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1 Introduction

Recently a new formalism for four-dimensional massive scattering amplitude was intro-

duced by one of the authors [1] that manifests the covariance of the SU(2) massive Little

group. Through such formalism, many fundamental properties of interacting systems be-

come manifest, including Weinberg-Witten theorem, limits on the spin of fundamental

point like particles, as well as Higgs mechanisms as the natural infrared unification. Fur-

thermore, the new formalism also allows one to streamline computations such as anomalous

magnetic dipole moment as well as classical electric and gravitational potentials [2, 3].

Given its utility in making physical properties manifest, it is natural to pose the

following question to such formalism: what is the simplest massive scattering amplitude?

A similar question was posed for the massless case long ago [4], for which remarkable
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properties of N = 8 supergravity amplitudes were unmasked. Here we expect the lessons

to be equally, if not more, interesting. For one, the space of massive theories is much richer

than that of massless ones. It includes not only fundamental particles, but monopoles, BPS

states, and infinite tower of string resonances. Indeed, recently such on-shell approach was

utilized for extremal (half-BPS) black holes in N = 8 supergravity [5], which demonstrated

the absence of perihelion precession.

We answer this question by starting with the three point amplitude describing a spin-

s state coupled to either a photon or a graviton. As discussed in [1], this is given by an

{2s}⊗{2s} symmetric SL(2,C) tensor, with 2s+1 distinct structures. Assigning the massive

legs to be 1 and 2 with equal mass, the general three point amplitude is parametrized by λ3
(along with ǫαβ shares the responsibility of carrying the SL(2,C) indices) and x, defined as:

xλ3α =
p1αα̇λ̃

α̇
3

m
, (1.1)

and m is the mass of the massive legs. The simplest amplitude then corresponds to that

comprises of x and ǫαβ solely. This amplitude is identified as minimal coupling in the sense

that in the high energy limit, the amplitude matches the minimal massless amplitude that

has the least number of derivatives. For the case of charged particles this also matches with

that of classical magnetic dipole moment 2 for any spin, and deformation of the form λ23
represents g−2. Interestingly when extended to gravitational coupling λ23 deformations are

forbidden on the grounds of general covariance. Note that for systems in which the gravita-

tion coupling is given by the square of vector couplings, such as perturbative string theories,

this immediately leads to the conclusion that the charged particles must have g = 2.

Given that the minimal coupling has special properties both in the UV and IR, it

is natural to ask for generic spin-s, which theory leads to such minimal coupling. Näıve

expectation would be the leading trajectory states of open and closed string theories,

since from the world-sheet CFT point of view, their vertex operators are the simplest. It

turns out, the answer is quite the contrary, as we demonstrate that the leading trajectory

massive spin states are the maximal non-minimal coupling, reflected in the fact that all

2s+1 tensor structure are present. Allowing ourselves to take the classical values of spin,

i.e. s≫ 1, we show by matching to the one-body effective action of a point particle coupled

to gravitational background, minimal coupling matches on to that of a Kerr black hole.

Thus the matching between minimal coupling and Kerr black hole, is the on-shell way of

stating a consequence of the no-hair theorem.

Given the importance of minimal coupling, we explore the four-point (gravitational)

Compton amplitude for general spin, by constructing an ansatz whose residues match that

of products of minimal coupling. This leads to potential polynomial ambiguities. For

s ≤ 2, such ambiguities are identified as finite size effects, as they are accompanied with

additional 1
m factors. For s > 2 the polynomial terms in general can be of the same order

in 1
m as the pole terms, reflecting the inherent non-fundamental nature of such higher spin

particles. We also consider four-point amplitudes with deformations from minimal coupling,

demonstrating that consistent factorisation bans λ23 terms in the three-point coupling with
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graviton. This provides an on-shell origin of inconsistencies of λ23 terms in gravitational

coupling alluded to earlier.

Equipped with the identification of minimal coupling with Kerr black holes, as well as

its Compton scattering amplitude for s ≤ 2, an immediate application is to compute the

classical contributions to long-range gravitational interactions at 2 post-Minkowskian (PM)

order, or G2 order where G is the Newton constant. It has been known for some time that

quantum field theory (QFT) loop effects are not entirely quantum, but includes classical

effects as well [6]. Such effects have been computed by various authors [7–10], and the re-

sults have become important in the era of gravitational wave astronomy where gravitational

wave sources undergo hundreds to thousands of revolutions before their merger, which is

long enough to push the small corrections of inverse-square-law to the detectable range [11].

Recently there has been tremendous activity in applying advanced developments in

perturbative QFT computations to the computation of such classical effects, commonly

referred to as classical potentials. These include generalized unitarity methods [12, 13],

double copy relations [14–17], and spinor-helicity variables [2, 3, 18–21]. Following Cachazo

and Guevara [2, 3], we compute the spin-dependent pieces of the 2PM classical potential

to cubic and quartic in either Black Hole’s spin. Such corrections, to the best of authors’

knowledge, have not been presented in the literature before.

This paper is organized as follows. First, we start with a brief review of the massive

spinor helicity formalism in section 2 and set up the 3pt amplitudes. In section 3, we will

analyze the physical implications of the 3pt amplitudes from section 2 for photons and

gravitons. Then in section 4, we take the graviton minimal coupling amplitude to the

infinite spin limit and match with the effective action of a Kerr black hole. In section 5, we

start to construct the Compton amplitudes with these 3pt amplitudes via constraints from

consistent factorization. We discuss the high energy behaviour of these 4pt amplitudes and

the polynomial ambiguities in our amplitude. In section 6, we start to calculate the classical

potential at 1 PM with the leading singularity technique up to quartic order in spin. Finally,

in section 7, we start with a review of the 1-loop leading singularity. Then we predict new

results up to quartic order in spin. Then, we will use the consistent condition of the classical

potential to fix some of the polynomial ambiguities in the higher spin Compton amplitude.

At the final stage of this work we were informed of the draft [22] that has some overlap

with the content in this work.

2 Review: on-shell formalism

Scattering amplitudes are Lorentz invariant but Little group covariant quantities. This

means that the amplitude must reflect the Little group representation of each external leg.

As we will be interested in four dimensions, the Little group in interest will be U(1) and

SU(2) for massless and massive states respectively. Representations of U(1) are simply

labeled by the helicity weight h, while for SU(2) instead of introducing a reference z-

direction and label the states by its eigenvalue for Jz, we will represent a spin-s state as a

rank 2s symmetric tensor. As an example a four point amplitude with two massless and
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two massive states should be represented as:

M{I1,I2,···I2s1},h2,h3,{J1,J2,···J2s4} (2.1)

where the massive legs (1 and 4) are of spin-s1 and s4 respectively and the massless legs 2

and 3 have helicity h2, h3. The curly bracket indicates that one is symmetrizing over the

2s SU(2) indices I, J , taking value in 1, 2.

Since amplitudes are covariant quantities, it should be a function of objects that are

not singlets under the Little group, i.e. objects that carry little group indices. In the usual

textbook approach, one introduces external line factors or polarization tensors which serve

the purpose of converting Lorentz representations into Little group representations. Since

except for scalars the size of the two representations are distinct, doing so introduces large

amount of redundancy, which is the underlying reason for the complexity in the usual

Feynman diagram approach. In contrast, the spinor helicity formalism introduces bosonic

spinor variables that transform under the fundamental representation of the Little group,

while directly comprising the kinematic data, the momenta. This allows us to remove the

redundancy and dramatically reduce the complexity of the final answer. Furthermore, as

we will see, such on-shell approach will render many physical properties, such as high the

energy behaviour, transparent and straightforward.

2.1 The massless/massive spinor helicity formalism

We begin by introducing SL(2,C) representations. A Lorentz vector, such as the momenta,

is written as a bi-fundamental tensor under SL(2,C):

pµ → pαα̇ (2.2)

where α, α̇ = 1, 2. The usual Lorentz invariant inner products are then mapped to the

contraction of these tensors with the 2 × 2 Levi-Cevita tensor:

pµi pjν =
1

2
ǫαβǫα̇β̇ piαα̇ pjββ̇ . (2.3)

From the above one sees that p2 = detpαα̇. Thus for massless momenta, the 2 × 2 tensor

pαα̇ is of rank one and one has:1

pαα̇ = λαλ̃α̇ . (2.4)

The relation between the bosonic spinor variables and the momenta is invariant under the

following transformation:

λ→ e−i θ
2λ, λ̃→ ei

θ
2 λ̃ (2.5)

Note that this is precisely the definition of the Little group! Thus we identify the spinors

λ, λ̃ as having (−1
2 ,+

1
2) Little group weight respectively. Using these bosonic spinors it is

1For real future-directed momenta with Minkowski signature, we have λ̃ = (λ)∗. For complex momenta

or (2, 2) signature the two spinors are independent. It will sometimes be convenient to consider complexified

momenta when discussing the analytic properties of the scattering amplitude.
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then convenient to define the following Lorentz invariant, Little group covariant building

blocks:

〈ij〉 ≡ λαi λ
β
j ǫαβ , [ij] ≡ λ̃iα̇λ̃jβ̇ǫ

α̇β̇ . (2.6)

In terms of these blocks, the usual Mandelstam variables are given as 2pi · pj = 〈ij〉[ji].
For massive momenta, pαα̇ has full rank and we have

pαα̇ = λIαλ̃Iα̇ , (2.7)

where I = 1, 2. The index I indicate that they form a doublet under the SU(2) massive

Little group. Indeed the momentum is invariant under the following transformations:

λIα → U I
J λ

Jα, λ̃Iα̇ → U I
J λ

Jα , (2.8)

where U is an element of SU(2). One can convert between the two spinors via

pαα̇λ̃
Iα̇ = mλIα, pαα̇λ

Iα = −mλ̃Iα̇ . (2.9)

A detailed description of spinor-helicity formalism is given in appendix A.

An important property of the Little group is that it is defined for each individual

momenta separately. In other words, only the spinor variables of a given leg can carry its

Little group index. This implies that without lost of generality we can pull out overall

factors of λIi from the amplitude,

M
···{I1,I2,··· ,I2si}···
n = λI1iα1

λI2iα2
· · ·λI2siiα2si

M
···{α1,α2,··· ,α2si

}···
n , (2.10)

leaving behind a function that is symmetric in SL(2,C) indices instead. We will refer to

this representation as the chiral basis, reflecting the fact that we are using the un-dotted

SL(2,C) indices. One can equally use the anti-chiral basis, and the two can be converted

to each other by contracting with pαα̇

m . This separation will be useful when considering

suitable basis for all possible three-point interactions as we will now see.

2.2 General structure of the three-point amplitude

We now consider the most general form of the three-point amplitude for one massless and

two equal mass legs with spin s. Without loss of generality, the momenta p1 and p2 can

be taken to be massive, and the amplitude takes the form:

M
h,{α1,··· ,α2s},{β1,··· ,β2s}
3 , (2.11)

where h is the helicity of the massless leg. Now we have a {2s}⊗{2s} SL(2,C) tensor, and

we are interested in the general structure of all possible couplings. This entails the need of

a basis to span the two-dimensional space. It is preferable to use the kinematic variables

of the problem to serve as a basis, thus it is natural to introduce

λ3α, ǫαβ (2.12)

as the expansion basis.
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Since λ3 carries helicity weight −1
2 of the massless leg 3, in order to represent general

amplitudes, one should also have a variable that carries positive weights. This variable is

introduced by noting that for equal mass kinematics,2

2p3 · p1 = 〈3|p1|3] = 0 , (2.13)

and hence the spinor λα3 must be proportional to λ̃3α̇p
α̇α
1 . Through this proportionality,

we introduce a new variable x defined as:

xλα3 = λ̃3α̇
pα̇α1
m

, (2.14)

where p21 = m2. Note that the above equality tells us that x is dimensionless and carries

+1 helicity of leg 3. Using an auxiliary spinor ξ, we can represent x as

x =
[3|p1|ξ〉
m〈3ξ〉 . (2.15)

The above shows that x can be nicely written in terms of polarization vectors:

mx =
1√
2
ε(+) · (p1 − p2) (2.16)

with the polarization vector ε
(+)
αα̇ =

√
2 λ̃3α̇ξα

〈3ξ〉 , and the auxiliary spinor is identified with the

reference spinor of the polarization vector.

Equipped with the new variable, we can write down the general structure of a three

point amplitude for two spin s and a helicity h state:

M
h,{α1,··· ,α2s},{β1,··· ,β2s}
3 =(mx)h

[
g0ǫ

2s+g1ǫ
2s−1x

λ3λ3

m
+· · ·+

(
x
λ3λ3

m

)2s]{α1,··· ,α2s},{β1,··· ,β2s}

=(mx)h

[
2s∑

a=0

gaǫ
2s−a

(
x
λ3λ3

m

)a
]{α1,··· ,α2s},{β1,··· ,β2s}

, (2.17)

where the 2s⊗ 2s separately symmetrized SL(2,C) indices are distributed across the Levi-

Cevita tensors ǫ and λ3s. Thus we see that there are in total 2s+1 structures for spin s

states, and we’ve normalized the couplings such that the gis are dimensionless.

Note that the above classification is purely kinematic in nature, and does not cor-

respond to the classification of local operators in the usual derivative expansion. Indeed

in the usual Lagrangian language, there may be a large number of operators at a given

derivative order simply due to the different ways the derivative can contract. Furthermore,

operators at the same derivative order may behave very differently in the high-energy limit.

For example, consider the following Lagrangian for a charged spin-s field:

L = (−1)sDνφ(s)Dν φ̄
(s) + · · · (2.18)

where φ(s) is the short hand notation for a rank s field, the Lorentz indices of φ is contracted

with φ̄, and · · · represents additional terms needed to ensure that through equations of

2Here 〈i|pj |k] = λα
i pjαα̇λ̃

α̇
k .
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motion, φ(s) and φ̄(s) are symmetric, traceless and transverse.3 Consider the three-point

amplitude from the leading term, given by:

ε3 · (p1−p2) ε(s)1 · ε(s)2 . (2.19)

To convert to our chiral basis, we strip-off the polarization tensors and convert the dotted

indices into un-dotted indices, by contracting with p
m :

ε3 · (p1−p2)Oα1β1Oα2β2 · · ·Oαsβs ǫαs+1βs+1 · · · ǫα2sβ2s , Oαβ ≡ p1α
α̇p2βα̇
m2

(2.20)

Using the identity
p1α α̇p2βα̇

m2 = ǫαβ − x
λ3αλ3β

m , we find that in the chiral basis the leading

coupling in eq. (2.18) written as:

mx

[
s∏

i=1

(
ǫ− x

λ3λ3
m

)

αiβi

][
2s∏

k=s+1

ǫαkβk

]
+ sym{α1 · · ·α2s}sym{β1 · · ·β2s} . (2.21)

Here we have all gi 6= 0 for all i ≤ n. In other words, a single local operator in the

Lagrangian is expressed as a sum of many terms in such on-shell basis. The reason that

there is such dramatic difference is because the on-shell basis is completely determined from

kinematics, and thus each term in the expansion is distinct in a purely kinematic way. On

the other hand, operators in a Lagrangian can often be related through integration by parts

or field redefinitions, and each operator can contain several kinematically distinct pieces.

In fact, as we will see in the next section, by expressing the three-point amplitude on such

on-shell basis, we will be able to cleanly separate terms that behave poorly in the UV,

allowing us to define in a physically meaningful way what minimal coupling is.

It will be convenient to make connection with the amplitudes computed from the usual

Feynman diagram approach. For this, we simply put back the λIi factors that was pulled

out that defined the chiral basis in eq. (2.10). For example,

Mh,s,s
3 = (mx)h

[
g0

〈21〉2s
m2s−1

+ g1x
〈21〉2s−1〈23〉〈31〉

m2s
+ · · ·+ g2sx

2s 〈23〉2s〈31〉2s
m4s−1

]
. (2.22)

Note that we have suppressed the massive Little group indices, and simply “bolding”

the massive spinors with the understanding that its Little group indices are symmetrised.

Taking the conjugate, one obtains the anti-chiral representation:

Mh,s,s
3 =

xh

mh

[
ḡ0

[21]2s

m2s−1
+
ḡ1
x

[21]2s−1[23][31]

m2s
+ · · ·+ ḡ2s

x2s
[23]2s[31]2s

m4s−1

]
. (2.23)

The coefficients in the anti-chiral basis are of course linearly related to that in the chiral

basis. Indeed using the following identities;

〈21〉 = [21] +
[23][31]

mx
= [2|

(
11 +

|3][3|
mx

)
|1] (2.24)

〈23〉〈31〉 = − [23][31]

x2
= [2|

(
−|3][3|

x2

)
|1] , (2.25)

3For massive higher spin fields, transversality will be defined as having no time-like polarisations. This

means transverse polarisations in this manuscript will include degrees of freedom referred to as longitudinal

polarisations in the literature.
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one can show that eq. (2.22) can be recast into the anti-chiral basis, where the coupling

constants ḡns are given as

ḡm =
m∑

n=0

(−1)n
(
2s− n

m− n

)
gn . (2.26)

As an illustration of how these interaction arrises from terms of a local Lagrangian,

consider the coupling of Maxwell field to Dirac spinors; Lint = eAµΨ̄γ
µΨ. The 3pt am-

plitude for this interaction term with the convention Ψ(p1) incoming, Aµ(k3) incoming

positive helicity, and Ψ̄(p2) outgoing is

M
+1,1

2
,1
2

3 = eū(p2) 6ε+3 u(p1) =
√
2e

−[23]〈ζ1〉+ 〈2ζ〉[31]
〈3ζ〉 , (2.27)

which, with help of three particle kinematics we can write [23] = −〈2|p1|3]/m and

[31] = [3|p1|1〉/m. Substituting into the last equality we find that:

M
+1,1

2
,1
2

3 =
√
2e

[3|p1|ζ〉
m〈3ζ〉 〈21〉 =

√
2ex〈21〉 , (2.28)

which, corresponds to the first term in eq. (2.22) after normalization. Similarly, for the

Pauli term; Lint = − e
MFµνΨ̄γ

µνΨ with γµν := i
4γ

[µγν],

M
+1,1

2
,1
2

3 = −i e
M
ū(p2)γ

µν
(
−ik3 [µ ε+3,ν]

)
u(p1) = −

√
2e

M
[23][31] = x2

√
2e

M
〈23〉〈31〉 ,

(2.29)

where we have used the eq. (2.25) for the last equality. This gives the second term of the

expansion eq. (2.22), with s = 1
2 .

2.3 Classical spin-operators from amplitudes

It will be useful to view the three-point amplitude as an operator acting on the Hilbert

space of SL(2,C) irreps. More precisely, since M+h,s,s is basically a {2s} ⊗ {2s} Lorentz

tensor contracted between 2s λ1 and 2s λ2s, it can be viewed as an operator that maps

the spin-s representation in the Hilbert space of particle 1 to that of particle 2. In other

words, schematically we have:

M+h,s,s =
1

m2s−1
λI1α1
1 · · ·λI2sα2s

1 O{α1,··· ,α2s},{β1,··· ,β2s}λ
J1β1
2 · · ·λJ2sβ2s

2 (2.30)

We know that the operator O{α1,··· ,α2s},{β1,··· ,β2s} is a linear combination of polynomials in

ǫαβ and λ3αλ3β . The former naturally can be identified as the identity operator, while the

latter is the spin-operator which we now show.

Let’s start with the spin vector Sµ defined as the Pauli-Lubanski pseudo-vector

Sµ = − 1
2mǫ

µνρσp1νJρσ. For the Lorentz generator Jµν , we will be interested in its ac-

tion on SL(2,C) irreps. For spin-s, we write:

(Jµν)α1α2···α2s
β1β2···β2s =

∑

i

(Jµν)αi

βi Īi = 2s(Jµν)α1
β1 Ī1, (Jµν)α

β =
i

2
σ[µσ̄ν] , (2.31)
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where Īi = δβ1
α1 · · · δβi−1

αi−1δ
βi+1
αi+1 · · · δβ2s

α2s , and the last equality reflects the fact that the irreps

are symmetric tensors of 2s indices. Using this, we find that

m (Sµ)
β
α =

1

4
[σµ(p1 · σ̄)− (p1 · σ)σ̄µ] β

α

m (Sµ)
α̇
β̇
= −1

4
[σ̄µ(p1 · σ)− (p1 · σ̄)σµ]α̇β̇ .

(2.32)

Finally, dotting into the massless momenta p3 we arrive at:

(p3 · S) β
α =

x

2
λ3αλ

β
3 ≡ x

2
|3〉〈3|

(p3 · S) β̇
α̇ = −λ3α̇λ

β̇
3

2x
≡ |3][3|

2x
.

(2.33)

From this result we see that the operator O{α1,··· ,αs},{β1,··· ,βs} is comprised of iden-

tity operators and the spin vector operator, projected along the direction of the massless

momenta. For example, for s = 1, we have

O{α1α2}
{β1β2} =


g0I β1

{α1
I
β2

α2} + 2g1
I
β1

{α1
(p3 · S) β2

α2}
m

+ 4g2
(p3 · S) β1

{α1

m

(p3 · S) β2

α2}
m


 . (2.34)

3 The simplest three-point amplitude

In the previous section, we’ve seen that for a massive spin-s particle, whether it is funda-

mental or composite, the emission of a photon or graviton can in general be parameterized

by eq. (2.22). This parameterization is unique in the sense that the expansion basis is de-

fined on kinematic grounds unambiguously. The expansion is organized in terms of powers

of 1
m , with higher order terms hinting at potential problems in the UV, i.e. the massive

amplitude does not have a smooth m → 0 limit. In other words, this parameterization

manifests the high energy behaviour for a given interaction. To illustrate this feature in

more detail, take for example the Lagrangian in eq. (2.18) with spin-1, which is known to

lead to four-point amplitudes that violate tree-unitarity at high energies and is not remov-

able via the presence of an extra Higgs. Indeed this can be seen already at the three-point

level, where in our parameterization is given as:

mx
〈12〉2
m2

−mx2
〈12〉〈13〉〈32〉

m3
. (3.1)

We see that while in the Lagrangian the interaction is given by a single local operator,

in our on-shell parameterization, it is comprised of two pieces, with the latter behaving

worst in the high-energy limit compared to the first. Indeed, if we consider the three-point

amplitude of a photon with W-bosons, we will only find the leading piece at tree level.

Consider an amplitude with only the leading term in eq. (2.22). The above discussion

would indicate that not only is the amplitude simple in the number of terms involved, but

is also simple in the sense of having the best UV behavior. At high energies we only have

massless states, and we can ask what amplitude in the UV does this pure x-piece matches
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to. Note that simply “unbolding” the spinors might lead to ill defined limit, as while the

denominator of 1
m tends to zero in the limit, the angle brackets in the numerator can tend

to zero as well even in complex kinematics. Thus we would like to have a controlled way of

approaching the high energy limit for eq. (2.22). To this end, let us decompose the massive

spinors onto the helicity basis of the massless limit:

λIα = λαξ
−I + ηαξ

+I , λ̃Iα̇ = η̃α̇ξ
−I + λ̃α̇ξ

+I , (3.2)

where ǫIJξ
+Iξ−J = 1 and 〈λη〉 = [λ̃η̃] = m. The SU(2) spinors ξ±I are the eigenstates

of spin-12 for Jz in a given frame. In the m → 0 limit we see that the finite contribution

correspond to taking the ξ±I of the two massive legs to have opposite helicity. In other

words we the two massive spin-s states will translate into a +s and −s helicity state

separately at high energies. To avoid a singular piece we must have λ1 ∼ λ2 ∼ λ3.

Choosing leg 1 to be the positive helicity, we then have

(mx)h
(〈12〉

m

)2s
∣∣∣∣∣
m→0

=

(
[3|p1|ξ〉
〈3ξ〉

)h(〈η12〉
m

)2s
∣∣∣∣∣
m→0

. (3.3)

Since the λis are proportional to each other, we introduce proportionality factors y1, y2
defined via λ1 = y1λ3 and λ2 = y2λ3. Momentum conservation then fixes:

y1 =
[23]

[12]
, y2 = − [13]

[12]
(3.4)

Using that 〈η12〉
m = − [13]

[23]
〈η11〉
m = [13]

[23] , this leads to

(
[3|p1|ξ〉
〈3ξ〉

)h(〈η12〉
m

)2s
∣∣∣∣∣
m→0

=

(
[23][31]

[12]

)h( [13]

[23]

)2s

. (3.5)

We see that in the high-energy limit, the pure x-piece will become that of the minimal

coupling: the minimal mass dependence for a three point amplitude with h3 > 0 and

|h1| = |h2| = s states.4

One can straightforwardly check that subleading terms in eq. (2.22) match to higher

derivative couplings in the UV. Thus minimal coupling in the UV uniquely picks out

(mx)h
(〈12〉

m

)2s

(3.6)

from all possible low energy couplings. For this reason it is natural to refer to the choice

of setting all coupling constants except g0(ḡ0) to zero as minimal coupling. Once again,

we stress that our minimal coupling is defined through kinematics solely. As we will see

in the next section, this will be minimal in a very precise sense in the IR as well! In the

following, we will study this simplest amplitude in more detail for photons and gravitons

separately.

4For more detail see appendix A.4.
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3.1 Photon minimal coupling and g = 2

Let us first consider the case where the minimal coupling involves the massive states coupled

to a photon, |h| = 1. The coupling we are interested in will then be:

emx

(〈21〉
m

)2s

, (3.7)

where we’ve included the charge e and made an overall sign choice for a better interpretation

as operators. Since we are considering coupling to photon that is sensitive to its spin, a

natural quantity of interest would be its magnetic dipole moment. Recall that in the non-

relativistic limit, the magnetic dipole moment is defined through the Zeeman coupling:

VZ := −~µ · ~B = −ge
m
~S · ~B . (3.8)

In the rest frame of the charged particle with momentum p1, the magnetic field ~B can be

written in the following Lorentz covariant form:

Bµ :=
1

2m
ǫµνρσp1νFρσ . (3.9)

The expression for the Zeeman coupling then has the following Lorentz invariant form:

VZ = −ge
m
~S · ~B =

ge

2m
JµνFµν +

ge

m3
pτ1FτηJ

ηχp1χ . (3.10)

Substitute Fµν = −i
√
2(p3µε

±
ν − p3νε

±
µ ),

5 into the Zeeman coupling equation eq. (3.10) for

s = 1
2 in the dotted frame. For plus helicity photon this results in:

(
V +
Z

)β̇
α̇ =

ge

2m3
λ̃β̇3 (p1λ̃3)α̇ . (3.11)

For general s we simply have:

(
V +
Z,2s

)β1β2···β2s

α̇1α̇2···α̇2s

=
∑

i

(
V +
Z

)β̇i

α̇i
1̄1i = 2s

(
V +
Z

)β̇1

α̇1
1̄11 . (3.12)

To compare with our three-point amplitude we contract the SL(2,C) indices with massive

spinor helicity variables, yielding

(
V +
Z,2s

)
= s

ge

m
[23][31]

(
[21]

m

)2s−1

. (3.13)

5The normalisation factor of
√
2 may seem unconventional, but introduction of this factor simplifies the

analysis: the scalar potential coupling VS = eφ can be covariantly written as P ·A
m

, and setting Aµ =
√
2ε±µ

results in V +
S = ex and V −

S = ex̄.
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Now let us compare with our minimal coupling amplitude. We will use the anti-chiral

representation in eq. (2.23) with h = 1. Since all gn vanishes except for g0 which we set to

electric coupling, ḡ0 = g0 = e, and ḡ1 = 2s. The three-point amplitude then takes the form

M+1,s,s
3 = emx

[21]2s

m2s
+ 2s

[21]2s−1[23][31]

m2s
+ · · · . (3.14)

Compared with the Zeeman coupling in eq. (3.13), we immediately see that our minimal

coupling leads to g = 2 for arbitrary spin. Thus the simplest amplitude with photon

coupling is also characterized by the classical magnetic dipole moment being 2! Note that

terms denoted as · · · corresponds to higher multipole moments as they are of higher order

in λ̃3, indicating higher derivative terms on the field strength. Since minimal coupling

is also related to good high energy behaviour, this indicates that for an isolated charged

spin-s particle with good UV behaviour, the classical magnetic moment must be 2. By

isolated we are referring to the case where there are no other states with similar mass.

Indeed the classical value for g is 2 for massive vectors arising from Higgs mechanism, and

it is known that when constrained to operators with two derivative couplings, tree-level

unitarity requires g = 2 for isolated massive spinning particles [23].

Finally, from eq. (2.26) we see that the only terms affecting ḡ1 is g1 (with g0 set to e),

which correspond to a non-zero λ23 coupling in the chiral basis. Since we already have g = 2

when g1 = 0, the presence of g1 indicates (g − 2) contributions. Indeed as one finds that

the coupling parameterized by g1 is generated at one loop [1].

3.2 Gravitational minimal coupling

We now turn to gravity. The minimal three-point coupling for a positive helicity graviton is ,

m2

Mpl
x2
(〈12〉

m

)2s

. (3.15)

Following our photon discussion, we can ask whether there is a gravitational analogue of

Zeeman coupling for gravitomagnetic interactions, and the minimum coupling correspond

to a particular value for the gravitomagnetic dipole moment. Indeed one can consider a

Kaluza-Klein decomposition of the metric:

h00 = 2Φ, h0i = −Ai, hij = 2Φδij , (3.16)

where Φ will be identified with the gravitational potential and ~A the vector potential for

gravitational version of magnetic field. The full gravitational potential then takes the form:

V = mΦ+ α~S · ~B . (3.17)

Note that in contrast to the photon case, here α is fixed by the requirement that the result-

ing Hamiltonian reproduces the correct evolution of the spin operator ~S, which is dictated

from general covariance. This fixes α = −1
2 , where we leave the details to appendix B.

Thus we seem to have a potential contradiction: since the gravitomagnetic dipole moment

is completely fixed from general covariance, minimal coupling is inconsistent if it doesn’t
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reproduce the correct value. However, from an on-shell point of view, there is no apparent

sickness either in its high energy behaviour or consistent embedding in a four-point am-

plitude, as we will see in section 5. Not surprisingly, we will find that minimal coupling

exactly reproduces the correct result!

The discussion above indicates that the gravitomagnetic dipole moment should be

universal on grounds of general covariance.6 Since the dipole moment is associated with

minimal coupling as well as the coefficient of λ23, this implies that one can simply consider

an arbitrary diffeomorphism invariant action, and read off the latter coefficient. The result

would be universal! Again introducing a scalar like kinetic term for general spin-s field for

integer s, we start with the on-shell action:

S =
1

Mpl

∫ √−g (−1)s

2

(
Dµφν1···νsDµφν1···νs −m2φν1···νsφν1···νs

)
, (3.18)

where the sign factor (−1)s is there to make sure that the kinetic term for physical degrees

of freedom have the right sign. Note that while additional terms are generally needed to

impose tracelessness and transversality condition [25], such terms cannot generate non-zero

g1 and have been neglected. This can be seen by noting that such terms can be recast into

linear combinations of Dµφ
µν2···νsDρφρν2···νs and φRφ via integration by parts identities,

where the latter is a schematic representation with index contractions suppressed. The

former term vanishes due to transverse tracelessness of the polarisation tensors, while

terms involving the Reimann tensor yields gi terms with i > 1 [26]. Expanding around the

flat metric, terms linear in graviton can be separated into two terms:

T̄µν =(−)s
[
(∂µφ

σ1···σs)(∂νφσ1···σs)+s(∂
λφ σ2···σs

µ )(∂λφνσ2···σs)−sm2φ σ2···σs
µ φνσ2···σs

]
−ηµνL

Gµνλ=
(−)ss

2

(
φνσ2···σs∂µφλσ2···σs

+φνσ2···σs∂λφµσ2···σs
−φλσ2···σs∂µφνσ2···σs

+(µ↔ ν)
)

(3.19)

where we’ve separated the piece that stems from expanding Γλ
µν as Gµνλ. The stress tensor

is then given as Tµν = T̄µν−∂λGµνλ. These two sources will contribute to the 3pt amplitude

as following terms.

−1

2
hµν T̄

µν → x2
m2

Mpl

(〈21〉
m

)s( [21]

m

)s

−1

2
(∂λhµν)G

µνλ → sx

Mpl

(〈21〉
m

)s( [21]

m

)s−1

[23][31]

(3.20)

Using eq. (2.24), we convert the expression into pure chiral form:

x2
m2

Mpl

(〈21〉
m2

)2s

− s(s− 1)

2

1

Mplm2

(〈21〉
m

)2s−2

〈23〉2〈31〉2 + · · · . (3.21)

6This is reminiscent of Weinberg’s soft theorems [24], where photon soft theorems only require charge

conservation, and thus allowing any charge for a given state. On the other hand graviton soft theorems

leads to unversal coupling constants and hence the equivalence principle.
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Note that there are no λ23 couplings, so g1 = 0! Thus it appears that general covariance

simply tells us that λ23 couplings are forbidden. In section 5, we will present an alternative

on-shell view point of why nonzero g1 is prohibited, this time under the constraint of

consistent factorisation.

Finally we comment that the action in eq. (3.18) yields deviations from minimal cou-

pling that begins at λ43, with coefficient − s(s−1)
2 . Indeed as was pointed out in [27], such

action leads to violation of tree-level unitarity for longitudinal scattering. For s < 3 this

can be completely resolved by introducing a new coupling to the Reimann tensor

h
s(s− 1)

2
φµρµ3···µsRµνρσφ

νσ
µ3···µs (3.22)

with h set to 1. We see from the above, this is precisely the requisite choice to cancel the

λ43 term, consistent with the conclusion that terms beyond minimal coupling lead to bad

UV behaviours. Note that string theory in general has h 6= 1, as discussed in [28], where

it evades the UV unitarity disaster by introducing an infinite tower of states whose mass

scale is the same as the state in question.

3.3 Universality of g for perturbative string states

The requirement that g1 = 0 for gravitational couplings has important implications for

systems in which the three-point coupling to a graviton is given by the square of the

coupling to a photon. More precisely, the spin-2s spin-2s coupling to a graviton is given

by the square of three-point amplitude of spin-s, spin-s and photon:

M3(1
2s,22s, 3+2) =

[
M3(1

s,2s, 3+1)
]2
, (3.23)

where we’ve used bolded numbers to indicate the massive legs, and their exponent indicat-

ing their spin. An immediate example is perturbative string theories, where type II closed

string amplitudes are given by the square of type I, and similarly closed bosonic string is

given by the square of open string. In such case, if g 6= 2 for the charged states, which

implies g1 6= 0, then the cross terms in the double copy procedure will lead to g1 6= 0 in the

gravitation sector. Thus we conclude that for systems with double copy relation between

gauge and gravity three point amplitudes, the charged states in the gauge theory sector

must have g = 2. This is applicable to not only leading trajectory, but also all daughter

trajectory states. Indeed such result was found previously in [23].

4 Black holes as the s ≫ 1 limit of minimal coupling

In light of the discussion in the previous section, we see that if we consider the “simplest”

three-point amplitude with gi = 0 for i > 0, we have the bonus simplicity in the UV: it

matches minimal coupling in the UV and has the best high energy behavior. For spin- 12 , 1,

this is precisely the couplings for particles in the standard model. It is then natural to ask

the following: are there particles in nature with s > 1 that have such minimal couplings?
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Given the good UV behaviour of string theory, one might expect that the higher spin

string resonances would be a perfect candidate. Interestingly it is quite the contrary. For

example, the three-point coupling between a photon and the leading trajectory states in

open bosonic string theory is given by:

M+1,s,s
3 = x

s∑

n=0

n∑

k=0

(α′)2s−n+ k−1
2

(
s

n

)(
n

k

)
s−n−k+1

2s−n (s−n+1)!
〈12〉2n−k (x〈23〉〈31〉)2s−2n+k .

(4.1)

One sees that the coupling is “maximally complex” in that all gi 6= 0 except for g1. Note

that this does not violate our discussion with regards to the violation of UV unitarity, since

at the energy level where the 1
m factor becomes singular, we are at the string scale and the

infinite string resonances now come into play.

Instead of looking to the UV, we consider the IR. For a most general approach, we

consider the one body effective action of a point particle coupled to gravity, introduced by

Goldberger and Rothstein [29] and generalised to cases involving spin by Porto [30].7 This

is an effective action where the internal degree of freedom in the object is integrated away,

and shows up as “higher dimensional operators” multiple moments. This is given by the

following world-line action:

S =

∫
dσ

{
−m

√
u2 − 1

2
SµνΩ

µν + LSI [u
µ, Sµν , gµν(y

µ)]

}
(4.2)

where uµ ≡ dyµ

dσ , Sµν correspond to the spin-operator and Ωµν is the angular velocity. The

first two terms correspond to minimal coupling and are universal, irrespective of the details

of the point-like particle, while the terms in LSI correspond to spin-interaction terms that

are beyond minimal coupling, and depend on the inner structure of the particle. The

angular velocity Ωµν is defined as Ωµν := eµA
DeAν

Dσ , where eµA(σ) is the tetrad attached to

the worldline of the particle. The defining relation for this tetrad is ηABeµA(σ)e
ν
B(σ) = gµν .

Generalising the quadrupole moment operator introduced in [31], the non-minimal spin-

interaction terms can be parameterized as [32]:

LSI =

∞∑

n=1

(−1)n

(2n)!

CES2n

m2n−1
Dµ2n · · ·Dµ3

Eµ1µ2√
u2

Sµ1Sµ2 · · ·Sµ2n−1Sµ2n

+

∞∑

n=1

(−1)n

(2n+ 1)!

CBS2n+1

m2n
Dµ2n+1 · · ·Dµ3

Bµ1µ2√
u2

Sµ1Sµ2 · · ·Sµ2nSµ2n+1 .

(4.3)

where E and B are the electric and magnetic components of the Weyl tensor defined as:

Eµν := Rµανβu
αuβ

Bµν :=
1

2
ǫαβγµR

αβ
δνu

γuδ . (4.4)

Note that here the Riemann tensors are taken to be linear perturbations around flat space,

and the information with regards to non-trivial backgrounds is encoded in the Wilson

7The authors would like to thank Rafael Porto for an explanation on the historical development of the

subject.
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coefficients C#. For generic astrophysical objects the Wilson-coefficients are obtained by

matching with the multipole moments used in numerical simulations. For Kerr black-holes

the coefficient is 1, which we review in appendix D.

4.1 Universal part of the one body EFT

We first consider the terms besides LSI in eq. (4.2) which are universal for all particles.

The spin-independent part of minimal coupling is given by L = −m
√
u2,

−m
√
u2 = −m

√
ηµνuµuν + κhµνuµuν = −κm

2
hµνu

µuν +O(h2) . (4.5)

Keeping only linear order in hµν = 2εµεν ,
8 and identifying x =

√
2(ε+ ·u), this term simply

yields the scalar three-point interaction:

−m
√
u2 = −κmx

2

2
. (4.6)

Next we consider the minimal spin coupling −1
2SµνΩ

µν , given as [30, 33],

−1

2
SµνΩ

µν = −1

2
SABω

AB
µ uµ . (4.7)

As usual the spin connection ω A
µ B is defined as ω A

µ B = eBν∂µe
Aν + eBνΓ

ν
µλe

Aλ. Since we

are only interested in the three point amplitude with one graviton, the derivative on the

tetrad will not contribute, and we have:

−1

2
SABω

AB
µ uµ = −1

2
Sµνu

λΓν
λσg

σµ (4.8)

In classical mechanics, the spin Sµν can be defined as the difference between the angular

momentum that the orbital part:

Jµν = X [µP ν] + Sµν . (4.9)

However, this separation is ambiguous without a reference frame to define the origin and

hence X. The choice of the origin can be translated into an additional constraint on Sµν

known as spin supplementary condition (SSC). Of the various choices for SSC known

in the literature, one that can be generalised to curved space without any ambiguity is

the covariant SSC Sµνpν = 0, also known as Tulczyjew SSC or Tulczyjew-Dixon SSC.

Adoption of this condition can be met by the following choice of Sµν , where the vector uµ

is defined as uµ = pµ

m .

Sµν = Jµν + uµJνλuλ − uνJµλuλ . (4.10)

Note that this spin operator can be cast in the form Sµν = − 1
mǫ

µνλσpλSσ, where S
µ is the

Pauli-Lubanski psuedo-vector eq. (A.54). The 3pt amplitude can be computed by adopting

8The extra factor of 2 was inserted to make equations simpler.
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the following definitions and replacement rules:

Γµ
νλ =

κ

2

[
hµν,λ + hµλ,ν − h ,µ

νλ

]

uµ =
1

m
pµ1

∂µ ⇒ −ip3µ
hµν ⇒ 2ε+µ ε

+
ν .

(4.11)

Combined with three particle kinematics, eq. (4.8) becomes

− κ

2
x
[
−ip3µ(

√
2ε+ν − xuν)J

µν
]
= −x

2

2
|3〉〈3| = −κmx

2

2

(
−p3 · S

m

) β

α

(4.12)

where we’ve used the spin- 12 representation of the Lorentz generator in the chiral repre-

sentation, and eq. (2.33) to obtain the rightmost expression. Generalisation to higher spin

follows from eq. (A.63), which gives
(
−p3·S

m

)
with the understanding that,

(
p3 · S
m

) β1β2···

α1α2···
=
xs

m
|3〉〈3| (4.13)

(
p3 · S
m

)α̇1α̇2···

β̇1β̇2···
= − s

mx
|3][3| . (4.14)

A caveat with using this form is that higher degree of this operator must be evaluated from

the definition of Lie algebra eq. (A.62). For example,

[(
p3 · S
m

)2
] β1···β2s

α1···α2s

= 2s(2s− 1)
x2

(2m)2
|3〉α1 |3〉α2〈3|β1〈3|β2

[(
p3 · S
m

)3
] β1···β2s

α1···α2s

= 2s(2s− 1)(2s− 2)
x3

(2m)3
|3〉α1 |3〉α2 |3〉α3〈3|β1〈3|β2〈3|β3

(4.15)

when symmetrization is taken into account.

Thus the universal piece of the 1 body EFT translates into the following three-point

interaction:9

− κmx2

2

(
I− p3 · S

m

)
. (4.16)

where both the operator I and p3·S are defined to act on the Hilbert space of SL(2,C) irreps.

4.2 The three-point amplitude from LSI

We now consider the three-point amplitude arising from the Wilson operators in eq. (4.3).

The electric and magnetic components of the Weyl tensor are converted to:

Eµν ⇒ κx2

2
p3µp3ν

BµνS
µ ⇒ κx

2

[
p3α(

√
2ε+β − xuβ)J

αβ
]
p3ν

(4.17)

9When the graviton is chosen to have negative helicity, the sign of p3 · S term flips.
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The one-body EFT Lagrangian eq. (4.3) then translates to the following form for three-

particle kinematics:10

−
∞∑

n=1

CES2n

(2n)!

κmx2

2

(
p3 · S
m

)2n

−
∞∑

n=1

CBS2n+1

(2n+ 1)!

κx

2

[
−ip3α(

√
2ε+β − xuβ)J

αβ
](p3 · S

m

)2n

= −
∞∑

n=2

κmx2

2

CSn

n!

(
−p3 · S

m

)n

(4.18)

The Wilson coefficients CSn are defined as CS2m = CES2m for even n = 2m and CS2m+1 =

CBS2m+1 for odd n = 2m+1. It is possible to add the universal pieces in eq. (4.16), so that

the sum starts from n = 0, with the definition CS0 = CS1 = 1.

We will be interested in the three-point scattering amplitude of a spin-s particle emit-

ting a graviton described by the effective action eq. (4.2). Again the incoming and out

going momenta will be p1, p2, while the graviton being p3. The polarization tensor for a

spin-s particle is given by:

ε
(I1···IsJ1···Js)
α1α̇1···αsα̇s

= 2s/2
λ
(I1
α1 · · ·λIsαs

λ̃J1α̇1
· · · λ̃Js)α̇s

ms
, (4.19)

where the total symmetrization of the Little group indices ensures the transversality of

the polarization tensor. As the polarization tensors are contracted with the operators in

the effective action, terms with spin-operator of degree n, with n ≤ s, will contribute.

Furthermore, for each fixed n, we sum over the all possible distributions of the n spin

operators between the chiral and anti-chiral indices of the polarization tensor. This results

in the following three-point amplitude:11

M+2,s,s
3 =

∑

a+b≤s

x2CSa+b c̃sa,b〈21〉s−a

(
−x〈23〉〈31〉

2m

)a

[21]s−b

(
[23][31]

2mx

)b

,

c̃sa,b ≡
(
s

a

)(
s

b

) (4.20)

where the + subscript indicates that this is the plus helicity graviton amplitude, and we

denote the combinatoric factors as c̃sa,b for reasons that will be clear shortly. In a sense this

provides an alternative parameterization for the general three-point amplitude, where the

information of the specific interaction is encoded in the Wilson coefficients CSa+b . Again

for Kerr black holes they are unity.

4.3 The matching to minimal coupling

We are now ready to recast our minimal coupling to the above EFT basis. While minimal

coupling for the positive helicity graviton is simple in the chiral basis, the EFT basis in

10The sign of k3 · S term in the last line flips when negative helicity is chosen for the graviton, which is

consistent with the sign flip in eq. (4.16).
11The irrelevant overall factor of 2s has been neglected.
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eq. (4.20) is in the symmetric basis. To convert the chiral basis into the symmetric basis,

we use the following identity,

〈21〉2 = 〈21〉[21] + 〈21〉 [23][31]
2mx

− x〈23〉〈31〉
2m

[21]− 2〈23〉〈31〉[23][31]
(2m)2

(4.21)

This relation can be readily generalised to integer higher spin.

〈21〉2s =
(
〈21〉2

)s
=

s∑

a,b=0

csa,b〈21〉s−a

(
−x〈23〉〈31〉

2m

)a

[21]s−b

(
[23][31]

2mx

)b

(4.22)

Note that the ratio of csa,b with respect to c̃sa,b yields the Wilson coefficients for the minimal

coupling. The coefficient csa,b can be readily computed by identifying it as simply the

coefficients of (1 + x+ y + 2xy)s,

(1 + x+ y + 2xy)s =

s∑

a,b=0

csa,b x
ayb (4.23)

csa,b =

min(a,b)∑

c=0

2cs!

(s− a− b+ c)!(a− c)!(b− c)!c!
(4.24)

Note that if 2c in csa,b was substituted by 1, which is equivalent to using (1 + x+ y + xy)s

to evaluate csa,b, then we would simply have c̃sa,b = csa,b! This observation can be used to

derive the following formula.

csa,b =

min(a,b)∑

i=0

(
s

i

)
c̃s−i
a−i,b−i

= c̃sa,b + sc̃s−1
a−1,b−1 +

s(s− 1)

2
c̃s−2
a−2,b−2 + · · ·

(4.25)

Since c̃sa,b tends to sa+b

a!b! for asymptotically large s, each term in the series is subleading in

powers of 1
s for fixed set of a and b. In other words,

csa,b = c̃sa,b(1 +O(1/s)) . (4.26)

There are no 1/s corrections when either a or b of csa,b is zero; csa,0 = c̃sa,0 and cs0,b = c̃s0,b.

It is worthy of note that since CS1 is fixed to be unity, cs1,0 = c̃s1,0 and cs0,1 = c̃s0,1; these

conditions imply that introduction of M2+
3 ⊃ x3〈21〉2s−1〈23〉〈31〉 term in the graviton 3pt

amplitude, or introduction of non-zero g1, is forbidden in this context as well.

Thus we see that in the s ≫ 1 limit, the minimal coupling reproduces the Wilson

coefficient of a Kerr black hole! The fact that one should take the large spin limit is not

surprising since the spin of a black hole takes a macroscopic value. The reader might

wonder that since the matching is occurring at the large spin limit, it may very well be

that deviation from minimal coupling is subleading in s and hence suppressed. In such

case, the matching of minimal coupling to black holes is simply a reflection of it being the

leading contribution in the limit. We now show this is not the case.
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The simplest deformation from minimal coupling is introducing λ4 coupling to the 3pt

amplitude. The three-point amplitude then becomes

M+2,s,s
3 = x2〈21〉2s + g2x

2 x
2

m2
〈21〉2s−2〈23〉2〈31〉2

=

s∑

a,b=0

Bs
a,b〈21〉s−a

(
−x〈23〉〈31〉

2m

)a

[21]s−b

(
[23][31]

2mx

)b (4.27)

Bs
a,b is determined to be Bs

a,b = csa,b + 4g2c
s−2
a−1,b−1. The Wilson coefficients CSn for asymp-

totic s is then given as

Bs
a,b = c̃sa,b(1 + 4abg̃2 +O(1/s)) =⇒ CSn = 1 +

2n(n− 1)

3
g̃2 +O(1/s) (4.28)

where g̃2 = g2/s
2. The natural value for g2 can be deduced from eq. (3.21) to be ∼ s2

in the large s. Thus we see that introducing terms that generate deviations to minimal

coupling does indeed modify the Wilson coefficients from the black hole value.

Note that this is consistent with the intuition that the terms beyond minimal couplings

represent finite size effects that indicate deviation from point particle. In other words, the

fact that black holes are given by minimal coupling is a kinematic way of saying that it

has no “hair”.

5 Compton amplitudes for arbitrary spin

Consistent factorization at four-points often imposes new constraints for the underlying

theory that are not visible at three-points. For example, the color algebra associated

with non-abelian theories can be recovered by simply enforcing that the residue from one

factorization channel can be made consistent with that of another [1, 34]. For massive

amplitudes, the application of such consistency condition has been initiated in [1], which

led to bounds on the spin of isolated massive particles. Here we will systematically construct

the Compton amplitude, as well as its gravitational counterpart, for general massive spin-s

particle, utilizing consistent factorizations. The gravitational Compton amplitude will later

serve an important ingredient in extracting the spin-dependent piece of the 2 PM potential.

Let us first give an over view of our strategy. We will start from gluing the known 3pt

amplitudes on s-channel together. Putting the result on an s-channel propagator gives a

putative ansatz for the four-point amplitude:

Ansatz =
M3(1, 2, P )×M3(3, 4,−P )

s−m2
. (5.1)

Without loss of generality, we take legs 1 and 4 to be the massive spin-s state, and legs 2 and

3 to be either photons or gravitons. For minimal couplings, the gluing on a specific channel

is not local, reflecting the presence of another factorization channel. Thus we will need to

check whether the factorization constraint on the other channel is also satisfied. If s channel

gluing in our Compton amplitude carries u-channel information,12 correct factorization in

12For the discussion with regards to amplitudes, we follow the notation that s = (p1+p2)
2, t = (p1+p4)

2

and u = (p1 + p3)
2.

– 20 –



J
H
E
P
0
4
(
2
0
1
9
)
1
5
6

the u-channel is guaranteed if the s-channel residue is given in a form symmetric under

(1 ↔ 4) exchange. In general for photon Compton amplitude, we will find:

M3(1, 2
+1, P )×M3(−P, 3−1,4)

∣∣∣
s=m2

=
fsu

u−m2
+ fs

⇒ Ansatz =
fsu

(s−m2)(u−m2)
+

fs
s−m2

+
fu

u−m2
,

(5.2)

where fu can be deduced from fs via 1 ↔ 4 symmetry. For graviton Compton amplitudes,

we will find:

M3(1,2
+2,P )×M3(−P,3−2,4)

∣∣∣
s=m2

=
fstu

(u−m2)t
+
fst
t
+fs

⇒ Ansatz=
fstu

(s−m2)(u−m2)t
+

fst
(s−m2)t

+
fut

(u−m2)t
+

fs
s−m2

+
fu

u−m2
+
ft
t
.

(5.3)

This procedure fixes the four-point amplitude up to polynomial terms, which do not have

poles and therefore are not subject to previous constraints. Importantly, for (photon) gravi-

ton couplings s ≤ (1)2 the possible polynomials must be of higher order in 1
m suppressions,

which reflects the fact that these are finite size effects. For s > (1)2, the order of 1
m for

such ambiguity is of the same order as terms in the Ansatz. Thus the result given here

are “correct” only up to polynomial ambiguities for charged spinning particles with s > 1,

and gravitationally coupled spin states with s > 2.

5.1 Photon

The minimal coupling 3pt amplitude of a photon with 2 massive spin s particles is given by:

M+1,s,s
3 = x

〈12〉2s
m2s−1

, M−1,s,s
3 =

1

x

[12]2s

m2s−1
(5.4)

5.1.1 Photon Compton amplitude with s ≤ 1

s-channel gluing gives:

M3(1, 2
+1, P )×M3(−P, 3−1,4) =

1

m2(2s−1)

x12
x34

(〈1|P |4])2s

= −〈3|p1|2]2−2s

t
(〈43〉[12] + 〈13〉[42])2s

(5.5)

with P as the momentum of the s-channel propagator and the second equality in eq. (5.5)

comes from solving the conditions:

Pαα̇λ̃
α̇
2 = −mx12λ2α, Pαα̇λ̃

α̇
3 = mx34λ3α, P 2 = m2 (5.6)

yielding

〈1|P |4] = m2 〈43〉[12] + 〈13〉[42]
〈3|p1|2]

(5.7)

and by the definition of the x-factors:

x12
x34

= −〈3|p1|2]2
m2t

(5.8)
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Since there’s no 3-photon interaction to be considered in the t channel, we identify the t in

the denominator as −(u−m2). Putting back the (s−m2), we obtain an ansatz for photon

Compton amplitudes:

Ansatz =
〈3|p1|2]2−2s

(s−m2)(u−m2)
(〈43〉[12] + 〈13〉[42])2s (5.9)

for s ≤ 1 this is precisely the Compton amplitudes. On the other hand, for s > 1, there

will be spurious poles 〈3|p1|2] in the denominator and the ansatz ceases to be local. Then

we conclude for s ≤ 1,

M(1s, 2+1, 3−1,4s) =
〈3|p1|2]2−2s

(s−m2)(u−m2)
(〈43〉[12] + 〈13〉[42])2s . (5.10)

5.1.2 Photon Compton amplitude with s > 1

For higher spin charged particles, we need to more work to find a completely local ansatz.

The assumption that went into eq. (5.9) was that we used a representation of P such that

it matches both the s and u-channel residue. This anticipates the fact that the s-channel

residue sits on top of a u-channel pole as well. However, it is also possible that part of the

s-channel residue is in fact local, and thus do not need to satisfy any u-channel constraint.

Thus the task becomes that of separating the residue into local and non-local pieces. Again

starting with the s-channel residue:

Res[M(1s, 2+1, 3−1,4s)]
∣∣∣
s=m2

=
〈3|p1|2]2
u−m2

(
〈43〉[12] + 〈13〉[42]

〈3|p1|2]

)2s

(5.11)

We rewrite the term in the parenthesis, which is simply 〈1|P |4], as

〈1|P |4] = 1

2

(
[14]

m
+
〈42〉[21]−〈12〉[24]

2m2

)
+
1

2

(
〈14〉
m

+
〈13〉[34]−〈43〉[31]

2m2

)
+

t〈34〉[21]
2m2〈3|p1|2]

≡ 1

2
(F+F̃ )+B≡F+B (5.12)

where F is written in a way that is symmetric under angle square exchange for the massive

legs. Now, the F term is completely local and satisfies the correct spin-statistics property

under (1 ↔ 4), with the price of introducing extra factors of m in the denominator. In

expanding (F +B)2s, one of the B factor in the B dependent terms will cancel the u pole,

since −t = u −m2 when s = m2, and its spurious pole will be canceled by the prefactor.

Thus these terms will be pure s-channel terms. The remaining B factors still contain

unphysical pole, but can be removed by imposing s-channel kinematics:

t[21]〈34〉
2m2〈3|p1|2]

∣∣∣∣∣
s=m2

= −〈43〉[32]〈21〉
2m3

− [43]〈32〉[21]
2m3

(5.13)

We now see that only the F2s term carries both s and the u channel poles. The pure

u-channel term will be fixed by (1 ↔ 4) symmetry.
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Now we conclude that the photon Compton amplitude for s > 1 to be:

Photon Compton amplitude for s > 1

M(1s
,2+1

,3−1
,4

s)=
〈3|p1|2]2

(s−m2)(u−m2)
F2s (5.14)

−
{

〈3|p1|2]〈34〉[21]
2m2(s−m2)

[

2s
∑

r=1

(

2s

r

)

F2s−r

(

−〈43〉[32]〈21〉
4m3

− [43]〈32〉[21]
4m3

)r−1
]

+
〈3|p1|2]〈31〉[24]
2m2(u−m2)

[

2s
∑

r=1

(

2s

r

)

(−1)rF2s−r

(

−〈13〉[32]〈24〉
4m3

− [13]〈32〉[24]
4m3

)r−1
]}

where we dropped the (s − m2) terms in eq. (5.13) since it would not contribute to the

residue at any poles.

5.2 Graviton

The minimal coupling 3pt amplitude of a graviton with 2 massive spin s particles is given by:

M+2,s,s
3 = x2

1

Mpl

〈12〉2s
m2s−2

, M−2,s,s
3 =

1

x2
1

Mpl

[12]2s

m2s−2
(5.15)

5.2.1 Graviton Compton amplitude for s ≤ 2

We again start out with s-channel gluing of the graviton Compton amplitude,

M3(1, 2
+2, P )×M3(−P, 3−2,4) =

1

m2(2s−2)M2
pl

x212
x234

〈1|P |4]2s

=
〈3|p1|2]4−2s

t2M2
pl

(〈43〉[12] + 〈13〉[42])2s
(5.16)

where eq. (5.6) and eq. (5.7) is applied in the second equality in eq. (5.16). The double pole

t2 in the denominator can be identified as one massive u-channel pole and one massless t

channel pole comming from the 3-graviton interaction. So the ansatz for graviton Compton

amplitude is

Ansatz = − 〈3|p1|2]4−2s

(s−m2)(u−m2)tM2
Pl

(〈43〉[12] + 〈13〉[42])2s . (5.17)

Note that now we should also check that this ansatz correctly factorizes in the t channel.

Here, we should match both the MHV ([23] = 0) and anti-MHV (〈23〉 = 0) t-channel

residues:

M3(2
+2,3−2,P−2)M3(−P+2,1,4)=− 〈3|p1|2]4

(s−m2)(u−m2)

〈14〉2s
m2s ≡− 〈3|p1|2]4

(s−m2)(u−m2)
F̃ 2s
1 (5.18)

M3(2
+2,3−2,P+2)M3(−P−2,1,4)=− 〈3|p1|2]4

(s−m2)(u−m2)

[14]2s

m2s ≡− 〈3|p1|2]4
(s−m2)(u−m2)

F 2s
1 (5.19)

which is indeed the case. Now that our ansatz eq. (5.17) consistently factorizes in all three

channels and that it contains no other poles for s ≤ 2, it gives us the graviton Compton

amplitude:

M(1s, 2+2, 3−2,4s) = − 〈3|p1|2]4−2s

(s−m2)(u−m2)tM2
Pl

(〈43〉[12] + 〈13〉[42])2s for s ≤ 2 (5.20)

Again there will be spurious poles when s > 2 and thus need to be further taken care of.
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Definition of variables

The variables we’ll be using are defined as follow:

F1 =
[14]

m
, F2 =

〈42〉[21]− 〈12〉[24]
2m2

F̃1 =
〈14〉
m

, F̃2 =
〈13〉[34]− 〈43〉[31]

2m2

F =
1

2
(F + F̃ ), F1 =

1

2
(F1 + F̃1), F2 =

1

2
(F2 + F̃2)

The F is defined such that it remains invariant under (F1 ↔ F̃1) and (F2 ↔ F̃2). Also, for the pure

t-channel terms, we’ll be needing:

C[23] =
[23]〈13〉〈34〉

m
, C〈23〉 = −〈23〉[12][24]

m

and

K ≡ 〈34〉[21]
2m2

− 〈31〉[24]
2m2

in the functions:

h(n) ≡ K2C2

2n−1

(

2s

n+ 1

)

F2s−n−1
1

g(n) ≡ −K2C2

2n

2s−n−1
∑

r=1

(2r + 1)

(

2s

r + n+ 1

)

F2s−r−n−1
1 Fr−1

2

+
(

s− u

2

)

K3C

2n−1

2s−n−1
∑

r=1

(r + 1)

(

2s

r + n+ 1

)

F2s−n−1−r
1 Fr−1

2

We’ll be taking C = C〈23〉 for gA(n) and hA(n), C = C[23] for gS(n) and hs(n), with g(n) satisfying

g(n ≥ 2s− 1) = 0. They will be used in the numerator of the pure-t channel:

Poly=−〈3|p1|2]2K2
2s−1
∑

r=1

r

(

2s

r+1

)

F2s−r−1
1 Fr−1

2

Poly〈23〉 =

⌈s⌉−3
∑

r=0

hA(4+2r)(F1−F̃1)
2r+1+

⌈s⌉−2
∑

r=0

gA(2+2r)(F1−F̃1)
2r− 〈3|p1|2]K2C〈23〉

2

(

2s

3

)

F2s−3
1

Poly[23] =

⌈s⌉−3
∑

r=0

hS(4+2r)(F̃1−F1)
2r+1+

⌈s⌉−2
∑

r=0

gS(2+2r)(F̃1−F1)
2r− 〈3|p1|2]K2C[23]

2

(

2s

3

)

F2s−3
1

5.2.2 Graviton Compton amplitude for s > 2

Just as in section 5.1.2, for s > 2 we will relax the constraint that the s-channel residue sits

on both the t- and u- channel poles. Instead the s-channel residue will be converted into

one that has both t and u-channel poles, one that only has either t or u- channel poles, and

one that is completely local. The u-channel image will be fixed by (1 ↔ 4) again. Simply

doing so still wouldn’t give us a consistently factorizing amplitude, since we need to ensure

that the ansatz also matches that of the t-channel pole. We will find that the t-channel

residue of our ansatz differs from eq. (5.18) and eq. (5.19), by local polynomial terms, and

hence the mismatch can be removed by a pure t-channel term.
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We again go back to the s-channel gluing eq. (5.16) and apply the identity eq. (5.12).

Putting back (s−m2) and fixing the u-channel by spin statistics, our ansatz become

Ansatz=− 〈3|p1|2]4
(s−m2)(u−m2)t

F2s+
2s〈3|p1|2]3
t(s−m2)

〈34〉[21]
2m2

F2s−1− 2s〈3|p4|2]3
t(u−m2)

〈31〉[24]
2m2

F2s−1

+

{
〈3|p1|2]2〈34〉2[21]2

4m4(s−m2)

[
2s∑

r=2

(
2s

r

)
F2s−r

(−〈43〉[32]〈21〉
2m3

)r−2
]

+(−1)2s
〈3|p1|2]2〈31〉2[24]2

4m4(u−m2)

[
2s∑

r=2

(
2s

r

)
(−1)2s−rF2s−r

(−〈13〉[32]〈24〉
2m3

)r−2
]}

(5.21)

Taking the t-channel residue of eq. (5.21) for both MHV and anti-MHV poles, we find that

it yields eq. (5.18) and eq. (5.19) plus additional pure polynomlias. All we need to do is

subtracting them off, adding minus the polynomial terms over t:

Res[Ansatz]
∣∣∣
〈23〉=0

= − 〈3|p1|2]4
(s−m2)(u−m2)M2

pl

F2s

+
2s〈3|p1|2]3
(s−m2)

〈34〉[21]
2m2M2

pl

F2s−1 − 2s〈3|p4|2]3
(u−m2)

〈31〉[24]
2m2M2

pl

F2s−1

+
Poly + Poly[23]

M2
pl

(5.22)

Res[Ansatz]
∣∣∣
[23]=0

= − 〈3|p1|2]4
(s−m2)(u−m2)M2

pl

F2s

+
2s〈3|p1|2]3
(s−m2)

〈34〉[21]
2m2M2

pl

F2s−1 − 2s〈3|p4|2]3
(u−m2)

〈31〉[24]
2m2M2

pl

F2s−1

+
Poly + Poly〈23〉

M2
pl

(5.23)

We conclude that the graviton Compton amplitude for s > 2 is:

Graviton Compton Amplitude for s > 2

M4(s> 2)=− 〈3|p1|2]4
(s−m2)(u−m2)tM2

pl

F2s

+
2s〈3|p1|2]3
t(s−m2)

〈34〉[21]
2m2M2

pl

F2s−1− 2s〈3|p4|2]3
t(u−m2)

〈31〉[24]
2m2M2

pl

F2s−1

+

{

〈3|p1|2]2〈34〉2[21]2
4m4(s−m2)M2

pl

[

2s
∑

r=2

(

2s

r

)

F2s−r

(

−〈43〉[32]〈21〉
4m3

− [43]〈32〉[21]
4m3

)r−2
]

+
〈3|p1|2]2〈31〉2[24]2
4m4(u−m2)M2

pl

[

2s
∑

r=2

(

2s

r

)

(−1)rF2s−r

(

−〈13〉[32]〈24〉
4m3

− [13]〈32〉[24]
4m3

)r−2
]}

−Poly+Poly[23]+Poly〈23〉

tM2
pl

(5.24)

which is consistent with the ansatz eq. (5.3).
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We can see that F , F1 and F2 carry inverse powers of m, and do not have a healthy

high energy behaviour. So we can again conclude that massive particles with s > 2 cannot

be elementary.

5.3 The Compton amplitude for non-minimal coupling

In previous sections, we’ve seen that minimal coupling can always be embedded into a

local consistent four-point amplitude, and no constraint other than possible high energy

sickness was revealed. In this subsection, we proceed and investigate the case of non-

minimal couplings. Recall that we’ve argued through general covariance, that λλ couplings

are forbidden for gravitational couplings. We will see this constraint as a consequence of

inconsistent factorizations for the four-point amplitude.

5.3.1 λλ deformation

We again start with the s-channel gluing of the three point amplitudes. With the λλ

deformation, the 3pt amplitudes are

(
xh2
12 + xh2+1

12 λλ
)
⊗
(
x−h2
34 + x−h2−1

34 λ̃λ̃
)

Expanding the expression, we find that need to consider 4 contributions here. One is the

pure minimal contribution which is already known from previous sections, which will not

be repeated in this section. The other three are

(a) : xh+1(λλ)⊗ 1

xh
(b) : xh ⊗ λ̃λ̃

xh+1
(c) : xh+1(λλ)⊗ λ̃λ̃

xh+1

The x-factors of the both sides’ non-minimal gluing cannot be completely absorbed in the

graviton case and is the reason causing inconsistent factorization.

Let’s start with photons, where the minimal coupling 3pt amplitude is given by eq. (5.4)

and the (λλ) defomation 3pt amplitude is given by:

M+1,s,s
3 = x212

〈1I〉2s−1〈12〉〈2I〉
m2s

, M−1,s,s
3 =

1

x234

[I4]2s−1[I3][34]

m2s
(5.25)

s-channel gluing of case (i) yields:

M+1,s,s
3 ×M−1,s,s

3 = −〈3|p1|2]2
t

(
〈23〉[24][21]
m〈3|p1|2]

)(
〈43〉[12] + 〈13〉[42]

〈3|p1|2]

)2s−1

(5.26)

where we can see that we’ll confront spurious poles again when s > 1. For 0 < s ≤ 1,

we have

M̃
(a)
4 (0 < s ≤ 1) =

〈3|p1|2]
(s−m2)(u−m2)

〈23〉[24][21]
m

(
〈43〉[12] + 〈13〉[42]

〈3|p1|2]

)2s−1

(5.27)
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where the tilde denotes that it is a partial contribution to the full non-minimal coupling

amplitude. For higher spin, we follow the procedure of dealing with spurious poles demon-

strated in section 5.1.2, leading to the following result

M̃
(a)
4 =− 〈3|p1|2]

(u−m2)(s−m2)

〈23〉[24][21]
m

F2s−1

+

{
[21]〈34〉

2m2(s−m2)

(〈23〉[24][21]
m

)[2s−1∑

r=1

(
2s−1

r

)
F2s−1−r

(
−〈43〉[32]〈21〉

2m3

)r−1]

+(1↔ 4)

}
(5.28)

Finally, the completely local contribution (c) is:

M̃
(c)
4 =

[12]〈43〉
2sm2s+1(s−m2)

〈41〉2s−2
{
〈3|p1|2]〈41〉+ (2s− 1)〈4|p1|2]〈31〉

}
+ (1 ↔ 4) (5.29)

So, we have obtained a λλ deformed photon Compton amplitude that consistently factorizes

in all channels:

M̃
(Min)
4 + M̃

(a)
4 + M̃

(b)
4 + M̃

(c)
4 , (5.30)

where M̃
(Min)
4 is the Compton amplitude derived in the previous section. One thing worth

mentioning is that for the mixed contribution, x-factors in the s channel gluing that cannot

be absorbed by λ or λ̃ via:

xλα =
pαα̇
m

λ̃α̇,
λ̃α̇
x

=
pαα̇
m

λα (5.31)

becomes a (u − m2) pole by using the identity eq. (5.7). On the other hand, x factors

in the (c) contribution can be completely absorbed because we have enough λ and λ̃ to

use eq. (5.31) so that it is completely local. This discussion will be important to see the

inconsistent factorization of λλ deformed Compton amplitude.

Let’s now turn to the non-minimal graviton Compton scattering. The minimal coupling

3pt amplitude is given by eq. (5.15) and the (λλ) deformation is:

M+2,s,s
3 = x312

〈1I〉2s−1〈12〉〈2I〉
m2s−1Mpl

, M−2,s,s
3 =

1

x334

[I4]2s−1[I3][34]

m2s−1Mpl
(5.32)

The mixed coupling (a) + (b) contribution for spin 1
2 is

M̃
(Mix)
4 = M̃ (a) + M̃ (b)

=
〈3|p1|2]3

(s−m2)(u−m2)t

[12]〈23〉[24]
mM2

pl

+
〈3|p1|2]3

(s−m2)(u−m2)t

〈13〉[23]〈34〉
mM2

pl

.
(5.33)

Importantly, the t-channel residue is already correctly reproduced by that of minimal cou-

pling and eq. (5.33)! This poses a problem because when we include the all non-minimal
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couplings contribution:

M̃
(c)
4 = − 〈3|p1|2]3

2(s−m2)(u−m2)

[12]〈34〉+ [42]〈31〉
m2M2

pl

+
〈3|p1|2]3

2(s−m2)t

[12]〈34〉 − [42]〈31〉
m2M2

pl

− 〈3|p4|2]3
2(u−m2)t

[42]〈31〉 − [12]〈34〉
m2M2

pl

(5.34)

we find that there is further t-channel singularity. Note that this mismatch is not local,

and thus cannot be removed by modifying the expression by pure t-channel contributions.

Thus we have failed to obtain a local amplitude that correctly factorizes in all channels.

Note that the source of this can be traced back to the excess x-factors. There is a factor of
x12
x34

left in the gluing procedure that gives the extra t channel in the (c) contribution due

to eq. (5.7). Thus, we conclude that λλ coupling is forbidden for gravity. This is consistent

with the previous results shown in the 3pt amplitude.

Finally, a side note on the high energy behaviour of the λλ deformed photon Comp-

ton amplitude. The (a) contribution eq. (5.27) scales at least as O( 1
m) in HE. The (b)

contribution is not given because it should behave the same as (a) contribution in HE due

to symmetry. For higher spins, dealing with the spurious poles introduces higher power of
1
m . In other words, the counting of the factors of 1

m is no more just the multiplication of

the ones in the 3pt amplitudes. The (a) contribution for s > 1 eq. (5.28) scales at least as

O( 1
m6s−1 ) at HE. And the (c) contribution scales at least as O( 1

m2s+1 ) at HE for all spins.

That is, worse than both (a) and (b) contributions when 0 < s ≤ 1, but not for higher spin

charged particles.

5.3.2 (λλ)2 deformation

For (λλ)2 deformations, we should in general consider

(
g0x

h2
12 + g1x

h2+1
12 λλ+ g2x

h2+2
12 (λλ)2

)
⊗
(
g0x

−h2
34 + g1x

−h2−1
34 λ̃λ̃+ g2x

−h2−2
34 (λ̃λ̃)2

)

where g1 = 0 for gravitons. In this section, we’ll be mostly ineterested in the contributions

(a′) : xh+2(λλ)2 ⊗ 1

xh
, (b′) : xh ⊗ (λ̃λ̃)2

xh+2
, (c′) : xh+2(λλ)2 ⊗ (λ̃λ̃)2

xh+2

We again start with photons. From our experience above, we will only be interested

in (a′) and (b′) contributions to the deformed Compton amplitude since this is the only

structure that causes the 1
m counting differ from that of 3pt counting in higher spin. The

(λλ)2 coupling of photon is given by:

M+1,s,s
3 = x312

〈1I〉2s−2〈I2〉2〈2I〉2
m2s+1

, M−1,s,s
3 =

1

x334

[I4]2s−2[I3]2[34]2

m2s+1
(5.35)

This (a′) contribution for s = 1 photon Compton scattering is:

M̃
(a′)
4 (s = 1) =

〈23〉2[24]2[21]2
m2(s−m2)(u−m2)

(5.36)
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with O(m−2) in HE. And for s > 1, we’ll need to deal with spurious poles. The (a′)
contribution to the non-minimal photon Compton amplitudes for S > 1 is:

M̃
(a′)
4 (s> 1)=− 〈3|p1|2]2

(u−m2)(s−m2)
F2s−2F 2

2

+

{
〈3|p1|2][21]〈34〉
2m2(s−m2)

[
F2s−2

2∑

i=1

(
2

i

)
F 2−i
2

(
−〈43〉[32]〈21〉

2m3

)i−1

+F 2
2

2s−2∑

j

(
2s−2

j

)
F2s−2−j

(
−〈43〉[32]〈21〉

2m3

)j−1

+
2∑

i=1

2s−2∑

j=1

(
2

i

)(
2s−2

j

)
F 2−i
2 F2s−2−j

(
−〈43〉[32]〈21〉

2m3

)i+j−1
]

+(1↔ 4)

}

(5.37)

which at least scales as O(m−6s+3) in HE.

Now we apply the same analysis for gravitons. Since (λλ) coupling is forbidden

for gravitons, we will elaborate more on the (λλ)2 coupling. The (λλ)2 graviton 3pt

amplitude is:

M+2,s,s
3 = x412

1

Mpl

〈1I〉2s−2〈I2〉2〈2I〉2
m2s

, M−2,s,s
3 =

1

x434

1

Mpl

[I4]2s−2[I3]2[34]2

m2s
(5.38)

The 4pt mixed coupling (a′)+ (b′) contribution to the amplitude for 1 ≤ s ≤ 2 is given by:

M̃
(Mix)
4 (s ≤ 2) =

−〈3|p1|2]4−2s
(
〈43〉[12] + 〈13〉[42]

)2s−2

(s−m2)(u−m2)t

[12]2〈23〉2[24]2 + 〈13〉2[23]2〈34〉2
m2M2

pl

(5.39)

And for s > 2 particles

M̃
(a′)
4 (s > 2) =

C2
〈23〉
M2

pl

{
− 〈3|p1|2]2F2s−2

(s−m2)(u−m2)t

+ (2s− 2)

[〈3|p1|2][21]〈34〉
2m2t(s−m2)

− 〈3|p4|2][24]〈31〉
2m2t(u−m2)

]
F2s−3

+
[12]2〈34〉2

4m4(s−m2)

(
2s−2∑

r=2

(
2s− 2

r

)
F2s−2−r

(−〈43〉[32]〈21〉
2m3

)r−2
)

+
[42]2〈31〉2

4m4(u−m2)

(
2s−2∑

r=2

(
2s− 2

r

)
(−1)rF2s−2−r

(−〈43〉[32]〈21〉
2m3

)r−2
)

+
K2

t

[
2s−3∑

r=1

r

(
2s− 2

r + 1

)
F̃ 2s−3−r
1 F̃ r−1

2

]}
(5.40)
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M̃
(b′)
4 (s > 2) =

C2
[23]

M2
pl

{
− 〈3|p1|2]2F2s−2

(s−m2)(u−m2)t

+ (2s− 2)

[〈3|p1|2][21]〈34〉
2m2t(s−m2)

− 〈3|p4|2][24]〈31〉
2m2t(u−m2)

]
F2s−3

+
[12]2〈34〉2

4m4(s−m2)

(
2s−2∑

r=2

(
2s− 2

r

)
F2s−2−r

(−〈43〉[32]〈21〉
2m3

)r−2
)

+
[42]2〈31〉2

4m4(u−m2)

(
2s−2∑

r=2

(
2s− 2

r

)
(−1)rF2s−2−r

(−〈43〉[32]〈21〉
2m3

)r−2
)

+
K2

t

[
2s−3∑

r=1

r

(
2s− 2

r + 1

)
F 2s−3−r
1 F r−1

2

]}
(5.41)

So the mixed coupling contribution to higher spin Compton amplitude is:

M̃Mixed
4 (s > 2) = M̃

(a′)
4 (s > 2) + M̃

(b′)
4 (s > 2) (5.42)

Finally, for the (λλ)2 ⊗ (λλ)2 contribution to the amplitude, the x-factors can be com-

pletely absorbed by the λ’s, so the gluing is going to be completely local. For spin 1, the

amplitude is:

M̃
(c′)
4 (s = 1) =

〈3|p1|2]2[12]2〈34〉2
(s−m2)m4M2

pl

+
〈3|p4|2]2[42]2〈31〉2
(u−m2)m4M2

pl

(5.43)

For s = 3
2 , the amplitude is:

M̃
(c′)
4 (s =

3

2
) =

[12]2〈34〉2〈3|p1|2]
(s−m2)m5M2

pl

(
3〈3|p1|2]〈14〉+ 2〈34〉[12]m

)
− (1 ↔ 4) (5.44)

And for s ≥ 2:

M̃
(c′)
4 (s ≥ 2) =

[12]2〈34〉2〈14〉2s−4

(s−m2)m2sM2
pls(2s− 1)

{
〈3|p1|2]2〈41〉2

m2

+ 2(2s− 2)
〈3|p1|2]〈31〉〈41〉〈4|p1|2]

m2
+

(
2s− 2

2

)〈31〉2〈4|p1|2]2
m2

}

+ (−1)2s(1 ↔ 4)

(5.45)

The full amplitude containing the (λλ)2 non-minimal coupling is the sum of the mixed one

and the pure non-minimal one. The mixed one has already matched the t-channel residue

and there are no t channel poles to be considered in the pure non-minimal piece because

the x-factors are completely absorbed.

5.3.3 UV behaviour of the 4pt amplitudes

It is natural to ask the following question. Given that the minimal coupling 3pt ampli-

tude has the best high energy behavior among all possible structures, does the Compton
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amplitude obtained from gluing the minimal 3pt amplitudes together automatically has

better high energy behavior than the non-minimal contributions? The naive answer to

this question is yes, because the 1
m counting in the minimal coupling 3pt amplitude for a

given spin is always lower than the non-minimal couplings. This is true for s < 1 photon

Compton amplitudes and s < 2 graviton Compton amplitudes, but it no longer holds for

higher spin Comptons. The procedure of removing the spurious poles introduces various

powers of 1
m . This can make the HE behaviour of the minimal Compton amplitude worse

than the non-minimal ones.

Now, we summarize the HE behaviour of all the Compton amplitudes we have obtained

until now.

1. Photon

• The pure minimal Compton amplitude has no 1
m factors for 0 ≤ s ≤ 1 and thus has

a good HE behaviour and scales at least as O(m−6s+1) at HE for s > 1.

• The (a) and (b) contribution from (λλ) coupling deformation scales at least as O(m−1)

for s ≤ 1 and O(m−6s+3) for s > 1.

• The (c) contribution from (λλ) coupling deformation scales at least as O(m−2) for

s ≤ 2 and at least O(m−2s−1) for s > 2.

• The (a) and (b) contribution from (λλ)2 coupling deformation scales at least as

O(m−6s+2).

2. Graviton

• The pure minimal Compton amplitude has no 1
m factors for 0 ≤ s ≤ 2 and thus has

a good HE behaviour and scales at least as O(m−6s+2) at HE for s > 2.

• The (a′) and (b′) contribution from (λλ)2 coupling deformation scales at least as

O(m−6s+6).

• The (c′) contribution from (λλ)2 coupling deformation scales at least as O(m−2s−2)

for all spins.

Finally we conclude that the HE behaviour predicted by 3pt amplitudes only holds for lower

spins. For higher spins, the powers of 1
m are determined by the number of the spurious

poles cancelled. One factor of 1
〈3|p1|2] cancelled raises the inverse mass factor counting by

1
m2 more.

6 Computing the classical potential (1 PM)

Now that we have identified the s ≫ 1 limit of minimal coupling three-point amplitudes

as that describing Kerr black holes from the one body EFT framework, we can utilize

this fact to compute the spin-dependent part of the classical potential between two black

holes, which is defined as Fourier transform of the non-relativistic centre of mass amplitude

as in [10]. When we talk about the classical potential, we are referring to a long range

effect which in momentum space corresponds to the zero momentum limit. The standard
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textbook setup is then to consider the amplitude for a massless exchange between two

massive states,

gravitons

p
2

p
4

p
3

p
1 .

As we will be interested in long range effects, this requires taking the q2 = (~q)2 → 0 limit of

the above process, where ~q is the momentum transferred in the center of mass frame. Thus

the classical potential can be extracted by taking the four-point amplitude and extracting

the t = (P1 − P2)
2 = −q2 channel massless pole and discontinuity, schematically given as:

M4

4EaEb

∣∣∣∣
q2→0

. (6.1)

The computation can be organized in terms of powers of Newton constant G, which corre-

sponds to post Minkowskian (PM) expansion. At leading order (1 PM), the classical poten-

tial is given by the residue of the massless pole in the tree-amplitude. At (2 PM), the contri-

bution to the classical potential arrises from the t-channel triangle integral in the scalar in-

tegral basis. There the relevant factor would then be the scalar triangle integral coefficient.

Note that these contributions are on-shell in nature: the residues in a tree-level am-

plitude are simply products of lower point amplitudes, and at one-loop the integral basis

coefficients are computable by generalized unitarity cut methods [12, 13], which again are

given by products of tree-amplitude. Thus in principle, one should be able to bypass the

need for the full four-amplitude, and compute the potential using these on-shell building

blocks. There is one obstruction, however, in that in the centre of mass (COM) frame the

transfer momentum is space-like, and the t→ 0 limit is only reachable by taking the limit

of vanishing transfer momentum. On the other hand, to fully utilize the on-shell nature,

we need to have light-like exchange momentum.

Cachazo and Guevara [2, 3] demonstrated how this can be circumvented by utilizing

the “holomorphic classical limit” (HCL), which keeps the total exchanged (complex) mo-

menta to be light-like and then perform a non-relativistic expansion. This expansion is in√
r2 − 1, with

r =
P1 · P3

mamb
. (6.2)

The general procedure for obtaining the classical potential then proceeds as follows:

• (A) One first computes the Leading Singularity (LS) for the wanted order in G in

the HCL. At tree-level the LS is just the t-channel residue which is the product of

three-point amplitudes on both sides of the pole. For one-loop it is the pole at infinity

for a specific parametrisation of the triangle cut, which yields the triangle coefficient.
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Since for the HCL the kinematic setup is essentially that of two three-point on-shell

kinematics, the LS can be expanded as:

LS =

2sa∑

i=0

2sb∑

j=0

N sa,sb
i,j Ãi,j(Spa)

i(Spb)
j , N sa,sb

i,j =
(2sa)!

(2sa − i)!

(2sb)!

(2sb − j)!
, (6.3)

where

Spa =
|λ̂][λ̂|
ma

, Spb =
|λ][λ|
mb

(6.4)

and the spinors |λ̂] and |λ] are defined from the null exchanged momenta in the HCL.

Here the LS is written with free SL(2,C) indices, as 2sa and 2sb external massive

spinors have been stripped. The coefficients Ãi,j will be functions of the external

momenta, and have an expansion in
√
r2 − 1.

• (B) Next one considers a set of local Lorentz invariant operators also evaluated in

the HCL. Although the number of operators are possibly infinite, the number of

combinations actually used to form the basis is not high due to the observation that

number of spin operators and number of momentum transfer vector appearing in

the classical potential are closely related [3]. These operators will in general have

different powers of
√
r2 − 1 in the HCL, and thus be unambiguously mapped to the

LS. We thus have a representation of the LS in terms of local operators.

• (C) Divide the LS obtained above by the additional factor of 1
4EaEb

. This additional

factor changes the normalisation of density of particles from one particle per volume

∝ m
|E| , relevant for relativistic scattering, to one particle per unit volume, relevant for

non-relativistic scattering. The classical potential is then simply the non-relativistic

expansion of this result.

LS

4EaEb

NR−→ VCl (6.5)

ε∗(P2)ε(P1)
NR−→ ε∗(pa)

[
11− i

2m2
a

( ~pa × ~q) · ~Sa + · · ·
]
ε(pa)

ε∗(P4)ε(P3)
NR−→ ε∗(pb)

[
11 +

i

2m2
b

(~pb × ~q) · ~Sb + · · ·
]
ε(pb) .

(6.6)

where the last two lines indicate the extra contributions that arises from the effect of

putting back the polarization tensors. Appendix E outlines how the non-relativistic

results for the last two lines were worked out.

Note that from eq. (6.3), we see that for a given scattering of particle with spins sa
and sb, we can compute terms in the potential that is up to degree 2sa in ~Sa and 2sb in
~Sb. For example for spin-{1, 12} we can compute terms with

~Sa
2
, ~Sa, ~Sb, ~Sa ~Sb, ~Sa

2 ~Sb . (6.7)

Importantly, a given operator in the potential may appear in many different choice of

{sa, sb}, and they all must give identical results. For example the operator ~Sa · ~Sa, should
emerge from the LS of spin-{1

2 ,
1
2}, {1, 1}, {2, 2} e.t.c. For consistency, they should all agree.
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Before starting with explicit examples, as we will be interested in the spin-dependent

part of the potential, some comments for the spin supplementary condition (SSC), discussed

around eq. (4.9), is in order. The covariant condition Sµνpν = 0 used in former sections was

used in [30] and [35] to compute leading order (LO) gravitational spin-orbit interactions,

which also have been reproduced in the following sections. However, this choice of SSC is

in conflict with canonical Poisson bracket relations [36]. To get canonical variables, another

choice called Newton-Wigner (NW) SSC is needed [35, 36], the choice referred to as baryonic

condition in [30]. In curved space NW SSC can be formulated as Sµν(pν +me
0
ν) = 0 where

e0 is the time-like vielbein, and following sections will be mostly concerned with this choice.

In the following we will use the tree-level LS (1 PM) as detailed examples to illustrate the

details of this procedure, while reproducing known results in the literature. In the next

section, we will present the corresponding 2PM results, which will be mostly new.

6.1 Kinematic variables and basis for operators

6.1.1 Kinematic variables

Kinematic variables will be taken to have the following parametrisation in the centre of

mass frame, which is the parametrisation adopted by Guevara in [3];13

P1 = (Ea, ~p+ ~q/2) = |η̂]〈λ̂|+ |λ̂]〈η̂|

P2 = (Ea, ~p− ~q/2) = β′|η̂]〈λ̂|+ 1

β′
|λ̂]〈η̂|+ |λ̂]〈λ̂|

P3 = (Eb,−~p− ~q/2) = |η]〈λ|+ |λ]〈η|

P4 = (Eb,−~p+ ~q/2) = β|η]〈λ|+ 1

β
|λ]〈η|+ |λ]〈λ|

K = P1 − P2 = (0, ~q) = −|λ̂]〈λ̂|+O(β − 1) = |λ]〈λ|+O(β − 1) .

(6.8)

The HCL corresponds to the limit β → 1, which is equivalent to the limit β′ → 1. Since the

“approaching speed” of the limit is the same for both cases, the limit β → 1 will be used to

denote the HCL. Note that this on-shell limit has been reached by complex momenta K.

The usual definitions for the Mandelstam variables, s = (P1+P3)
2 and t = (P1−P2)

2,

has been adopted. In this frame t = −q2, where q2 = (~q)2. All external momenta are taken

to be on-shell; P 2
1 = P 2

2 = m2
a and P 2

3 = P 2
4 = m2

b . The spinor brackets are taken to be

constrained by the conditions 〈λ̂η̂〉 = [λ̂η̂] = ma and 〈λη〉 = [λη] = mb. The variables u, v,

and r are defined as follows;

u = [λ|P1|η〉
v = [η|P1|λ〉

r =
P1 · P3

mamb

(6.9)

13While it was implicitly assumed that β = β′ in [3], unless ma = mb this does not hold true in general.
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In the HCL, the variables u and v tend to the values u→mambx1x̄3 and v→mambx̄1x3.

Following relations can be derived from kinematic constraints.

[η|P1|η〉[λ|P1|λ〉 = uv −m2
am

2
b

[λ|P1|λ〉 = −(β − 1)2

β
m2

b + (1− β)v +
β − 1

β
u .

(6.10)

To compute the classical potential, an expansion in r or ǫ =
√
r2 − 1 is needed. This

expansion is obtained by utilising the following relations that hold in the HCL.

u = mamb(r +
√
r2 − 1)

v = mamb(r −
√
r2 − 1) .

(6.11)

6.1.2 Lorentz-invariant combination of operators

The independent four-vector kinematical variables are P1, P3, Sa, Sb, and K. Some exam-

ples of non-trivial invariants (in the COM) that can be constructed from these variables are;

K · Si = ~q · ~Si
ǫµνλσP

µ
1 P

ν
3K

λSσ
a = (Ea + Eb)( ~Sa · ~pa × ~q)

P1 · Sb =
(
1 +

Ea

Eb

)(
~pb · ~S

)

ǫµνλσP
µ
1 P

ν
3 S

λ
aS

σ
b = (Ea + Eb)( ~pa · ~Sa × ~Sb) .

(6.12)

However, not all such invariants are of interest. The invariants relevant for computing the

classical potential should reduce to powers of Spa and Spb defined in eq. (6.4) when HCL

is taken. This removes the candidacy of the last two terms in (6.12). Indeed the first two

terms in (6.12) in the HCL takes the form:

K ·Sa→
(
+
1

2
|λ̂][λ̂| or − 1

2
|λ̂〉〈λ̂|

)
+O(β−1)

K ·Sb→
(
−1

2
|λ][λ| or +

1

2
|λ〉〈λ|

)
+O(β−1)

ǫµνλσP
µ
1 P

ν
3K

λSσ
a → i

2
(v−u)(K ·Sa)+O(β−1)=−im2

amb

√
r2−1

(
K ·Sa
ma

)
+O(β−1)

ǫµνλσP
µ
1 P

ν
3K

λSσ
b → i

2
(v−u)(K ·Sb)+O(β−1)=−imam

2
b

√
r2−1

(
K ·Sb
mb

)
+O(β−1) .

(6.13)

The last two results are obtained from the definitions of u and v, which are consistent with

eq. (B.4) of [3] up to phase. These Lorentz-invariant combination of operators constitute

the basis on which the computed LS is expanded, so that classical potential can be read

out from the results.
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6.1.3 Symmetric basis for polarisation tensors

As undotted spinor index and dotted spinor index can be interchanged freely by the “Dirac

equation relations” eq. (2.9), all LS computations can be simplified by expressing all oper-

ators to act on dotted indices. The end result can be expressed as eq. (6.3)

LS =

2sa∑

i=0

2sb∑

j=0

N sa,sb
i,j Ãi,jǫ

2sa−i(Spa)
iǫ2sb−j(Spb)

j , N sa,sb
i,j =

(2sa)!

(2sa − i)!

(2sb)!

(2sb − j)!
, (6.14)

where definitions for Spa and Spb are the same as in eq. (6.4).

Spa =
|λ̂][λ̂|
ma

, Spb =
|λ][λ|
mb

. (6.15)

As the above notation indicates, we’ve expressed the LS in purely dotted basis, i.e. the

external massive spinors (wave functions) have been stripped off. Note that eq. (6.14) tells

us that the SL(2,C) indices of the external wave functions are contracted either with Spa,bs

or the Levi-Cevita tensors ǫα̇β̇ . We stress that this simplification is a consequence of the

HCL. The normalisation factors N sa,sb
i,j are the combinatoric factors that appear due to

Lie algebra properties as in eq. (4.15).

While it is tempting to match Spa and Spb in the above expansion to Lorentz-invariant

combination of operators discussed in section 6.1.2, the basis used to compute Ãi,j does

not treat dotted and undotted indices democratically at all. It is natural to relate the

operators considered in section 6.1.2 to one-body effective action operators introduced in

section 4, and the natural basis on which these operators act should treat dotted and

undotted indices equivalently. The expansion eq. (6.14) needs to be massaged so that LS

is expanded in one-body effective action operators.

An educated guess that could be made from the identity eq. (2.24) for three-point

kinematics is that half of Spa and Spb in eq. (6.15) do not encode the dynamics but come

from kinematics, therefore this kinematical contribution which is irrelevant to the dynamics

should be factored out from the computed coefficients Ãi,j . A trick14 that can be used is

to repackage the coefficients by constructing power series in variables xa and xb in the

following way.

∑

i,j

Ai,j(xa)
i(xb)

j = e−xa/2e−xb/2
∑

i,j

Ãi,j(xa)
i(xb)

j . (6.16)

The multiplication by the factor e−xa/2e−xb/2 has the effect of factoring out the kinematical

(or non-dynamical) contributions from Ãi,j coming from eq. (2.24) when expressing the LS

in the anti-chiral (or purely dotted index) basis. Thus, the data of dynamics is encoded by

the series expansion

∑

i,j

Ai,j(Spa)
i(Spb)

j (6.17)

14The authors would like to thank Justin Vines for helpful discussions.
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A3 A3

Figure 1. A graphical representation of gluing two 3pt amplitudes.

which can be viewed as the expression for LS in the vector (or the symmetric) basis. The

Spa and Spb in the above expression are operators which act on all indices, where their

action on anti-chiral indices is given by eq. (6.15). While their action on chiral indices is

not specified, eq. (6.15) and eq. (6.13) can be compared to match Spa and Spb with HCL

operators (K · Sa) and (K · Sb);

Spa → 2

(
K · Sa
ma

)

Spb → −2

(
K · Sb
mb

)
.

(6.18)

Reduction to the form K ·S in the HCL does not mean that the operator is necessarily the

operator K · S. The exact matching onto Lorentz-invariant combination depends on the

power of
√
r2 − 1 that may appear; e.g. the following matching rules can be devised from

inspecting the list eq. (6.13) closely.

√
r2 − 1Spa → 2i

m2
amb

ǫµνλσP
µ
1 P

ν
3K

λSσ
a

√
r2 − 1Spb → − 2i

mam2
b

ǫµνλσP
µ
1 P

ν
3K

λSσ
b .

(6.19)

6.2 Matching at leading order (1 PM)

The leading order contribution corresponds to the tree-level amplitude. The LS at this level

is just a product of two 3pt amplitudes, multiplied by the massless graviton propagator 1
t

as represented in figure 1;

LS=
A+

3aA
−
3b+A

−
3aA

+
3b

t
=α2m2

am
2
b

(x1x̄3)
2〈12〉2sa [34]2sb+(x̄1x3)

2[12]2sa〈34〉2sb
t

. (6.20)

Following Guevara [3], this LS can be cast into a purely anti-chiral form. Adopting the

definitions in 6.1, this expression simplifies to [3]

LS = −α
2

q2
[
u2(1− Spa)

2sa + v2(1− Spb)
2sb
]

(6.21)

where Spa = |λ̂][λ̂|
ma

and Spb =
|λ][λ|
mb

, as defined above.
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A note of caution is that all Ãi,j coefficients of LSs were computed as if LSs were

operators acting from left to right to match the sign choices in [3], i.e. the polarisation

tensors for the incoming particles are put to the left while that for the outgoing particles

are put to the right. The factor e−xa/2e−xb/2 in eq. (6.16) must be changed to exa/2exb/2 in

this convention to eliminate the non-dynamical kinematical factors, since the sign appearing

in the middle of eq. (2.24) will be flipped. Also, the rule eq. (6.6) will have a sign flip due to

this convention. The rules (modified) eq. (6.6), eq. (6.18), and eq. (6.19) are then applied

to yield the expression for the classical potential.

6.2.1 Spin-independent Newtonian gravity

Tree-level computation of LS yields the following result for A0,0, the term responsible for

V = −GMm
r of Newtonian gravity.

A0,0 = Ã0,0 = −16πGm2
am

2
b

q2
− 32πGm2

am
2
b

q2

√
r2 − 1

2
. (6.22)

Since only this term can contribute to the spin-independent part of the LS, this part

determines the spin-independent part of the classical potential. The classical potential to

leading and subleading orders in PN can be read out by multiplying a factor of 1
4EaEb

,

which is consistent with the results of [10].

LS

4EaEb

∣∣∣∣
S0
aS

0
b

= −4πGmamb

q2
− 2πGp2

(
8mamb + 3m2

a + 3m2
b

)

q2mamb
. (6.23)

6.2.2 Spin-orbit contributions

The result for A1,0 up to subleading order in
√
r2 − 1 is the following.

Ã1,0 =
8πGm2

am
2
b

q2
+

16πGm2
am

2
b

√
r2 − 1

q2

A1,0 =
16πGm2

am
2
b

√
r2 − 1

q2
+

8πGm2
am

2
b

√
r2 − 1

3

q2
.

(6.24)

Of the two set of rules eq. (6.18) and eq. (6.19), only the second rule matches the order in√
r2 − 1. Thus it can be concluded that LS|S1

aS
0
b
= 32iπGmb

q2
ǫµνλσP

µ
1 P

ν
3K

λSσ
a by matching

the orders in
√
r2 − 1, or

LS

4EaEb

∣∣∣∣
S1
aS

0
b

=
8πiG (ma +mb)

q2ma
( ~Sa · ~pa × ~q)

= −2G

r2
ma +mb

ma
( ~Sa · ~pa × n̂)

(6.25)

to leading PN order where eq. (6.12) was used to evaluate non-relativistic expression which

is consistent with the known results; eq. (48) of [30] and eq. (71) of [35]. This result

corresponds to the choice of covariant SSC Sµνpν = 0.
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Taking eq. (6.6) into account, spin-independent term contributes an additional factor

which matches other results known in the literature; eq. (51) of [30], eq. (53) of [10], and

eq. (70) of [35]; this result corresponds to the choice of NW SSC Sµν(pν +me0ν) = 0.

LS

4EaEb

∣∣∣∣
NW SSC

S1
aS

0
b

= −G

r2
4ma + 3mb

2ma
( ~Sa · ~pa × n̂) . (6.26)

6.2.3 Spin-spin interactions

The computation result up to subleading order in
√
r2 − 1 is the following:

A1,1 =
4πGm2

am
2
b

q2
+

8πGm2
am

2
b

√
r2 − 1

2

q2
(6.27)

Thus, applying the rules eq. (6.18) to the LS makes the LS to take the form

LS|S1
aS

1
b
= −16πGmamb

q2
(K · Sa)(K · Sb) (6.28)

and the classical potential to leading PN order is

LS

4EaEb

∣∣∣∣
S1
aS

1
b

= −4πG

q2
( ~Sa · ~q)( ~Sb · ~q)

= −G

r3

(
~Sa · ~Sb − 3( ~Sa · ~n)( ~Sb · ~n)

) (6.29)

consistent with the results eq. (6.9) of [33] and eq. (90) of [10]. Note that contributions

due to eq. (6.6) do not change the potential in the leading order in PN, since additional

dependence on ~pi makes the potential subleading in powers of v2

c2
.

6.2.4 Quadratic in spin effects

A2,0 is relevant for this computation.

A2,0 = −2πGm2
am

2
b

q2
− 4πGm2

am
2
b

√
r2 − 1

2

q2
. (6.30)

This is the first two leading terms in expansion over
√
r2 − 1. The LS and the classical

potential up to leading PN order then takes the form

LS|S2
aS

0
b
= −8πGm2

b

q2
(K · Sa)2 (6.31)

LS

4EaEb

∣∣∣∣
S2
aS

0
b

= −2πGmb

q2ma
( ~Sa · ~q)2 (6.32)

= − Gmb

2mar3

(
~Sa · ~Sa − 3( ~Sa · ~n)2

)
(6.33)

also consistent with the results eq. (6.10) of [33], provided that C1(ES2) = 1. Similar to

spin-spin interaction term, the application of eq. (6.6) does not change the potential at

this order.
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6.2.5 Cubic in spin effects

There are two terms to consider; A3,0 and A2,1. Their first two leading terms in the
√
r2 − 1

expansion are given below.

A3,0 =
2πGm2

am
2
b

√
r2 − 1

3q2
+
πGm2

am
2
b

√
r2 − 1

3

3q2
(6.34)

A2,1 = −2πGm2
am

2
b

√
r2 − 1

q2
− πGm2

am
2
b

√
r2 − 1

3

q2
. (6.35)

Computation of S3
a-term is straightforward, since there are no ambiguities.

LS|S3
aS

0
b
=

16iπGmb

3m2
aq

2
(K · Sa)2ǫµνλσPµ

1 P
ν
3K

λSσ
a (6.36)

LS

4EaEb

∣∣∣∣
S3
aS

0
b

=
4iπG (ma +mb)

3q2m3
a

( ~Sa · ~q)2( ~Sa · ~pa × ~q)

= −G(ma +mb)

r4m3
a

( ~Sa · ~pa × ~n)
(
~Sa · ~Sa − 5( ~Sa · ~n)2

)
. (6.37)

This leading PN order expression matches the terms proportional to C1(BS3) in eq. (3.10)

of [37] when it is set to unity. When eq. (6.6) is taken into account, there is an additional

term generated from eq. (6.32) that contributes to this potential which matches the terms

proportional to C1(ES2) when it is set to unity.

LS

4EaEb

∣∣∣∣
NW SSC

S3
aS

0
b

=
iπG (4ma +mb)

3q2m3
a

( ~Sa · ~q)2( ~Sa · ~pa × ~q)

= −G(4ma +mb)

4r4m3
a

( ~Sa · ~pa × ~n)
(
~Sa · ~Sa − 5( ~Sa · ~n)2

)
. (6.38)

At first sight, computing the contribution from A2,1 seems complicated by the fact that

there are two combinations that reduce to the same factor (
im3

am
2
b

8

√
r2 − 1Sp2aSpb) in the

HCL. Nevertheless, it is possible to write this LS as a linear combination of the two by

introducing an arbitrary real parameter α.

LS|S2
aS

1
b
=

16iπG

maq2

[
α(K · Sa)2ǫµνλσPµ

1 P
ν
3K

λSσ
b

+(1− α)(K · Sa)(K · Sb)ǫµνλσPµ
1 P

ν
3K

λSσ
a

]
.

(6.39)

Computing the classical potential up to leading PN order requires taking the non-relativistic

limit.

LS

4EaEb

∣∣∣∣
S2
aS

1
b

=
4iπG (ma +mb)

q2m2
amb

[
α( ~Sa · ~q)2( ~Sb · ~pb × ~q)

−(1− α)( ~Sa · ~q)( ~Sb · ~q)( ~Sa · ~pa × ~q)
]
.

(6.40)
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However, the following vector identity [37] can be used to relate the different combinations.

~A1( ~A2 · ~A3 × ~A4) = ~A2( ~A1 · ~A3 × ~A4) + ~A3( ~A1 · ~A4 × ~A2) + ~A4( ~A1 · ~A2 × ~A3) . (6.41)

Setting ~A1 = ~Sa, ~A2 = ~Sb, ~A3 = ~p, and ~A4 = ~q, it can be shown that

(~q · ~Sa)( ~Sb · ~p× ~q) = (~q · ~Sb)( ~Sa · ~p× ~q) + q2(~p · ~Sa × ~Sb) (6.42)

therefore

(~q · ~Sa)( ~Sb · ~pb × ~q) = −(~q · ~Sb)( ~Sa · ~pa × ~q)− q2(~p · ~Sa × ~Sb) (6.43)

and since there is an overall factor of q−2 in the amplitude already, changes in α is re-

flected in the classical potential as derivative delta-like interaction which does not affect

the long-distance behaviour; α is a free parameter that can be tuned arbitrarily without

affecting the long-distance behaviour. The non-relativistic limit takes the following form

in position space.

LS

4EaEb

∣∣∣∣
S2
aS

1
b

=−3G(ma+mb)

r4m2
amb

[
α
{
( ~Sb · ~pb×~n)

(
~Sa · ~Sa−5( ~Sa ·~n)2

)
+2(~pb · ~Sa× ~Sb)( ~Sa ·~n)

}

−(1−α)
{
−( ~Sa ·~n)( ~pa · ~Sa× ~Sb)+( ~Sa · ~pa×~n)

(
( ~Sa · ~Sb)−5( ~Sa ·~n)( ~Sb · ~Sa)

)}]
.

(6.44)

When α is set to unity, this expression matches the sum of first two terms proportional

to C1(ES2) in eq. (3.10) of [37] provided C1(ES2) is set to unity. Note that there are two

sources that can contribute to this potential through eq. (6.6); the first is the contribution

from A2,0 which is

− πiG

q2mamb
( ~Sa · ~q)2( ~Sb · ~p× ~q) =

πiG

q2mamb
( ~Sa · ~q)2( ~Sb · ~pb × ~q) (6.45)

and the other is the contribution from A1,1 which is

−2iπG

q2m2
a

( ~Sa · ~q)( ~Sb · ~q)( ~Sa · ~pa × ~q) = −2iπG

q2m2
a

( ~Sa · ~q)( ~Sb · ~q)( ~Sa · ~p× ~q) . (6.46)

In position space, these two contributions take the following form.

− 3G

4r4mamb

[
( ~Sb · ~pb × ~n)

(
~Sa · ~Sa − 5( ~Sa · ~n)2

)
+ 2(~pb · ~Sa × ~Sb)( ~Sa · ~n)

]
(6.47)

3G

2m2
ar

4

[
~Sa · ~pa × ~n

(
~Sa · ~Sb − 5( ~Sa · ~n)( ~Sb · ~n)

)
+ ~Sa · ~n ~Sa · ~pa × ~Sb

]
(6.48)

Adding up eq. (6.44), eq. (6.47), and eq. (6.48) gives an expression that matches with

eq. (3.10) of [37] when C1(ES2) is set to unity. Note that using eq. (6.43), the final potential

can be written in the following form in momentum space.

− iπG (3ma + 2mb)

q2m2
amb

( ~Sa · ~q)2( ~Sb · ~pb × ~q) . (6.49)
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6.2.6 Quartic in spin effects

Relevant terms are A4,0, A3,1, and A2,2; their first two leading terms in
√
r2 − 1 expan-

sion are

A4,0 = −πGm
2
am

2
b

24q2
− πGm2

am
2
b

√
r2 − 1

2

12q2
(6.50)

A3,1 =
πGm2

am
2
b

6q2
+
πGm2

am
2
b

√
r2 − 1

2

3q2
(6.51)

A2,2 = −πGm
2
am

2
b

4q2
− πGm2

am
2
b

√
r2 − 1

2

2q2
. (6.52)

There are no ambiguities for matching the LS from these results.

LS|S4
aS

0
b
= −2πGm2

b

3m2
aq

2
(K · Sa)4 (6.53)

LS|S3
aS

1
b
= −8πGmb

3maq2
(K · Sa)3(K · Sb) (6.54)

LS|S2
aS

2
b
= −4πG

q2
(K · Sa)2(K · Sb)2 . (6.55)

Computing the classical potential to leading PN order is straightforward, which is consis-

tent with the results eq. (4.4) of [37] when C1(ES2), C2(ES2), C1(BS3), and C1(ES4) are all set

to unity. Note that eq. (6.6) does not induce any corrections at this order.

LS

4EaEb

∣∣∣∣
S4
aS

0
b

=−πGmb

6m3
aq

2
(~q · ~Sa)4

=− 3Gmb

8m3
ar

5

[
( ~Sa · ~Sa)2−10( ~Sa · ~Sa)( ~Sa ·~n)2+

35

3
( ~Sa ·~n)4

] (6.56)

LS

4EaEb

∣∣∣∣
S3
aS

1
b

=− 2πG

3m2
aq

2
(~q · ~Sa)3(~q · ~Sb)

=− 3G

2m2
ar

5

[
~Sa

2
( ~Sa · ~Sb)−5

{
( ~Sa · ~Sb)( ~Sa ·~n)2+ ~Sa

2
( ~Sa ·~n)( ~Sb ·~n)

}

+
35

3
( ~Sa ·~n)3( ~Sb ·~n)

]
(6.57)

LS

4EaEb

∣∣∣∣
S2
aS

2
b

=− πG

mambq2
(~q · ~Sa)2(~q · ~Sb)2

=− 3G

4mambr5

[
~Sa

2 ~Sb
2
+2( ~Sa · ~Sb)2−5

{
( ~Sa ·~n)2 ~Sb

2
+ ~Sa

2
( ~Sb ·~n)2

+4( ~Sa · ~Sb)( ~Sa ·~n)( ~Sb ·~n)−7( ~Sa ·~n)2( ~Sb ·~n)2
}]

.

(6.58)
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7 Results for the classical potential (2 PM)

Based on dimensional analysis, it can be argued that two particle irreducible (2PI) dia-

grams with only one massive internal leg per loop contribute to the classical potential for

the case of non-spinning particles [18]. The only topology that meets this criteria at one

loop is the triangle topology. More precisely, since in four-dimensions one-loop amplitudes

can be cast into a scalar integral basis involving box, triangle and bubble integrals [38, 39],

the statement is that only triangle scalar integrals are relevant for contributions to the

classical potential.

To understand why note that the one-loop integrals that are relevant to our problem

always contains two massless graviton propagators:

P1

P2 P4

P3

k4

k3

.

This implies that the result will have non-analyticity in q2 = −t, reflecting the presence of

the massless cut. There are two types of such non-analyticity,

√
q2, log q2 . (7.1)

The first corresponds to classical contribution and the second quantum [6]. It is then

straightforward to march through the scalar integrals, and find that only scalar triangle

yields the desired non-analyticity [9]:

∫
d4ℓ

(2π)4
1

ℓ2(ℓ+ q)2((ℓ+ p)2 −m2)
=

i

16π2
1

m2

[
− log q2

2
− mπ2

2
√
q2

]
+O(q) , (7.2)

where p will be the momenta of one of the external lines. Thus to extract the classical

result at 2 PM amounts to computing the integral coefficient for the scalar triangle.

The integral coefficients can be readily computed using generalized unitarity meth-

ods [12, 13]. As the triangle integral has three propagators, one can explore the kine-

matic regime of the loop momenta where all three propagators become on-shell, and the

“residue” simply becomes the product of two three-point and a four-point on-shell am-

plitude, as shown in figure 2. This is termed the triangle cut. Note that the triangle

integral is not the only basis integral that contributes to the triangle cut. Box integrals

with one extra propagator can contribute as well. The challenge is then to separate these

two contributions.

This problem was beautifully solved by Forde [40], which parameterize the loop mo-

menta in terms of four complex variables, and can be fixed as propagators go on-shell. For
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L

P1

P2

k4

k3

P3

P4

ma

mb

Figure 2. The triple-cut diagram for b-topology triangle cut. The a-topology diagram is obtained

by exchanging the labels of particles a and b.

the triangle cut, the loop momenta has only one complex variable left, and the cut can

be viewed as a function of this variable with poles at finite values as well as infinity. The

finite poles represents extra propagator becoming on shell, and hence the presence of box

integrals. Thus the contribution from the scalar triangle simply corresponds to the pole

at infinity.

We can again simplify things by evaluating the triangle coefficients in the HCL limit,

and match with a preferred local operator basis, after which one performs the non-

relativistic expansion to recover the classical potential just as what was done in the 1

PM case. In summary the 2PM result are obtained as follows:

• Compute the following Leading Singularity in the triangle cut

LS =

∫

∞
d4ℓδ(D1)δ(D2)δ(D3)M3 ×M3 ×M4 (7.3)

where Di = L2
i −m2

i represents the three propagators that were put on-shell, and
∫
∞

indicates that we are picking the contribution at infinity for the remaining integration

variable.

• Due to solving the delta functions, the above generates a Jacobian factor J . Thus to

get the triangle coefficient, we need to multiply the LS by J−1.

• Finally we multiply the resulting triangle coefficient to the loop integral and per-

form the q2 → 0 expansion, and picking out the relevant classical piece, which from

eq. (7.2), is given by

− i

32m
√
q2
. (7.4)
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Thus the final 2PM result is given by:

(2PM) = J−1 × LS×
(
− i

32m
√
q2

)
. (7.5)

The Jacobian factor can be computed explicitly and in the HCL limit, yielding J =

− 1

32m
√

q2
, which cancels the last term in the above product! Thus the 2PM classical poten-

tial is simply reproduced from the LS along, as pointed out by Cachazo and Guevara [2, 3].

From the previous sections it is clear that the three-point amplitudes that should

enter the cut would be that of minimal coupling. For the four-point amplitude, we use the

Compton amplitude that was constructed from matching the three-point minimal coupling

on the residue. This however, leaves us with polynomial ambiguities as discussed previously.

For s ≤ 2, the polynomial ambiguities come with additional 1
m factors, which was absent

from the answer constructed from residues, and thus can be argued as finite size effects.

Such separation is no-longer true for s > 2. Thus for now, we will constrain ourselves to

using the Compton amplitude of s = 2, which in practice, means we will be limited to

terms in the potential that are at most degree 4 in the each particle’s spin operator.

When computing the 1-loop scattering amplitude in the non-relativistic limit, there

are terms that diverge as COM average momentum vanishes. These terms have an inter-

pretation as second order perturbation theory effects from the 1 PM potential, or second

Born approximation terms. Such terms are artifacts of iterating the 1 PM potential, and

they must be subtracted to compute the correct 2 PM contributions to the potential; when

these terms are not subtracted, the amplitude computed from the classical potential will

double-count such contributions and lead to a wrong answer. It can be shown that such

iteration terms only consist of singular terms in COM momentum p0 := | ~pa| when non-

relativistic propagator is used [10],15 so the following simple prescription for subtracting

the iteration terms will be adopted; when there is a divergent term in the expression for

LS, all poles in p0 will be interpreted as coming from iteration and will be subtracted. The

remaining finite pieces will be interpreted as the 2 PM potential.16

In this section we compute the spin dependent pieces of the 2 PM classical potential.

The analysis is similar to 1 PM case, but 2 PM computations require separation of iterated 1

PM contributions, which is usually referred to as the second Born approximation term [10].

7.1 Parametrisation and computation of the LS

The parameterisations used in [3] was used to compute the LS in this manuscript. The

details of the parameterisation apart from the ones given in section 6.1.1 will be presented

15While it is also noted in [10] that using non-relativistic propagators to separate iteration terms do not

lead to a potential which is useful for computing equations of motion, this prescription will be adopted

for its simplicity. A method is provided in the appendix of [10] which computes the iteration terms from

propagators with relativistic energy-momentum dispersion relations.
16The conclusion depends on the order of p0 pole subtraction and flux normalisation; taking the non-

relativistic flux normalisation first and then subtracting p0 poles gives the result which matches that of [20],

while subtracting p0 poles first and then taking the non-relativistic flux normalisation gives the result which

matches that of [10]. The latter is adopted in this manuscript.
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here. Consider the triple-cut diagram in figure 2, which is referred to as the b-topology.

The loop momentum L runs through the massive internal leg, and massless internal legs

are parameterised as k3 = −L + P3 and k4 = L − P4. The parameterisation for the loop

momentum L = L(z) is;

L(z) = zl + ωK (7.6)

l = (|η] +B|λ]) (〈η|+A〈λ|) . (7.7)

Imposing the triple-cut conditions k23 = k24 = L2 −m2
b = 0 fixes ω = −1

z , and A(z) and

B(z) as rational functions of z and β. Defining y = − z
(β−1)2

as in [3], the LS from this

topology is computed to be

LS=
1

4

∑

h3,h4=±|h|

∫

LS
d4Lδ(L2−m2

b)δ(k
2
3)δ(k

2
4)

×M4(P1,−P2,k
h3
3 ,k

h4
4 )×M3(P3,−L,−k−h3

3 )×M3(−P4,L,−k−h4
4 )

(7.8)

=
∑

h3,h4

β

16(β2−1)m2
b

∫

ΓLS

dy

y
M4(P1,−P2,k

h3
3 ,k

h4
4 )

×M3(P3,−L,−k−h3
3 )×M3(−P4,L,−k−h4

4 )

(7.9)

where ΓLS is taken to be the contour enclosing the pole at y = ∞. The product of on-

shell amplitudes that constitute the integrand need to be interpreted as operator products,

detailed procedure being given in [3]. The choice for internal momenta spinor-helicity

variables are given below.

|k3〉 =
1

β + 1

(
(β2 − 1)|η〉 − 1 + βy

y
|λ〉
)
, |k3] =

1

β + 1

(
(β2 − 1)y|η] + (1 + βy)|λ]

)

|k4〉 =
1

β + 1

(
β2 − 1

β
|η〉+ 1− y

y
|λ〉
)
, |k4] =

1

β + 1

(
−β(β2 − 1)y|η] + (1− β2y)|λ]

)
.

(7.10)

After having computed the b-topology LS, the result is added to the computed result for

a-topology LS which can be evaluated from the b-topology LS by reflection, e.g. u ↔ v,

ma ↔ mb, etc.

7.2 Results for the classical potential

In our computations, we are interested in the classical potential up to quartic order in spin,

so all the results presented in this section are calculated from spin-2 particle scattering with

M4(P1,−P2, k
h3
3 , k

h4
4 ) in eq. (7.9) given by the lower spin Compton amplitude eq. (5.20).17

Recall that from eq. (6.3), the LS for minimally coupled {sa, sb} particles can capture terms

in the potential that is up to degree 2sa in Sµ
a , and 2sb in Sµ

b . Here we have verified that

17Here we only take the mixed helicity Compton amplitude contribution into account because the same

helicity Compton amplitude has zero residue at y → ∞. Take the (++) channel Compton amplitude for

example, the integrand 1
y
M4(P1,−P2, k

+
3 , k

+
4 )M3(P3,−L,−k−

3 )M3(−P4, L,−k−
4 ) is of order O(y)1, so that

the residue at infinity is zero.
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the overlapping results of {1
2 ,

1
2}, {1, 1}, and {2, 2} are in agreement with each other. At

the end of the current section we will discuss how to utilize this fact to fix ambiguities

associated with higher spin scattering.

7.2.1 Spin-independent

A2 PM
0,0 is needed to compute 2 PM contributions to the spin-independent 2PM contribution

to the classical potential.

A2 PM
0,0 =

24π2G2m2
am

2
b (ma +mb)

q
+

30π2G2m2
am

2
b (ma +mb)

√
r2 − 1

2

q
. (7.11)

The resulting leading PN order classical potential is consistent with the results given in [10].

LS2 PM

4EaEb

∣∣∣∣
S0
aS

0
b

=
6π2G2mamb (ma +mb)

q
. (7.12)

7.2.2 Spin-orbit interaction

The coefficient A2 PM
1,0 , which is the 2 PM counterpart to A1,0 computed in section 6.2.2,

up to first three terms in the
√
r2 − 1 expansion takes the following form.

A2 PM
1,0 = −2π2G2m2

am
2
b (4ma + 3mb)

q
√
r2 − 1

− 6π2G2m2
am

2
b (4ma + 3mb)

√
r2 − 1

q

− 9π2G2m2
am

2
b (4ma + 3mb)

√
r2 − 1

3

4q
.

(7.13)

This is the first of numerous terms that include 1 PM potential iteration pieces; in the

stationary limit r → 1 this expression diverges due to the factor 1√
r2−1

in the first term.

Using the following formula

√
r2 − 1 =

p0

√
2
(√(

m2
a + p20

) (
m2

b + p20
)
+ p20

)
+m2

a +m2
b

mamb
(7.14)

this expression can be converted to Laurent series in p0, and dropping poles in p0 gives the

following expression.

A2 PM
1,0

∣∣
reg

= −π
2G2

√
r2 − 1m2

am
2
b

(
62m2

amb + 57mam
2
b + 24m3

a + 18m3
b

)

q (ma +mb) 2
. (7.15)

All subleading
√
r2 − 1 expansion pieces were dropped in the above expression. Combined

with the contributions from A2 PM
0,0 due to eq. (6.6), the following expression is obtained for

leading PN 2 PM spin-orbit coupling. This is consistent with the results eq. (57) in [10].

LS2 PM
reg

4EaEb

∣∣∣∣∣

final

S1
aS

0
b

= − iπ
2G2

(
56m2

amb + 45mam
2
b + 24m3

a + 12m3
b

)

2qma (ma +mb)
( ~Sa · ~p× ~q) . (7.16)
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7.2.3 Quadratic order in spin

Up to first three terms in
√
r2 − 1 expansion, the terms relevant for quadratic order in

spin are;

A2 PM
2,0 =

π2G2m2
am

2
b(ma +mb)

2q
√
r2 − 1

2 +
π2G2m2

am
2
b (22ma + 15mb)

4q

+
5π2G2m2

am
2
b (19ma + 12mb)

√
r2 − 1

2

16q

(7.17)

A2 PM
1,1 = −π

2G2m2
am

2
b (ma +mb)

q
√
r2 − 1

2 − 19π2G2m2
am

2
b (ma +mb)

2q

− 10π2G2m2
am

2
b (ma +mb)

√
r2 − 1

2

q
.

(7.18)

The leading terms after p0 poles are subtracted out are

A2 PM
2,0

∣∣
reg

=
π2G2m2

am
2
b

(
35mamb + 22m2

a + 15m2
b

)

4q (ma +mb)
(7.19)

A2 PM
1,1

∣∣
reg

= −π
2G2m2

am
2
b

(
36mamb + 19m2

a + 19m2
b

)

2q (ma +mb)
(7.20)

which translate into

LS2 PM
reg

∣∣
S2
aS

0
b

=
π2G2m2

b

(
35mamb + 22m2

a + 15m2
b

)

q (ma +mb)
(K · Sa)2 (7.21)

LS2 PM
reg

∣∣
S1
aS

1
b

=
2π2G2mamb

(
36mamb + 19m2

a + 19m2
b

)

q (ma +mb)
(K · Sa)(K · Sb) (7.22)

and becomes in the non-relativistic limit

LS2 PM
reg

4EaEb

∣∣∣∣∣
S2
aS

0
b

=
π2G2mb

(
35mamb + 22m2

a + 15m2
b

)

4qma (ma +mb)
(~q · ~Sa)2 (7.23)

LS2 PM
reg

4EaEb

∣∣∣∣∣
S1
aS

1
b

=
π2G2

(
19m2

a + 36mamb + 19m2
b

)

2q (ma +mb)
(~q · ~Sa)(~q · ~Sb) . (7.24)

The latter can be compared with eq. (95) of [10];

G2 π2√−t
19m2

a + 36mamb + 19m2
b

2(ma +mb)

[
( ~Sa · ~q)( ~Sb · ~q)− q2 ~Sa · ~Sb

]
. (7.25)

The two expression match up to terms proportional to q2 ~Sa · ~Sb, which are subleading

in the HCL. While this subleading HCL contributions did not affect the long-distance

behaviour for LO, this is no longer true for 2 PM; q1 in momentum space is roughly

equivalent to r−4 in position space. It is not possible at the moment to compute subleading

HCL contributions so the answers provided above cannot be complete, but the directional

dependence on relative orientation of the bodies ( ~Sa · ~r)( ~Sb · ~r) can solely be attributed to
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non-vanishing HCL contributions and they can be computed by the methods provided in

this manuscript.

Taking such HCL equivalence classes into account, the potential at this order will have

the following form in momentum space.

LS2 PM
reg

4EaEb

∣∣∣∣∣
S2
aS

0
b

=
π2G2mb

(
35mamb + 22m2

a + 15m2
b

)

4qma (ma +mb)

[
(~q · ~Sa)2 + q2O

]
(7.26)

LS2 PM
reg

4EaEb

∣∣∣∣∣
S1
aS

1
b

=
π2G2

(
19m2

a + 36mamb + 19m2
b

)

2q (ma +mb)

[
(~q · ~Sa)(~q · ~Sb) + q2O

]
. (7.27)

O refers to an unknown operator that is vanishing in the HCL. The corrections induced

by eq. (6.6) does not affect the potential at this order.

7.2.4 Cubic order in spin

The leading PN corrections at 2PM order for cubic order spin interactions are formally

classified as 4.5PN corrections, and according to [41] they were not known in the literature.

The coefficients up to first three terms in
√
r2 − 1 expansion that will be relevant are the

following.

A2 PM
3,0 = −π

2G2m2
am

2
b (4ma + 3mb)

8q
√
r2 − 1

−
√
r2 − 1

(
π2G2m2

am
2
b (22ma + 13mb)

)

16q

−
√
r2 − 1

3 (
π2G2m2

am
2
b (32ma + 17mb)

)

64q

(7.28)

A2 PM
2,1 =

π2G2m2
am

2
b (11ma + 10mb)

8q
√
r2 − 1

+
π2G2

√
r2 − 1m2

am
2
b (117ma + 100mb)

32q

+
7π2G2

√
r2 − 1

3
m2

am
2
b (6ma + 5mb)

32q
.

(7.29)

After subtraction of p0 poles, leading PN terms take the following form.

A2 PM
3,0

∣∣
reg

= −π
2G2

√
r2 − 1m2

am
2
b

(
53m2

amb + 45mam
2
b + 22m3

a + 13m3
b

)

16q (ma +mb) 2
(7.30)

A2 PM
2,1

∣∣
reg

=
π2G2

√
r2 − 1m2

am
2
b

(
312m2

amb + 297mam
2
b + 117m3

a + 100m3
b

)

32q (ma +mb) 2
. (7.31)

The S3
a-term has no ambiguities, apart from HCL-vanishing contributions.

LS2 PM
reg

∣∣
S3
aS

0
b

= − iπ
2G2mb

(
53m2

amb + 45mam
2
b + 22m3

a + 13m3
b

)

2qm2
a (ma +mb) 2

×
[
(K · Sa)2ǫµνλσPµ

1 P
ν
3K

λSσ
a +K2O

]
.

(7.32)

Taking the non-relativistic limit gives

LS2 PM
reg

4EaEb

∣∣∣∣∣
S3
aS

0
b

= − iπ
2G2

(
53m2

amb + 45mam
2
b + 22m3

a + 13m3
b

)

8qm3
a (ma +mb)

×
[
( ~Sa · ~q)2( ~Sa · ~pa × ~q) + q2O

] (7.33)
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and adding contributions due to eq. (6.6) gives the final answer.

LS2 PM
reg

4EaEb

∣∣∣∣∣

final

S3
aS

0
b

= − iπ
2G2

(
31m2

amb + 10mam
2
b + 22m3

a − 2m3
b

)

8qm3
a (ma +mb)

×
[
( ~Sa · ~q)2( ~Sa · ~pa × ~q) + q2O

]
.

(7.34)

The other cubic spin interaction term suffers from an ambiguity that was elaborated in

section 6.2.5. Since this ambiguity can be absorbed into the unknown HCL-vanishing con-

tributions, this ambiguity will be ignored in this section. The interpretation for A2 PM
2,1

∣∣
reg

is then

LS2 PM
reg

∣∣
S2
aS

1
b

= − iπ
2G2

(
312m2

amb + 297mam
2
b + 117m3

a + 100m3
b

)

4qma (ma +mb) 2

×
[
(K · Sa)2ǫµνλσPµ

1 P
ν
3K

λSσ
b +K2O

]
,

(7.35)

and in the non-relativistic limit it takes the form

LS2 PM
reg

4EaEb

∣∣∣∣∣
S2
aS

1
b

=
iπ2G2

(
312m2

amb + 297mam
2
b + 117m3

a + 100m3
b

)

16qm2
amb (ma +mb)

×
[
( ~Sa · ~q)2( ~Sb · ~pb × ~q) + q2O

]
.

(7.36)

Taking effects from eq. (6.6) into account, 2 PM S2
aS

1
b potential takes the following form.

LS2 PM
reg

4EaEb

∣∣∣∣∣

final

S2
aS

1
b

=
iπ2G2

(
166m2

amb + 123mam
2
b + 73m3

a + 24m3
b

)

16qm2
amb (ma +mb)

×
[
( ~Sa · ~q)2( ~Sb · ~pb × ~q) + q2O

]
.

(7.37)

7.2.5 Quartic order in spin

Formally, leading PN corrections at 2PM order at quartic order in spin is classified as 5PN

corrections, which were also not known in the literature according to [41]. At quartic order

in spin, the following coefficients computed up to first three terms in
√
r2 − 1 expansion
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are relevant.

A2 PM
4,0 =

π2G2m2
am

2
b (ma +mb)

64q
√
r2 − 1

2 +
π2G2m2

am
2
b (19ma + 12mb)

128q

+
π2G2

√
r2 − 1

2
m2

am
2
b (239ma + 120mb)

1536q

(7.38)

A2 PM
3,1 = −π

2G2m2
am

2
b (ma +mb)

16q
√
r2 − 1

2 − 7
(
π2G2m2

am
2
b (5ma + 4mb)

)

64q

−
√
r2 − 1

2 (
π2G2m2

am
2
b (27ma + 20mb)

)

48q

(7.39)

A2 PM
2,2 =

3π2G2m2
am

2
b (ma +mb)

32q
√
r2 − 1

2 +
95π2G2m2

am
2
b (ma +mb)

128q

+
95π2G2

√
r2 − 1

2
m2

am
2
b (ma +mb)

128q
.

(7.40)

Subtraction of poles in p0 yields the following leading term expression.

A2 PM
4,0

∣∣
reg

=
π2G2m2

am
2
b

(
29mamb + 19m2

a + 12m2
b

)

128q (ma +mb)
(7.41)

A2 PM
3,1

∣∣
reg

= −π
2G2m2

am
2
b

(
59mamb + 35m2

a + 28m2
b

)

64q (ma +mb)
(7.42)

A2 PM
2,2

∣∣
reg

=
π2G2m2

am
2
b

(
178mamb + 95m2

a + 95m2
b

)

128q (ma +mb)
. (7.43)

Proceeding as in former examples, the relativistic LS takes the following form

LS2 PM
reg

∣∣
S4
aS

0
b

=
π2G2m2

b

(
29mamb + 19m2

a + 12m2
b

)

8qm2
a (ma +mb)

[
(K · Sa)4 +K2O

]
(7.44)

LS2 PM
reg

∣∣
S3
aS

1
b

=
π2G2mb

(
59mamb + 35m2

a + 28m2
b

)

4qma (ma +mb)

[
(K · Sa)3(K · Sb) +K2O

]
(7.45)

LS2 PM
reg

∣∣
S2
aS

2
b

=
π2G2

(
178mamb + 95m2

a + 95m2
b

)

8q (ma +mb)

[
(K · Sa)2(K · Sb)2 +K2O

]
(7.46)

which, with non-relativistic flux normalisation, yields the following expression for the

potentials.

LS2 PM

4EaEb

∣∣∣∣
final

S4
aS

0
b

=
π2G2mb

(
29mamb+19m2

a+12m2
b

)

32qm3
a (ma+mb)

[
(~q · ~Sa)4+q2O

]
(7.47)

LS2 PM

4EaEb

∣∣∣∣
final

S3
aS

1
b

=
π2G2

(
59mamb+35m2

a+28m2
b

)

16qm2
a (ma+mb)

[
(~q · ~Sa)3(~q · ~Sb)+q2O

]
(7.48)

LS2 PM

4EaEb

∣∣∣∣
final

S2
aS

2
b

=
π2G2

(
178mamb+95m2

a+95m2
b

)

32qmamb (ma+mb)

[
(~q · ~Sa)2(~q · ~Sb)2+q2O

]
. (7.49)

Since the terms introduced by eq. (6.6) are subleading in PN expansion, they do not

need to be considered.
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7.2.6 Partial results for higher order in spin

Though we cannot obtain the full results for higher spin effects due to the polynomial am-

biguities of the higher spin Compton amplitude eq. (5.24), we can still obtain partial results

from LS computations of spin 2 particle scattering. We present them in the following list:

• Fifth order in spin:

LS2 PM

4EaEb

∣∣∣∣
final

S4
aS

1
b

=
iπ2G2

(
149m2

amb − 116mam
2
b + 182m3

a − 128m3
b

)

384qm4
amb (ma +mb)

×
[
( ~Sa · ~q)4( ~Sb · ~pb × ~q) + q2O

] (7.50)

LS2 PM

4EaEb

∣∣∣∣
final

S3
aS

2
b

=
iπ2G2

(
88m2

amb −mam
2
b + 60m3

a − 44m3
b

)

192qm3
am

2
b (ma +mb)

×
[
( ~Sa · ~q)3( ~Sb · ~q)( ~Sb · ~pb × ~q) + q2O

] (7.51)

• Sixth order in spin:

LS2 PM

4EaEb

∣∣∣∣
final

S3
aS

3
b

=
π2G2(69mamb+37m2

a+37m2
b)

96qm2
am

2
b(ma+mb)

[
(q ·Sa)3(q ·Sb)3+q2O

]
(7.52)

LS2 PM

4EaEb

∣∣∣∣
final

S4
aS

2
b

=
π2G2

(
413mamb+239m2

a+204m2
b

)

768qm3
amb (ma+mb)

[
(q ·Sa)4(q ·Sb)2+q2O

]
(7.53)

• Seventh order in spin:

LS2 PM

4EaEb

∣∣∣∣
final

S4
aS

3
b

= − iπ
2G2

(
494m2

amb + 681mam
2
b + 114m3

a + 336m3
b

)

4608qm4
am

3
b (ma +mb)

×
[
( ~Sa · ~q)4( ~Sb · ~q)2( ~Sb · ~pb × ~q) + q2O

] (7.54)

• Eighth order in spin:

LS2 PM

4EaEb

∣∣∣∣
final

S4
aS

4
b

=
5π2G2(93mamb+50m2

a+50m2
b)

9216m2
am

2
bq(ma+mb)

[
(q ·Sa)4(q ·Sb)4+q2O

]
(7.55)

7.3 Fixing the local polynomial term at S4 from consistency condition

In the beginning of this section, we mentioned that certain terms in the potential can be

computed with more than one way of assigning the spin to the two particles, and the result

from each assignment should be identical. More precisely, for a specific order of spin opera-

tor, the coefficient should be independent of which external spins were chosen to extract the
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potential. Indeed in derivation of the potential, we have verified that the same result has

been reached with different choices of spin assignment. In this subsection we will explore

the possibility of using this consistency condition to fix the polynomial ambiguity. Recall

that the Compton amplitudes were derived from matching the factorization poles, which

leaves us open to polynomial ambiguities. As we will show the polynomial ambiguities can

only enter at the quartic order in spin operator in the HCL limit.

In general, a candidate polynomial term needs to satisfy the little group weights and

spin-statistics relations. Since we are talking about the one contributing to the classical

potential, the contact terms should also survive the HCL. So we require the following

conditions:

1. Correct little group weights: M(1s, 2+2, 3−2,4s)

2. Correct spin-statistics property: M(1s, 2+2, 3−2,4s) = (−1)2sM(4s, 2+2, 3−2,1s)

3. Survives the HCL: Mcontact ∼ O(β − 1)0

The following list exhausts all possible spinor combinations that survive the HCL limit:

F1 =
[14]

m
→ −1

F̃1 =
〈14〉
m

→ −1 + Spa

F1 =
1

2
(F1 + F̃1) → −1 +

Spa

2

F2 =
〈42〉[21]− 〈12〉[24]

2m2
→ −(1− y)2

4y
Spa

F̃2 =
〈13〉[34]− 〈43〉[31]

2m2
→ −(1 + y)2

4y
Spa

F2 =
1

2
(F2 + F̃2) → −1 + y2

4y

Spa

2

F = F1 + F2 → −1− (1− y)2

4y
Spa

K ≡ 〈34〉[21]
2m2

− 〈31〉[24]
2m2

→ −1− y2

4y

Spa

ma

We can see that the only combination that provides the correct helicity weight of the

gravitons is K4. Since this term contains 4 SU(2) indices for both particle 1 and particle

4, contact terms starts to affect the classical potential at quartic order in spin.

Universality of spin effects demands that all S4 potential extracted from particles with

s > 2 should also take the same form. However, one would find that using eq. (5.24) in

the LS calculation to extract quartic order spin effects for s > 2 particles will yield a result

different from the one we presented in section 7.2.5. This difference exactly comes from

the polynomial ambiguities. Now we propose the following ansatz for the contact terms:

Polynomial(s) = K4
2s∑

r=4

a(s)r F2s−r
1 Fr−4

2 (7.56)
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where F1, F2 provide 2s − 4 SU(2) indicies. This ansatz is motivated from following

properties:

1. The inconsistency begins at quartic order in spin, so we’ll need K4 as an overall

coefficient of the ansatz to supply the correct helicity weights.

2. We need F1 and F2 to supply correct little group weights for the massive particles

and the correct spin statistics property under (1 ↔ 4) exchange. We use the curly

symbols F1 and F2 because they are the most symmetric under angle square brackets

exchange.

3. To make the correction from polynomial terms begin at S4 for all higher spins, we’ll

need the combinations of F1 and F2 in the summation of the ansatz eq. (7.56) starting

from Spa0 in the spin operator basis. Only F and F1 can supply such Spa0 terms.

But since F can be expanded in terms of F1 and F2, we choose to write the ansatz

in the form of eq. (7.56). When r = 4, this will correspond to the correction to S4

from polynomial terms.

Expanding the ansatz eq. (7.56) in the spin operator basis, it looks like

Polynomial ∼ a
(s)
4 Spa4 + (a

(s)
4 + a

(s)
5 )Spa5 + (a

(s)
4 + a

(s)
5 + a

(s)
6 )Spa6 + · · · (7.57)

The interest in this section is fixing a
(s)
4 , so one can write down other ansatz that will not

alter a
(s)
4 . On the other hand, we also observed that though eq. (5.20) becomes spurious

when s > 2, it still yields a consistent S4 potential for higher spins. So, we can fix this

coefficient by directly comparing M lower spin
4 and Mhigher spin

4 in the HCL for higher spin

particles. Then we require the coefficient of Spa4 for higher spin particles to take the

analogous form for the spin 2 particles. We found

a
(s)
4 =

3α2

2

(
2s

4

)
m2

a (7.58)

with α =
√
8πG. So we conclude that adding eq. (7.56) with the coefficient a

(s)
4 given

by eq. (7.58) to the higher spin Compton amplitude eq. (5.24) will yield the correct S4

classical potential for all spins. That is, we need

M1-loop(s > 2) =
1

4

∑

h3,h4

∫

ΓLS

d4Lδ(L2 −m2
b)δ(k

2
3)δ(k

2
4)

× (Mhigher spin
4 (s) + Polynomial (s))M3M3

(7.59)

to obtain a consistent S4 potential. The coeffcients {a(s)5 , · · · , a(s)2s } in the ansatz eq. (7.56)

cannot be fixed at this level since we do not have another representation of the higher spin

Compton amplitude to compare with.

Finally, a remark on the spurious Compton amplitude for higher spins, which is just an

extrapolation of eq. (5.20) to s > 2. Though we found that using this spurious Compton

amplitude in the LS can give us consistent S4 effects, it still cannot be applied to extract
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S5 effects and higher. As an example, one can compare the A5,0 coefficient of the LS

calculated from eq. (5.24) and eq. (5.20). We found that they differ by:

Ahigher spin
5,0 −Aspurious

5,0

=
G2π2m2

a(3m
6
a+19mbm

5
a+50m2

bm
4
a+69m3

bm
3
a+50m4

bm
2
a+19m5

bma+3m6
b)

96m4
b(ma+mb)5q

(7.60)

One might think that they just differ by a polynomial term. But a polynomial term of the

Compton amplitude of particle a should not carry any information of particle b. That is,

the difference must only carry powers of ma and no powers of b in the denominator while

eq. (7.60) carry (ma +mb)
5 in the denominator. So, such difference is definitely not from

the polynomial ambiguity of the Compton amplitude. Thus we conclude that the spurious

Compton amplitude is not applicable for higher spin effects.

8 Conclusion and outlook

In this paper we systematically study charged and gravitationally coupled higher spin

particles. We focus on “minimal couplings”, where the UV limit matches to the minimal

derivative coupling. We identify that these interactions can also be characterised in the IR

through various physical properties such as g = 2, and the absence of finite size effects. For

spins-1/2 and 1, this corresponds the usual minimal couplings for Dirac fermions as well

as W bosons. We also derive the (gravitational) Compton amplitude, up to polynomial

ambiguities, for the minimal coupling with arbitrary spin. These are derived through

the requirement of consistent factorisation. Applying the same criteria for non-minimal

couplings, we find that λ2 interactions are forbidden for gravitational coupling. We argue

that the absence of λ2 deformations, or anomalous gravitomagnetic dipole moment, is a

reflection of general covariance. For theories whose gravitational coupling is the square

of gauge couplings, this implies that the charged states must have g = 2, consistent with

string theory.

Having equipped with the Compton amplitude, we proceed to utilize it to compute

the spin dependent piece of the classical gravitational potential. We follow the work of

Cachazo and Guevara, where the 2PM potential is computed by evaluating the one-loop

triangle leading singularity in the holomorphic classical limit, and matched to local Lorentz

invariant operators. Using the spin-2 Compton amplitude, we derive the spin-dependent

parts of the potential up to degree four in the spin operator of either black holes. We also

discuss to which extent the polynomial ambiguities of the higher spin Compton amplitudes

can be fixed by requiring that the resulting classical potential yields the same coefficient

for the spin operators as that for the lower spins.

As alluded to in the paper, the leading trajectory states in string theory do not yield

the simplest coupling. In fact, it is the most complex, as all allowed deformations except

for the (gravito)magnetic dipole moments are turned on. It would be interesting to see if

the couplings for the subleading trajectories are simpler. This would be in line with the

expectation that the large degeneracy for subleading trajectory states become the dominant

contribution for black hole microstates, which we know are simple. It would be fascinating
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if this is the case, as vertex operators for subleading trajectories are generally much more

complicated than the leading one, and yet it yields a simpler amplitude, providing further

evidence that the worldsheet point of view can often be misleading.

An immediate task is to identify what is the theory that gives minimal coupling for

spins ≥ 2. To construct the corresponding Lagrangian, one starts with the quadratic

term in eq. (3.18), and successively adds terms linear in the Reimann tensor to remove

the spin-operator pieces that are induced by eq. (3.18), characterizing the deviation from

minimal coupling. This is not only of theoretical interest, but it will resolve the polynomial

ambiguity in the gravitational Compton amplitude, allowing one to extract spin effects

beyond quartic order.

The fact that the infinite number of Wilson coefficients of the one body effective action

is reproduced by the minimal coupling which is simply an x2 in our on-shell parameteri-

zation, lends one to wonder if further simplification can be achieved by reformulating all

computations in the one body EFT approach in terms of computations involving x2. A

tantalising example would be the fact for charged black holes, one also has g = 2 [42],

and one can conjecture that x gives the correct Wilson coefficient for the electricmagnetic

couplings. This would be the simplest example of double copy for classical objects.

Finally, an important question is whether the relation between minimal coupling and

black holes persists through quantum corrections. It is well known that quantum effects

generate (g−2) for charged particles. On the other hand the gravito-magnetic moment is

argued to be universal and thus should be protected. It would be interesting to see why

λ2 terms are not generated by loop corrections. Furthermore, whether minimal coupling

states in gravity stays minimally coupled quantum mechanically, in that all deformations

are never turned on.
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A Spinor-helicity variables

A.1 Lorentz algebra

We work with the metric ηµν = diag(+1,−1,−1,−1), so that p2 = ηµνpµpν = (p0)
2 − (~p)2.

Our convention for the Lorentz generators are fixed by the algebra,
[
Jµν , Jλσ

]
= −i

(
ηµλJνσ + ηνσJµλ − ηµσJνλ − ηνλJµσ

)
. (A.1)
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To relate the (connected part) of the Lorentz group SO(1, 3) and its double cover

SL(2,C), we follow a widely adopted convention for spinors and gamma matrices,

γµ =

(
0 (σµ)αβ̇

(σ̄µ)α̇β 0

)
, σµ = (11, ~σ) , σ̄µ = (11,−~σ) , (A.2)

where ~σ denote Pauli matrices in the standard convention. Complex conjugation exchanges

undotted and dotted indices. It is easy to check that

(Jµν)spinor =
i

4
[γµ, γν ] =

i

2

(
(σ[µσ̄ν])α

β 0

0 (σ̄[µσν])α̇β̇

)
=

(
(Jµν)α

β 0

0 (Jµν)α̇β̇

)
(A.3)

forms a representation of the algebra eq. (A.1). Spinor indices are raised and lowered by

the invariant tensor of SL(2,C) satisfying

ǫαβ = −ǫβα , ǫαβǫ
βγ = δα

γ , ǫ12 = +1 , ǫα̇β̇ = (ǫαβ)
∗ . (A.4)

For example, λα = ǫαβλβ and λ̃α̇ = ǫα̇β̇λ̃
β̇ .

For any (momentum) 4-vector, the bi-spinor notation is defined by

pαα̇ = pµ(σ
µ)αα̇ , p2 = det(pαα̇) =

1

2
ǫαβǫα̇β̇pαα̇pββ̇ . (A.5)

A.2 Massless momenta

For massless momenta, pαα̇ as a (2× 2) matrix has rank 1, so it can be written as

pαα̇ = λαλ̃α̇ . (A.6)

For a real momentum, the spinors satisfy the reality condition,

(λα)
∗ = sign(p0)λ̃α̇ . (A.7)

The Little group U(1) acts on the spinors as

λ→ e−i θ
2λ , λ̃→ ei

θ
2 λ̃ . (A.8)

The spinors for p and those for (−p) must be proportional. We fix the relation by setting

λ(−p) = λ(p) , λ̃(−p) = −λ̃(p) . (A.9)

It is customary to introduce a bra-ket notation,

|p〉 ↔ λα , 〈p| ↔ λα , |p] ↔ λ̃α̇ , [p| ↔ λ̃α̇ , (A.10)

which leads to the Lorentz invariant, Little group covariant brackets,

〈ij〉 = λαi λ
β
j ǫαβ = λαi λjβ , [ij] = λ̃iα̇λ̃

α̇
j . (A.11)

The massless Mandelstam variables, which are both Lorentz invariant and Little group

invariant, can be expressed as

2pi · pj = ǫαβǫα̇β̇(pi)αα̇(pj)ββ̇ = 〈ij〉[ji] . (A.12)
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A.3 Massive momenta

For massive momenta, the on-shell condition in the bi-spinor notation is given by

det(pαα̇) = m2 . (A.13)

The massive helicity spinor variables are defined by

pαα̇ = λα
I λ̃Iα̇ , det(λα

I) = m = det(λ̃Iα̇) . (A.14)

The index I indicates a doublet of the SU(2) Little group. The reality condition reads

(λα
I)∗ = sign(p0)λ̃Iα̇

(λαI)
∗ = −sign(p0)λ̃

I
α̇ .

(A.15)

SU(2)-invariant tensor. Given a matrix representation of the doublet of SU(2),

ψI → U I
Jψ

J , (A.16)

the two defining properties of SU(2) can be written as

ǫIKU
I
JU

K
L = ǫJL , U I

J(U
†)JK = δIK , (A.17)

where the SU(2)-invariant tensor ǫIJ shares, by convention, the first three properties in

eq. (A.4). Just like spinor indices, the Little group indices are raised and lowered by ǫIJ
and ǫIJ . It follows from eq. (A.17) that the two variables below transform in the same way.

ψI := ǫIJψ
J and ψ̄I := (ψI)∗ . (A.18)

Then,

pαα̇ = λα
I λ̃Iα̇ = −λαI λ̃I α̇ , p̄α̇α = pµ(σ̄

µ)α̇α = ǫα̇β̇ǫαβpββ̇ = λαI λ̃I
α̇ = −λαI λ̃Iα̇ . (A.19)

It is also useful to note that

ǫαβλα
Iλβ

J = det(λ)ǫIJ = mǫIJ , ǫα̇β̇λ̃Iα̇λ̃Jβ̇ = det(λ̃)ǫIJ = mǫIJ . (A.20)

Dirac spinors. By definition, the massive spinor helicity variables satisfy

pαα̇λ̃
α̇I = mλα

I , pα̇αλα
I = mλ̃α̇I . (A.21)

Comparing this with the textbook convention for Dirac spinors,

(pµγ
µ −m)u(p) = 0 , (pµγ

µ +m)v(p) = 0 , (A.22)

leads to the natural identification,

uI(p) =

(
λα

I

λ̃α̇I

)
, vI(p) =

(
λα

I

−λ̃α̇I

)
. (A.23)

Similarly, for the conjugate Dirac spinors, we have

ū(p)(pµγ
µ −m) = 0 , v̄(p)(pµγ

µ +m) = 0 , (A.24)

ūI(p) =
(
−λαI λ̃α̇I

)
, v̄I(p) =

(
λαI λ̃α̇I

)
. (A.25)
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BOLD. For a fixed massive particle, the SU(2) Little group is always completely sym-

metrized. Ref. [1] introduced the BOLD notation, which suppresses the SU(2) little group

indices by means of an auxiliary parameter for each particle. For instance, for particle 1,

(λ1)α
I(t1)I = |1I〉(t1)I = |1〉 , (A.26)

(λ̃1)
α̇I(t1)I = |1I ](t1)I = |1] . (A.27)

It is clear how to reinstate the SU(2) index if needed.

The Dirac equation eq. (A.21) can be written in the BOLD bra-ket notation as

pk|k] = m|k〉 , 〈k|pk = −m[k| . (A.28)

In the main text, we define the x factor for a 3pt amplitude:

x〈3| = [3|p̄1
m

= − [3|p̄2
m

, x−1[3| = 〈3|p1
m

= −〈3|p2
m

. (A.29)

Decomposing the massive momenta into the spinor helicity variables, we can derive

x〈31〉 = +[31] , x〈32〉 = −[32] . (A.30)

Combining these with the Dirac equation eq. (A.28), we obtain a useful identity,

〈21〉 = [21] +
[23][31]

mx
= [2|

(
11 +

|3][3|
m

)
|1] . (A.31)

A.4 High-Energy limit

Definition. Consider a system of massive particles whose masses are equal or similar to

some fixed m. As in the scattering problem of the main text, we assume that the particle

number is conserved and the mass of each particle is also conserved. Let pi be the incoming

momenta, and γij = pi · pj/mimj (i 6= j be the Lorentz invariant measure of the pairwise

relative velocity. The High Energy (HE) limit is defined such that all γij ’s grow arbitrarily

large while the ratios γij/γkl remain fixed.

Frame dependence. In the center of momentum (COM) frame among all incoming

momenta, it can be shown that p0 = E ≫ m holds for each particle in the HE limit.

Suppose

pµ = (E, 0, 0, p) =⇒ pαα̇ =

(
E − p 0

0 E + p

)
, (A.32)

in the COM frame. The two diagonal matrix elements are well-separated in the HE limit,

E + p = 2E

(
1− m2

4E2
+ · · ·

)
, E − p =

m2

E + p
=
m2

2E

(
1 +

m2

4E2
+ · · ·

)
, (A.33)

where we suppressed corrections of order O(m/E)4.
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Unlike the definition of the HE limit, the relation E ≫ m depends on the Lorentz frame;

it does not hold in the particle’s own rest frame. We can specify the frame dependence in

a Lorentz covariant way. Let uµ be the time-like unit vector of the COM frame. Introduce

(p|u)αβ = pαα̇u
α̇β , (u|p)α̇β̇ = uα̇αpαβ̇ . (A.34)

In the COM frame, where uµ = (1, 0, 0, 0), uα̇α is the identity matrix. So, both (p|u)
and (u|p) have the same matrix elements as pαα̇ in eq. (A.32). But, now (p|u) and (u|p)
are Lorentz covariant operators acting on spinors. Their eigenvalues, which coincide when

E ± p in the COM frame with pµ = (E, 0, 0, p), can now be regarded as Lorentz invariant

quantities.

Bearing in mind the frame dependence, we decompose each massive momentum as

p = |λ〉[λ̃|+ |η′〉[η̃′| , 〈λη′〉 = m = [η̃′λ̃] . (A.35)

The first piece corresponds to the large eigenvalue (E+p) and the second piece to the small

one (E − p). It is often convenient to rescale the sub-leading piece by (η′, η̃′) = m(η, η̃),

p = |λ〉[λ̃|+m2|η〉[η̃| , 〈λη〉 = 1 = [η̃λ̃] , (A.36)

or, to discuss many particles at once,

pi = |i〉[i|+m2|i〉[i| , 〈ii〉 = 1 = [ii] . (A.37)

In this notation, the definition of the HE limit can be rewritten as [1]

〈ij〉
√
mimj

≫ 1 ,
√
mimj [ij] ≪ 1 . (A.38)

Explicit form of helicity spinor variables. The spinor helicity variable λα
I is defined

up to actions of the SL(2,C) Lorentz group and the SU(2) Little group. For numerical

computations, it might be useful to have a prescription to fix both group actions.

To fix the Lorentz group action, we choose a Lorentz frame (the COM or some other)

with a time-like unit vector uµ. In the uµ = (1, 0, 0, 0) frame, we write pµ = (E, ~p) with

E > 0 and introduce the notations

~p = pn̂ , p = |~p| , n̂ · n̂ = 1 . (A.39)

Choosing a Lorentz frame breaks SL(2,C) to SU(2) acting on the 3d space orthogonal to

uµ. We temporarily introduce notations adjusted for this SU(2). The round ket |v) denotes
an SU(2) spinor and (v| denotes the Hermitian conjugagte of |v).

We start by the familiar eigenvalue problem in SU(2):

(n̂ · ~σ) |n±) = ±|n±) , n̂ = (sin θ cosφ, sin θ sinφ, cos θ) . (A.40)

We fix the phase ambiguity for the normalized eigenvectors |n±) by setting

|n+) :=
(

cos θ
2

eiφ sin θ
2

)
, |n−) :=

(
−e−iφ sin θ

2

cos θ
2

)
. (A.41)
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In terms of these SU(2) spinors, we may write

pµσ
µ = E − ~p · ~σ = (E − p)|n+)(n+|+ (E + p)|n−)(n−| . (A.42)

Comparing it with the Lorentz covariant expression (with I ∈ {+,−}),

pµσ
µ = |λ+〉[λ̃+|+ |λ−〉[λ̃−| , (A.43)

leads to the identification

|λ±〉 =
√
E ∓ p|n±) , [λ̃±| =

√
E ∓ p(n±| . (A.44)

To make contact with the HE limit, we make simple replacements to recover eq. (A.36):

|λ+〉 → m|η〉 , [λ̃+| → m[η̃| , |λ−〉 → |λ〉 , [λ̃−| → [λ̃| . (A.45)

HE limit of 3pt amplitudes. We use the decomposition eq. (A.37) to examine the HE

limit of the 3pt amplitudes with two massive particles of the same mass and spin coupled

to a massless particle. Without loss of generality, we assume that the massless particle has

positive helicity.

It is well-known that the 3pt amplitude for three massless particle can be non-vanishing

only if the momenta are complex valued and either |1〉 ∝ |2〉 ∝ |3〉 or |1] ∝ |2] ∝ |3] holds.
We cover the two cases separately.

Case I: |1〉 ∝ |2〉 ∝ |3〉. Momentum conservation requires that

0 = |3〉[3|+ |1〉[1|+ |2〉[2|+m2 (|1〉[1|+ |2〉[2|) . (A.46)

When [13], [23] and [12] are all comparable and much bigger than m, up to O(m)

corrections,

|1〉 ≈ − [32]

[12]
|3〉 , |2〉 ≈ − [31]

[21]
|3〉 . (A.47)

To the leading order in m, the x factor becomes

x =
[3|p̄1|ζ〉
m〈3ζ〉 ≈ [31]〈1ζ〉

m〈3ζ〉 ≈ [23][31]

m[12]
. (A.48)

Recall that the 3pt minimal coupling is

A
(min)
3 =

mh−2s

Mh−1
xh〈21〉2s , (A.49)

whereM is a fixed dimensionful coupling such as the Planck mass. In the HE limit, the spin

of the massive particles effectively split into helicities of massless particles. In one extreme

case with h1 = +s and h2 = −s, we recover the massless 3pt amplitude A3(k
+
1 , k

−
2 , k

+
3 )

as follows

A
(min)
3 → mh−2s

Mh−1
xh〈2−1+〉2s = 1

Mh−1
(mx)h〈21〉2s ≈ 1

Mh−1

(
[23][31]

[12]

)h( [31]

[23]

)2s

.

(A.50)

Exchanging particle 1 and 2 gives A3(k
−
1 , k

+
2 , k

+
3 ).
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Case II: |1] ∝ |2] ∝ |3]. We begin again with the momentum conservation eq. (A.46).

When 〈13〉, 〈23〉 and 〈12〉 are all comparable and much bigger than m, up to O(m)

corrections,

[1| ≈ −〈23〉
〈21〉 [3| , [2| ≈ −〈13〉

〈12〉 [3| . (A.51)

The x factor is approximately,

x =
m[3ζ]

〈3|p1|ζ]
≈ m[3ζ]

〈31〉[1ζ] ≈
m〈12〉
〈23〉〈31〉 . (A.52)

Starting from the minimal coupling eq. (A.49) and take the case with h1 = −s and h2 = −s,
we recover the massless amplitude A3(k

−
1 , k

−
2 , k

+
3 ),

A
(min)
3 → mh−2s

Mh−1
xh〈2−1−〉2s ≈ m2h−2s

Mh−1

( 〈12〉
〈23〉〈31〉

)h

〈21〉2s . (A.53)

A.5 Spin operator

Pauli-Lubanski pseudovector can be considered as an operator acting on the space of

spinors. The general definition of the operator (ǫ0123 = +1 = −ǫ0123)

Wµ := mSµ = −1

2
ǫµνλσP

νJλσ (A.54)

and the definition of Jµν for spinors in eq. (A.3) give

m (Sµ)
β
α =

1

4
[σµ(p · σ̄)− (p · σ)σ̄µ] β

α . (A.55)

Its action on the spinor-helicity variable λα
I for the momentum pαα̇ = λα

I λ̃Iα̇ is

m(Sµλ
I)α =

1

4

[
mσµλ̃

I − (p · σ)σ̄µλI
]
α
. (A.56)

An analogous statement for the dotted spinors is

m (Sµ)
α̇
β̇
= −1

2
ǫµνλσP

ν
(
Jλσ

)α̇
β̇
= −1

4
[σ̄µ(p · σ)− (p · σ̄)σµ]α̇β̇ . (A.57)

In the helicity basis defined in section A.4,

nµSµλ
±
α = ∓ E

2m
λ±α (A.58)

nµSµλ̄
α̇± = ∓ E

2m
λ̄α̇± (A.59)

where nµ = (0, ~n) is the unit spatial vector pointed towards the direction of particle’s

momentum. Note that nµSµ = −(~n · ~S); it is natural to associate λ̃α̇− to positive helicity

states and λ−α to negative helicity states. The signs are flipped when “bra” vectors are used.

λα±nµSµ = ± E

2m
λα± (A.60)

λ̄±α̇n
µSµ = ± E

2m
λ̄±α̇ (A.61)
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The spin operator for multiple spinor indices follows from the Lie algebra,

(Jµν) β1β2···β2s
α1α2···α2s

=
∑

i

(Jµν) βi

αi
1̄1i , (A.62)

where 1̄1i is defined as 1̄1i = δβ1
α1 · · · δβi−1

αi−1δ
βi+1
αi+1 · · · δβ2s

α2s . When acting exclusively on the totally

symmetric representation, the spinor operator is effectively proportional to the spin,

(Sµ)
β1β2···β2s

α1α2···α2s
=
∑

i

(Sµ)
βi

αi
1̄1i ∼ 2s (Sµ)

β1

α1
1̄11 . (A.63)

A similar equivalence works for the dotted spinors as well.

A.6 Polarisation

Massless case. We take the following definitions for the polarisation vectors of photons,

ε+µ (k) :=
[k|σ̄µ|ζ〉√
2〈kζ〉

, ε−µ (k) :=
〈k|σµ|ζ]√

2[kζ]
, (A.64)

where ζ parametrises the gauge redundancy. The polarisation vectors satisfy

ε± · (ε±)∗ = −1 and ε± · (ε∓)∗ = 0 . (A.65)

Alternatively, in the bi-spinor notation,

ε+(k) =
√
2
|k]〈ζ|
〈kζ〉 , ε−(k) =

√
2
|k〉[ζ|
[kζ]

. (A.66)

The polarisation tensors for higher-spin particles are constructed as symmetric products of

eq. (A.64).

Massive case. For a massive spin 1 particle, we adopt the following definition for the

polarisation vector:

εIJµ (p) :=
1√
2m

〈p{I |σµ|pJ}] =
1

2
√
2m

(
〈pI |σµ|pJ ] + 〈pJ |σµ|pI ]

)
. (A.67)

They are orthonormal in the sense that

εIJ · (εKL)∗ = −1

2
(δIKδ

J
L + δILδ

J
K) ,

∑

I,J

εIJµ (εIJν )∗ = −
(
ηµν −

pµpν
m2

)
. (A.68)

The reduction of massive polarisation vectors to the massless case in the HE limit can be

seen by adopting the helicity basis introduced in section A.4. Inserting the HE spinor-

helicity variables eq. (A.45) into eq. (A.67) and using the defining relations for η spinors

〈λη〉 = [η̃λ̃] = 1 to eliminate the Little group dependence on η spinors gives the massless

polarisation vectors eq. (A.64) for the transverse polarisations I = J = + or I = J = −.

The polarisation tensors for higher-spin particles are constructed in an analogous way

to the massless case.
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B The normalization of gravitomagnetic Zeeman coupling

It is expected that the full gravitational potential V will have “scalar potential” coupling

mΦ and Zeeman-like coupling α~S · ~B with gravitomagnetic field ~B := ∇× ~A.

V := mΦ+ α~S · ~B (B.1)

The coefficient α will be fixed by requiring that the correct time evolution of the spin-

operator ~S will be reproduced by the corresponding Hamiltonian. The natural evolution

of spin vectors in general relativity required by the equivalence principle is described by

what is known as the Fermi-Walker transport:18

DFS
µ

ds
= uν∇νS

µ + ǫ(uµaν − aµuν)S
ν = 0 . (B.2)

The vector uµ is the tangent vector of the curve γ(s) along which Sµ is transported, and

is normalised by uµuµ = ǫ = ±1. The acceleration vector aµ is defined as aµ := uν∇νu
µ.

Setting u = ∂0, Fermi-Walker transport for spin vector gives the following equation.

DFS
i

ds
= ∂0S

i + Γi
0jS

j = 0 (B.3)

The Christoffel symbols up to O(h) are given by, assuming stationary solutions, i.e. ∂0 = 0,

Γ0
i0 = Γ0

0i = ∇Φ

Γi
00 = ∇Φ

Γi
0j = Γi

j0 =
1

2
(∂jAi − ∂iAj) = −1

2
ǫijk(∇× ~A)k

Γ0
ij = −1

2
(∂iAj + ∂jAi)

Γi
jk = −(δijΦ,k + δikΦ,j − δjkΦ,i) .

(B.4)

Substituting the Christoffel symbols, eq. (B.3) gives an analogue of Larmor precession in

electrodynamics.

∂

∂t
~S =

1

2
~S × ~B (B.5)

Since eq. (B.3) must be reproduced from eq. (B.1) in the same way as Larmor precession

is reproduced from Zeeman coupling, from the relations

[Si, Sj ] = i~ǫijkSk,
∂

∂t
O =

1

i~
[O, H] (B.6)

one can deduce that α = −1
2 .

18This equation assumes that finite-size effects or tidal effects are negligible. When such effects cannot

be neglected spin evolves according to a different set of equations known as Mathisson-Papapetrou-Dixon

equations.
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C Some details of the t-channel matching of the higher spin graviton

Compton amplitude

Let’s go back to eq. (5.21), and take the t-channel residue.19 Exapanding F = F1 + F2

yields:

Res[Ansatz]
∣∣∣
t=0

=− 〈3|p1|2]4
(s−m2)(u−m2)

F2s
1 −〈3|p1|2]2K2

2s−1∑

r=1

r

(
2s

r+1

)
F2s−r−1
1 Fr−1

2

− 2s〈3|p1|2]3
(s−m2)(u−m2)

F2s−1
1

(
C〈23〉+C[23]

2

)

− 〈3|p1|2]2
(s−m2)(u−m2)

(
C〈23〉+C[23]

2

)2 2s∑

r=2

(
2s

r

)
F2s−r
1 Fr−2

2

+
〈3|p1|2]2
(s−m2)

K

(
C〈23〉+C[23]

2

)2s−1∑

r=1

(r−1)

(
2s

r+1

)
F2s−1−r
1 Fr−1

2

(C.1)

where we have used

〈3|p1|2]F2 =
〈34〉[21]
2m2

(u−m2) +
〈31〉[24]
2m2

(s−m2) +
1

2
(C〈23〉 + C[23]) (C.2)

to cancel as much (s−m2) and (u−m2) as possible until there is no more F2 in the leading

term of each of the summation. Then we identify the last term in the first line of Eq (C.1)

as Poly and the piece that only carries the (s−m2) pole as Poles, so that:

Res[Ansatz]
∣∣∣
t=0

= − 〈3|p1|2]4
(s−m2)(u−m2)

F2s
1

− 2s〈3|p1|2]3
(s−m2)(u−m2)

F2s−1
1

(
C〈23〉 + C[23]

2

)

− 〈3|p1|2]2
(s−m2)(u−m2)

(
C〈23〉 + C[23]

2

)2 2s∑

r=2

(
2s

r

)
F2s−r
1 Fr−2

2

+ Poly + Poles

(C.3)

Now, we are free to write F1 in the terms other than Poly and Polys as:

F1 = F1 +
1

2
(F̃1 − F1) (C.4)

or

F1 = F̃1 +
1

2
(F1 − F̃1) (C.5)

such that the first term in the expansion of − 〈3|p1|2]4
(s−m2)(u−m2)

F2s
1 matches eq. (5.19) if we

choose eq. (C.4) and it matches eq. (5.18) if we choose eq. (C.5). First we consider the

〈23〉 = 0 case, where C〈23〉 = 0. Expanding F1 with eq. (C.4) and apply

〈3|p1|2](F̃1 − F1) = 〈3|p1|2](F2 − F̃2) = −C[23] + C〈23〉 (C.6)

19We define (s−m2) ≡ sm, and (u−m2) ≡ um, also factors of Mpl will be temporarily suppressed here

for simplicity.
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repeatedly until there is no more 〈3|p1|2] to be absorbed. On the other hand, since r = 1

in the summation of Poles is zero, we can further apply eq. (C.2) to Poles once more. We

end up with:

Res[Ansatz]
∣∣∣
〈23〉=0

≡ − 〈3|p1|2]4
(s−m2)(u−m2)

F 2s
1

+

{
fS(4) + gS(2)−

〈3|p1|2]K2C[23]

2

(
2s

3

)
F2s−3
1

}
+ Poly

(C.7)

where fS(n) is defined by:

fS(n)≡−
C4
[23]

2nsmum

{
2s−n∑

r=1

(
2s

r+n

)(
r+n−1

n

)
F 2s−n−r
1

(
F̃1−F1

2

)r
+

2s−n∑

r=1

(
2s

r+n

)
F2s−r−n
1 Fr

2

}

+
KC3

[23]

2n−1sm

2s−n∑

r=1

r

(
2s

r+n

)
F2s−r−n
1 Fr

2 (C.8)

and satisfies fS(n ≥ 2s) = 0. As long as fS(n) are present, there are still (s − m2) and

(u −m2) poles that should be further taken care of. This can be dealt with by applying

the recursion relation

fS(n) = fS(n+ 2)(F̃1 − F1)
2 + hS(n)(F̃1 − F1) + gS(n)(F̃1 − F1)

2 (C.9)

until f(n ≥ 2s) such that the residue is completely local.20 Now we are only left with

Res[Ansatz]
∣∣∣
〈23〉=0

=− 〈3|p1|2]4
(s−m2)(u−m2)

F 2s
1 +Poly

+

{ ⌈s⌉−3∑

r=0

hS(4+2r)(F̃1−F1)
2r+1+

⌈s⌉−2∑

r=0

gS(2+2r)(F̃1−F1)
2r

−
〈3|p1|2]K2C[23]

2

(
2s

3

)
F2s−3
1

}

≡− 〈3|p1|2]4
(s−m2)(u−m2)

F 2s
1 +Poly+Poly[23]

(C.10)

which is just the correct residue eq. (5.19) plus pure polynomial terms.

For [23] = 0, we do not need to do the calculations again. Since we are using the

variables F , F1 and F2 that are symmetric under F1 ↔ F̃1 and F2 ↔ F̃2, we can just

20The recursion relation eq. (C.9) is obtained by

C[23]F2

∣

∣

〈23〉=0
= −〈3|p1|2](F̃1 − F1)F2 = −(F̃1 − F1)

(

umK +
C[23]

2

)

.

And there are (u−m2) present to cancel with the ones in the denominators, leaving only local terms.
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simply use the substitutions F1 ↔ F̃1 and C[23] ↔ C〈23〉. So the [23] = 0 residue is:

Res[Ansatz]
∣∣∣
[23]=0

=− 〈3|p1|2]4
(s−m2)(u−m2)

F̃ 2s
1 +Poly

+

{ ⌈s⌉−3∑

r=0

hA(4+2r)(F1−F̃1)
2r+1+

⌈s⌉−2∑

r=0

gA(2+2r)(F1−F̃1)
2r

−
〈3|p1|2]K2C〈23〉

2

(
2s

3

)
F2s−3
1

}

≡− 〈3|p1|2]4
(s−m2)(u−m2)

F̃ 2s
1 +Poly+Poly〈23〉

(C.11)

We again end up with an expression whose leading term already matches the desired residue

eq. (5.18). So, all we need to do to match all three channels is subtracting off

Poly + Poly[23] + Poly〈23〉
t

(C.12)

from Ansatz.

D Wilson coefficients for black holes

The Wilson coefficients C# for coupling of spin degrees of freedom to spacetime curvature

have an interpretation as gravitational multipole moments generated by spin effects. For

this purpose it is convenient to introduce the vector aµ := 1
mS

µ. The terms linear in hµν
in the one-body effective action can be recast as follows.

L = −κm
2

∞∑

n=0

CES2n

(2n)!

(
− (−a · ∂)2

)n
uµuνh

µν

+
κm

2

∞∑

n=0

CBS2n+1

(2n+ 1)!

(
− (−a · ∂)2

)n
u(µǫν)αβγu

αaβ∂γhµν + (u · ∂) [· · · ] +O(h2)

(D.1)

The notation CES0 = CBS1 = 1 has been adopted to simplify the equations, and covariant

SSC was used to express Sµν as Sµν = mǫµνλσu
λaσ. The round brackets on µ and ν indices

on the second line indicates symmetrisation, i.e. A(µν) :=
1
2(Aµν +Aνµ). When integrated

on the worldline, the terms with (u ·∂) can be converted to boundary terms which becomes

irrelevant when trying to interpret this Lagrangian as the source term for hµν . Upon

integration by parts, this Lagrangian reduces to the following source term expression.21

Sint = −
∫
d4x

1

2
hµν(x)T

µν(x) (D.2)

Tµν(x) = m

∫
ds

[
uµuν

∞∑

n=0

CES2n

(2n)!

(
− (a · ∂)2

)n
δ4[x− xwl(s)]

+u(µǫν)αβγu
αaβ∂γ

∞∑

n=0

CBS2n+1

(2n+ 1)!

(
− (a · ∂)2

)n
δ4[x− xwl(s)]

] (D.3)

xwl(s) is the worldline of the particle, parametrised by s.

21The coupling constant κ has been absorbed into definition of hµν .
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The solution for hµν can be constructed from Green’s function method [43].

hµν(x) =

∫
d4y Pλσ

µν (x− y)Tλσ(y) (D.4)

Pλσ
µν (x) = 4GPλσ

µν Gret(x) (D.5)

Gret(x) = θ(x0) δ

(
x2

2

)
(D.6)

The retarded scalar Green’s function Gret(x) is given as the solution to the sourced wave

equation � Gret(x) = −4πδ4(x), and has Dirac delta values over the future-directed light

cone. The tensor Pλσ
µν = δ

(λ
(µδ

σ)
ν) − 1

2ηµνη
λσ is the trace-reverser, which can be factored out

to yield a simpler equation for trace-reversed graviton field h̄µν = Pαβ
µν hαβ .

h̄µν(x) = 4G

∫
d4y Gret(x− y)Tµν(y) (D.7)

Note that integration by parts identity
∫
dyK(x− y) d

dyf(y − z)= d
dx

∫
dyK(x− y)f(y − z)

for vanishing boundary contributions can be applied to pull out the derivatives on the

source term. Setting the worldline of the particle to lie at the origin, i.e. xwl(s) = (s,~0),

the following expression for the trace-reversed graviton field is obtained.

h̄µν(x) = uµuν

∞∑

n=0

CES2n

(2n)!

(
− (a · ∂)2

)n 4Gm

r

+ u(µǫν)αβγu
αaβ∂γ

∞∑

n=0

CBS2n+1

(2n+ 1)!

(
− (a · ∂)2

)n 4Gm

r

(D.8)

It is known that trace-reversed graviton field for exact Kerr geometry h̄Kerr
µν can be put in

the following form [43].

h̄Kerr
µν (x) = uµuν

∞∑

n=0

1

(2n)!

(
− (a · ∂)2

)n 4Gm

r

+ u(µǫν)αβγu
αaβ∂γ

∞∑

n=0

1

(2n+ 1)!

(
− (a · ∂)2

)n 4Gm

r

(D.9)

Comparing eq. (D.8) with eq. (D.9), it can be concluded that Wilson coefficients C# for

black holes are unity.

E Spin-orbit factor corrections to polarisation tensor contractions

Define pµa =
Pµ
2 +Pµ

1
2 , qµ = Pµ

1 − Pµ
2 . In terms of average momentum and momentum

transfer, the polarisation tensors can be expressed as follows.

ε(P2) = ε(pa)−
1

2
qµ

∂

∂pµa
ε(pa) + · · · (E.1)

ε(P1) = ε(pa) +
1

2
qµ

∂

∂pµa
ε(pa) + · · · (E.2)
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Since polarisation tensors are defined in some reference frame and then extended to ar-

bitrary momentum by boosts for massive particles, the polarisation tensor ε(p) can be

schematically be written as follows.

ε(p) = G(p; p0)ε(p0) (E.3)

Thus, the derivative on polarisation tensor can be represented as

∂

∂pµ
ε(p) = lim

δp→0

G(p+ δp; p0)G
−1(p; p0)− 11

δp
ε(p) (E.4)

In the non-relativistic limit with p0 = (m,~0), the following relations can be derived which

holds at linear order in momentum.

G(p; p0) = e−i~λ(~p)· ~K ≃ e
i
m
~p· ~K (E.5)

~K = J i0 = Si0 (E.6)

∂

∂pµ
ε(p) ≃ lim

δp→0

e
i
m
(~p+δ~p)· ~Ke−

i
m
~p· ~K − 11

δp
ε(p) ≃ i

m
~Kε(p) (E.7)

Using NW SSC Sµν(pν +mδ0ν) = 0, the following relation can be derived for Si0;

Si0(p0 +m) = −Sijpj = ǫijkpjSk (E.8)

~K = Si0 =
1

p0 +m
~p× ~S ≃ 1

2m
~p× ~S (E.9)

Therefore, the derivative can be represented as follows in the non-relativistic limit.

qµ
∂

∂pµa
ε(pa) = ~q · ∂

∂ ~pa
ε(pa) ≃ ~q ·

(
i

2m2
~pa × ~Sa

)
ε(pa) (E.10)

Summing up, the polarisation tensors can be represented as

ε(P2) = ε(pa) +
i

4m2
a

~Sa · ( ~pa × ~q) ε(pa) + · · · (E.11)

ε(P1) = ε(pa)−
i

4m2
a

~Sa · ( ~pa × ~q) ε(pa) + · · · (E.12)

ε∗(P2)ε(P1) = ε∗(pa)

[
11− i

2m2
a

( ~pa × ~q) · ~Sa + · · ·
]
ε(pa) (E.13)

For particle b, there is an additional sign factor due to definition of ~q, which is consistent

with the dictionary provided in [10].

ε∗(P4)ε(P3) = ε∗(pb)

[
11 +

i

2m2
b

(~pb × ~q) · ~Sb + · · ·
]
ε(pb) (E.14)
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