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Abstract. It is shown that the convex set of classical states of the quantum
harmonic oscillator is a simplex generated as the closed convex hull of the
coherent states in the weak topology of the Banach space of trace class operators.

1. Introduction

Let φ(x9y)eH9 where (x,y)eU2, denote a coherent state vector of the one-
dimensional quantum harmonic oscillator

Here φn9neZ + 9 are the eigenvectors of the number operator which constitute a
complete orthonormal set of the Hubert space H under consideration.

In the following Lι(H) denotes the Banach space of trace class operators on H
equipped with the trace norm || || t, and S(H) is the set of statistical operators

S(H) = {WeL\H)\ W^09 tr(W) = 1}. (2)

A state on L(H\ the Banach space of bounded linear operators on H, is called a
coherent state if it can be identified with a statistical operator of the form

) = (φ(x9y)9')φ(x9y)9 (3)

where (x, y)sU2 and φ(x9 y) is defined in (1). For information concerning the physical
and mathematical properties of coherent states we refer to [1,2]. There the P-
representation of a statistical operator Wis introduced as an integral representation
in terms of coherent states

W=jdxdyp(x9y)P(x9y)9 (4)
IR2

where p(x9 y) is called a quasi-probability insofar as it is discerned from a probability
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density on U2 by the fact that it is admitted that

i) p(x, y) takes negative values,
ii) p(x,y) is a distribution.

Besides the fact that the integral in (4) is defined in a weak sense only, we see the
shortcomings of this approach to an integral representation of statistical operators
in the application of quasi-probabilities which are unnatural from a probabilistic
point of view.

In this note we attack the representation problem by means of a different
strategy. We focus on representations of the form (cf. [3])

W = idμ(x9y)P(x9y) (5)

(which are rigorously defined below) where μ is a probability measure on (R2, i.e.
μeM\(R2). Obviously, in this approach not very statistical operator is represent-
able. On the other hand it turns out that the set of statistical operators which are
representable has a, in the sense of classical statistical mechanics, typical classical
structure: it is a simplex. Here a convex set is defined to be a simplex provided the
cone generated by it is a lattice in its own order.

2. Classical States

Our aim is to give a rigorous meaning to the integral (5). To this end we recall that
due to the fact that (x, y) -> ψ(x9 y) is continuous (cf. [2]) the mapping Φ: U2 -> L\H)
defined by

Φ(x,y) = P(x,y) (6)

is continuous, too. This implies that the range of Φ is a separable subset oϊLx(H) and,
in turn, that Φ is strongly measurable. Moreover, by virtue of ||P(x,3θlli = h for
any μeM\(U2)9

J j O l l i = l (7)

holds. These facts entail that Φ is Bochner integrable with respect to any μeM+(R2)
(cf. [4]). Obviously, for any μeM^IR2) the integral \dμ{x,y)P{x,y)eS{H) such that
the following definition makes sense.

Definition. Whenever there exists a probability measure μeM+((R2) such that a
statistical operator WeS(H) is representable as a Bochner integral via W=
Jdμ(x,y)P(x,);), the state on L(H) determined by W is called a classical state.

It is evident that the set of classical states which we denote by CS(H) is a convex
subset of the convex set S(H) and it is our goal to show that CS(H) is a simplex
contained in S(H). To this end we need some properties of the mapping
D:M}.(R2)->CS(JΪ) defined by

D(μ) = μμ(x,y)P(x,y). (8)

Let us introduce for all μeM+(ίR2) a positive bounded measure v[μ]eM+(R2) by

{χ2 + y2)\ (9)
dμ
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so that v[μ](R2) ̂  1, and denote the characteristic function of v[μ] by v[μ],

«M(*,y) = J<ίv[μ](x',/)exp(ixx' + i«0. (10)

For any (x,y)e!R2 and any μeMi((R2) we have, by the properties of Bochner
integrals,

(ψ(x,y)9D(μ)ψ(-x, -y)) = jdμ(xf

9y
f)(φ(x9y\P(x\y)φ(-x9 -y))

(-*,-}>)). (ID

Taking into account Eq. (1) this yields for any (x,y)eU2 and any μeM+(IR2),

(ψ(x9y),D(μ)ψ(-x9-y))

= J</μ(x',/)exp{ -(x 2 + / ) - (x'2 -f y'2)} txp{i{-2y)x' + ί(2x)/}

= exp{ —(x2 + )>2)}v[μ]( — 2y9 2x). (12)

Next we associate with any WeS(H) a mapping w: U2 -> U defined by

w(x, y) = (ψ(x, y), Wψ(x, y)). (13)

Obviously, for all (x,y)eU2 we have 0^w(x,)/)<Π and weCb(U2;M) for any
WeS(H). Due to the fact that the coherent state vectors are a total set in H (cf. e.g.
[3]) Wl = w2 implies W1 = W2. Moreover, since

(14)

holds (cf. e.g. [2]), (l/π)w can be considered as a probability density with respect to
the Lebesgue measure λ2 on (R2. This fact allows us to associate with any WeS(H) a
uniquely determined element pweM\(U2) defined such that

--w(x,y). (15)
dλ* ' " π

Let us denote by y,yeM+(IR2), the probability measure with density

(-(x2 + y2)) (16)
UA~ 71

and characteristic function

(17)

For any WeS(H) we define the quasίcharacteristic function σw of Why σw\ U2 -»C,

fx2 + y2\
σw{x,y) = exp^—^-)pw(x,y). (18)

Obviously, σ^ is continuous and <M0,0) = 1 holds.
With these prerequisites we state our first lemma.
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Lemma 1. For WeS(H) the quasicharacteristic function σw defined by Eq. (18) is a
characteristic function of an element o/M+(R2) if and only ifWeCS(H). Moreover, for
D(μ)eCS(K)

σDiμ) = μ (19)

holds.

Proof
i) Assume WeCS{H). Then there exists a μ e M U ^ 2 ) such that W=D(μ) and
w = d[_μ~\. But for any μeM^IR2),

-d[μ](x9y) = {g*μ)(x9y) (20)
π

holds for all (x,y)eU2, where * denotes the convolution.
Fourier transformation yields

for all μeM\(U2) and all (x,y)eU2. From the definition (18) we have

σw(x, y) = σDiμ)(x, y) = ( f c y ) ) - 1 ^ , y). (22)

Comparing this with (21), the first part of the assertion and Eq. (19) follow.
ii) Assume σw is a characteristic function. Then there exists an uniquely

determined probability measure μweM\(U2) such that σw = μw. It remains to be
proved that D(μw) = W. But by the assumption

pw(χ, y) = 1{χ, y)σw(χ, y) = ?(*, y)fiw(*, y\ (23)

and by (19)

fiwjx>y) = 1(x,y)fi*(x>y\ (24)

Therefore we have

β*(χ>y) = βD<μJχ>y) (25)

for all (x,y)eR2. This implies

Φ,y) [μw]{x,y) (26)

for all (x9y)eU2 since both functions are continuous.
This ends the proof of the lemma.

Our conclusion is as follows. Whereas it is possible to associate with any
statistical operator WeS(H) a probability measure, namely pw, Lemma 1 shows that
only for the classical states it is possible to define another characteristic probability
measure in terms of σw. And this one is just the mixing measure in the integral
representation of these states.
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3. The Simplex of Classical States

To prove the simplex structure of CS(H) we need a preliminary lemma.

Lemma 2. The mapping D defined in Eq. (8) is an affine homeomorphism, i.e. D is affine
and

i) injective,
ii) continuous with respect to the weak topologies, and

iii) if {μn} is a sequence in M+(IR2) such that D(μn)^WeS(H) weakly, then there
exists a uniquely determined element μeM+(lR2) such that μπ->μ weakly and
W=D(μ).

Proof.
i) Assume D(μ1) = D(μ2) where μί,μ2eM1

+(U2). For all (x,y)eU2 this implies that

(φ(x,y),D(μi)φ(-x, -y)) = (φ(x,y),D(μ2)φ(-x, -y)). (27)

From Eq. (12) we infer that

< M ( x , y ) = *l>2](x,j') (28)

holds for all (x,y)eU2. From the uniqueness of characteristic functions v[μx] =
v[μ2] follows which, in turn, implies μx = μ2 as the density (14) is strictly positive
forall(x,}>)eiR2.

ii) Under the duality L\H) x L(H)E(T, A) ^>tr (AT) the topological dual of
LX(H) can be identified with L(H). Given a sequence {D(μn)} in CS(H) with μπ->μ
weakly, for any continuous linear functional / on L\H) there exists an uniquely
determined element AfeL{H) such that

:„)) = j dμn(x, y)f(P(x, y)) = J dμn(x, y) tv(AfP(x, y))

= μμn(x,y)(ψ(x,y),Afψ(x,y)). (29)

As (x,y)-+(ψ{x,y), Afιl/(x,y))eCb(U2;C) we conclude that

f(D(μn))^f(D(μ)) (30)

for all linear continuous functionals on I}(H).
iii) As D(μM)-> WeS(H) weakly we have for all AeL(H)

(31)
n->oo

1,2Setting A = P(x,y), for all (x,y)eU2 we obtain by means of Eq. (20)

lim {g*μπ)(x, y) = -w(x, y). (32)
n-+oo Ή

Accordingly, in the weak topology

\impD(μn) = p w . (33)
n-*σo

This implies (cf. e.g. [5])

lim y(x, y)μn(x, y) = βw(x, y) (34)



558 A. Bach and U. Lϋxmann-Ellinghaus

for all (x9y)eU2. This is equivalent to the fact that for all (x,y)eU2

9

lim μn(x, y) = (?(x, y))~ ιpw(x9 y). (35)
n-*oo

Since the mapping

) (36)

is continuous and normalized to 1 in (0,0)eU2 we eventually obtain, using Theorem
48.7 II of ref. [5], that i) there exists an uniquely determined element μeM+(IR2) such
that μw-»μ weakly, and ii)

)Γ1pw(x,y) (37)

forall(x,);)G(R2.
It remains to show that W= D(μ). But this is obvious from Lemma 1 as we have

shown that σw = μ is a characteristic function and from the uniqueness part of this
lemma. This ends the proof of Lemma 2.

Our central result is contained in the following theorem.

Theorem. Let CS(H) be the convex set of classical states of the harmonic oscillator,
then

i) CS(H) is a simplex and the set of extreme points is the set of coherent states

ex(CS(H)) = {P(x, y); (x, y)eU2}9 (38)

ii) CS(H) is the closed convex hull of its extreme points

CS{H) = cl(con(ex(CS(H)))), (39)

where the closure refers to the weak topology of the Banach space Lι(H)>
iii) each D(μ)eCS{H) is the barycenter of an uniquely determined probability

measure πμ on LX{H) (equipped with the weak Borel σ-field) satisfying
πμ(ex(C5(/f)))=l,i.e.

tτ(ΛD(μ))= f dπμ(T)tv(AT) (40)
ex(CS(H))

holds for all AeL{H).

Proof
i) Due to the fact that M+(1R2) is a simplex the same holds for CS{H) as, according to
Lemma 2, part i) the mapping D is an affine bijection and preserves, therefore, order
properties. Accordingly, the set ex(CS(H)) is the image of ex(M+(IR2)) =
{δiX9y);(x,y)eU2} under this mapping where (5(X3?) denotes the Dirac measure on
IR2 concentrated at (x,y)eU2. From this (38) follows,

ii) Firstly, we prove that

$dμ(x9y)P(x,y)ed(con({P(x,y);(x,y)en2})) (41)

for all μeM+(IR2). Suppose that there is a μeM+((R2) such that D(μ) does not satisfy
(41). The geometric version of the Hahn-Banach theorem then ensures the existence
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of a strictly separating hyperplane, i.e. there exists a selfadjoint AeL(H) and a real
number α such that

tτ(AD(μ)) = \dμ{x\ y') tτ(AP(x\ y')) < α ̂  tt(AP(x9 y)) (42)

for all P(x,y)eL1(H% (x,y)eU2. Integration yields

f dμ(x\ y') tτ(AP(x\ /)) < *μ(M2) ί f dμ(x, y) tr (AP(x, y)) (43)

which is a contradiction.
Accordingly, we have

con({P(x,y);(x,y)eM2}) c= CS(H) c= cl(con({P(x,;μ);(x,)/)eR2})). (44)

By part iii) of Lemma 2 the set CS(H) is weakly closed such that (39) follows if we take
into account Eq. (38).

iii) The mapping Φ defined in Eq. (6) is continuous and therefore Borel
measurable. For any D(μ)eCS(H) the probability measure πμ = Φ°μ, the image of μ
under Φ, satisfies for all AeL(H)

tτ(AD(μ)) = μμ(x,y)tr(AP(xiy))= J dπμ{T)tτ{AT). (45)
LHH)

As ex(CS(//)) is weakly closed and therefore measurable, we obtain

πμ(ex(CS(H))) = l, (46)

which proves the existence of the integral representation (40). Uniqueness of this
integral representation follows from the uniqueness part of Lemma 2 together with
the property that Φ considered as a mapping from U2 onto ex(CS(H)) is a
homeomorphism which, in turn, follows from Lemma 2 where we also need part ii).
This ends the proof of the theorem.

4. Remarks

1. In the present situation an application of classical Choquet theory is not possible
as CS(H) is the homeomorphic image of the non-compact set M+(^2) Nevertheless,
part i) and part iii) of the theorem are equivalent.

This is due to the fact that the separability of H implies that Lι(H) is a separable
dual space which according to [4, Th. III. 3.1.] has the ΛiV-property. We therefore
can use the results of [6,7] which contain an exact analogue of the classical existence
and uniqueness theorems for barycentric integral representations of closed and
bounded convex subsets of a Banach space with jRΛΓ-property.

2. The coherent state vectors are intimately connected with the (trivial) Bose-
Fock-space structure of the Hubert space of the harmonic oscillator (cf. [3]),
namely

H = F+(Cy (47)

A generalization of our results to the simplex structure of the classical states on
F+(C*), keN, is quite straightforward. Technical difficulties, due to our method and
obviously not specific to the problem, arise in the case of the boson field with state
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space F+(K% K an infinite dimensional separable complex Hubert space, by virtue of
the fact that on K there exists neither an analogue of the Lebesgue measure nor a
rotation invariant Gaussian measure.

3. It is well known that S(H) is a convex set with extremals (pure states)

ex(S(H)) = P(H\ (48)

where P(H) denotes the set of orthogonal projections onto one-dimensional
subspaces of H.

This fact implies

QX(CS(H)) = CS(H) n ex(S(tf)) (49)

and shows that the coherent states are the only pure states which are representable
according to our definition.

4. A convenient possibility to characterize the fundamental difference between a
system in classical mechanics and quantum mechanics is provided by the structure
of the convex set of states of these systems. Whereas the state space of a classical
system, the set of all probability measures on its phase space is always a simplex, the
state space of a quantum system, here S(H), is never a simplex. This is due to the fact
that for any WeS(H), WφP(H\ there exist (infinitely many) different represent-
ations of the form

W=ΣPiPι, (50)
i

where PteP(H), Pi ^ 0, £p ( = 1, (cf. e.g. [8]).
i

Considering the quantum harmonic oscillator in a pure state, it is well known
that only in a coherent state the quantum harmonic oscillator exhibits a structural
analogy to the classical harmonic oscillator. In this work we have shown that, in
addition, the closed convex hull of these states has a structure which is characteristic
for a classical system.
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