention of the revised splitting
rules needed to compute Table 4; and (c):   brief mention of the case a = 3418, N =
151 • 211 • 367  which has k = 3  and the maximal r3 = A.

(a) In the abstract group C(3) x C(3) only the identity has a special role; the
other eight elements behave identically and any two may be interchanged by an auto-
morphism.  The four subgroups of order 3 are likewise indistinguishable, abstractly
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Table 4

k =
a

24

34
35
47

51
52

S3
71

79
81

83

86

106
110
113
137
145
146
148
162
181
185
186

208

N
9-73
7- 181

13-103
7-337

9-307
19- 151
13-229
19-277
13-499

9-757
7-1021

79-97
31-373

7-1777
13-1009
31-619

7•3067
7-3109

79-283
9-2971
7-4759

19-1831
9-3907
7-6271

m
3X3
3X3

3X3

3X3

3X21

3X3
3X3

6X6
3X21

3X21

6X6
3X21
3X21
3X9
6X6
6X6
3X21
6X18
3X21
3X21

6X42
3X21
3X63

3X39

'3 = 2

a

213
232
233
240
247
248
253
256
267

270
275
293
297
328
329
338
341
350
351
353
358
373
382
413

N
9-5113

31-1759
43- 1279

9-6481
151-409

13-4789
211-307

13-5101
9-8011

9-8191
157-487

7-12391
9-9901
7-15511

313-349
73- 1579

7-16759
157-787

9- 13807
109-1153
307-421

13-10789
197741
19-9043

Q{p)
6X42

3X39
15 X15

3X63
3X57
6X18
3X39

15X15
3X63

15X15

6X42
15X15

3X63
3X63

(144)
(243)
(324)
6X42

(567)
3X63
6X42
3X117

(324)
3X93

speaking.  If an abstract group is exemplified by a specific mathematical object, one
expects the elements of that object to behave correspondingly.

Not so with the  C(3) x C(3)  for D = (9 • 73)2.   Here is how the splitting
primes lie in this group.  (A)  The ramified 3 and 73 are nonprincipal, equivalent, and
of order 3 so the principal (1 + p + p2) has the norm 32 • 73. (B) One-ninth of the
splitting primes are principal, such as (p + 3) of norm 163. (C) One-ninth, such as 577,
are equivalent to 3, 73, and its two conjugates. (D) One-ninth, such as 17, are equivalent
to its conjugates but inverse to 3 so we find  (p - 1), (p + 2), and  (p - 25) of norm
51=3-17 = 2a + 3.  The primes in (B), (C) and (D) are all cubic residues of both
9 and 73, and together with (A) make up one unique subgroup of order 3.

(E) The one-third of the splitting primes q  that satisfy  q2 = 4 (mod 9), q24 =
8 (mod 73) are nonprincipal and the three inequivalent conjugates are found, one each,
in the other three subgroups.  An example is q = 11   and we find  (p + 7) of norm
1331.   (F)   Finally, those   q   with   q2 = 7 (mod 9)  and <¡r24 = 64 (mod 73), such
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as 13, are nonprincipal, inequivalent, and inverse to those in (E).   One notes  (p - 2)
of norm 143.

Thus, one of the four subgroups is exceptional; K is populated very differently than
the other three.  Perhaps the author lacks imagination.  He could hardly believe that
such a thing would be possible.

(b) Let N = plp2, e. = {p,  - l)/3, e2 = (p2  - l)/3, and let  Q  be any prime
that is a cubic nonresidue of both pl   and p2.  If Q  splits and

(40) (fl =A {modpZ),      Q2 =Bimodp2),

then all splitting q  are characterized as follows:   If

(41) ql =Al {modp.)    then   q*2 = Bl (mod p2)

for   i = 0, 1, or 2.  If pt   is 9 instead, then  e. = 2  as in the N = 9 • 73   discussed
e |  _

above.  Whereas, if Q  does not split and satisfies (40) the splitting q  with q    =
A' (mod pt) have  q 2 = B3~l (mod p2)  for i = 0, 1, or 2.  Thus, the needed re-
placement for Eqs. (11) are not difficult to compute.

(c) For a = 3418, A = 151 • 211 • 367, each of the three ramifying primes is
a cubic residue of the other two.  By the theory [9], [10], (39) becomes r3 =
2(3 - 1) = 4  and  C(3) x C(3) x C(3) x C(3) is a subgroup of the class group.
There are, of course, four different fields with D = (151 • 211 • 367)2.  The one of
these for a = 3418 has h = 16848 = 24 • 34 • 13.

I would like to thank Carol Neild for assistance in computing the tables.

8. A Recent Paper and Others to Appear.   As I completed the foregoing, I
noticed in the current Contents Contemporary Math. Jour, the listing of a paper [16]
by M. N. Gras, N. Moser, and J. J. Payan that was about to appear.  The "de certains
corps cubiques cycliques" in its title sounded extremely appropriate.  These fields are,
in fact, our fields above, and tables are given up to what we designate as a = 47,
N = 1 • 337.  But the approach and method is entirely different in this paper and I
believe that justifies the publication of our own version.  They do not give our Eq. (3).
Rather, for D = 0 (mod 9), they use what would be

(42) x3 +x2 = i-CfV- l)x+ [N{3 + y/AN - 27) - l]/27

in our notation, with the sign of the radical chosen so that  y/AN — 27 = 1 (mod 3).
For  D = 0 (mod 9) a still different equation is used.  Whereas our approach is based
entirely upon the relatively small and already known regulator (6), their point of de-
parture is the fact that  AN = L2 + 27  implies that {1, p, p2}   is an integral basis.
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Marie-Nicole Gras then kindly sent me copies of her [18], [19]. The first is her
thesis. It includes the theorem in our Section 4 and a detailed treatment of the C(2)
x C{2) for D = 1632 in our Section 5. Her [19], which will appear, has an interest-
ing method of computing the class numbers and units of cyclic cubic fields and exten-
sive tables including all N in (1) < 4000 and all N = a2 + 3a + 9 < 20000. Both
papers treat the cubic field as a subfield of the cyclotomic field of the Ath roots of
unity.

While there is therefore a considerable overlap of her papers and mine, there are
also differences in method and content. We do not use the cyclotomic fields and our
calculations for A   are probably simpler and faster.
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