
The Simulation and Evaluation of
Dynamic Voltage Scaling Algorithms

Trevor Pering, Tom Burd, and Robert Brodersen
University of California Berkeley Electronics Research Laboratory

211-109 Cory #1770, Berkeley, CA 94720-1770
Tel: (510) 642-9350 Fax: (510) 642-2739

{pering, burd, rb}@eecs.berkeley.edu
http://infopad.eecs.berkeley.edu/~lpsw

1. ABSTRACT
The reduction of energy consumption in micro-
processors can be accomplished without
impacting the peak performance through the
use of dynamic voltage scaling (DVS). This
approach varies the processor voltage under
software control to meet dynamically varying
performance requirements. This paper pre-
sents a foundation for the simulation and anal-
ysis of DVS algorithms. These algorithms are
applied to a benchmark suite specifically tar-
geted for PDA devices.

2. INTRODUCTION
Dynamic Voltage Scaling (DVS) allows devices to dynami-
cally change their speed and voltage, increasing the energy
efficiency of their operation [2]. Implementing DVS for a
general-purpose microprocessor requires substantial soft-
ware support and new metrics to fully realize and under-
stand the advantages of this capability.

In order to reduce the energy/operation (E) of our system we
can increase the delay (D), allowing an associated reduction
in our current operating voltage (V) [2]. The approximate
relationship between these variables for CMOS is given by:

 and

Dynamic Voltage Scaling (DVS) allows a device to dynami-
cally change its voltage while in operation and thus trade-
off energy for delay. This allows the processor to provide
the minimumnecessaryclock frequency with the maximum

possible energy efficiency.

Taking advantage of DVS requires algorithms, termedvolt-
age schedulers,to determine the operating speed of the pro-
cessor at run-time. This paper evaluates some previously
proposed algorithms in a simulation environment consisting
of an energy-accurate cycle-level simulator.

Designing a microprocessor for DVS also requires substan-
tial optimization and redesign at the circuit level [2]. How-
ever, in this paper we focus on the evaluation of the
algorithms for choosing the appropriate performance and
voltage level only.

We specifically target a PDA-class device with respect to
system configuration, workloads, and metrics [9]. Our target
platform is described in Section 7; our results, however, are
applicable to other computing devices, such as laptop com-
puters and embedded microprocessor systems. For our anal-
ysis, we use a benchmark suite consisting of applications
appropriate for a portable microprocessor system. We have
developed a clipped-delay metric which allows us to effec-
tively interpret the results from our simulations.

3. PREVIOUS WORK
Voltage scaling has been previously investigated in the con-
text of UNIX workstation systems [10][6]. System traces of
UNIX workloads were analyzed and evaluated with a sim-
ple energy/delay model. They considered the effectiveness
of a number of DVS algorithms on system energy consump-
tion. We will use these algorithms to demonstrate our evalu-
ation approach.

Voltage scheduling has also been applied to DSP applica-
tions (e.g. an IDCT algorithm required for MPEG decom-
pression) [4]. DSP applications typically have predictable
computational loads with a pre-determined upper limit on
computation required to be performed in a given time inter-
val. These characteristics allow relatively easy estimates of
the potential benefits of DVS. We use MPEG decompres-
sion as a benchmark, along with other, less structured, com-
putation.

4. ALGORITHMS
This section describes the algorithms analyzed in this paper.
We restrict analysis tointerval-basedvoltage schedulers,
which rely solely on the global state of the system and do

E V2∝ D
V

V c–
------------∝

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or
a fee.

ISLPED 98, August 10-12, 1998, Monterey, CA USA
© 2000 ACM ISBN 1-58113-059-7/98/08…$5.00

76

not have knowledge of individual task threads in the system.
If the previous interval is excessively idle, for example, an
increase in the processor speed might be effected.

We compare the algorithms against the theoretical optimum,
calculated using post-simulation trace analysis. We have
found that restricting the voltage schedulers to interval-
based activity results in unacceptably sub-optimal opera-
tion. This deficiency motivates our future work, which will
attempt to exploit information from a lower level.

4.1 Framework
In this paper, all algorithms are executed within the same
general framework: an interval-based repeating loop. At
each iteration, a calculation of the system activity over the
proceeding interval is made and passed to the algorithm
core. This data is used by the algorithm core which makes a
call to the operating system to set the target operating speed
for the processor. For our simulations, the interval length
parameter varies from 5 ms to 100 ms.

Algorithms in [6][10] make use of the quantity
excess_cycleswhich is defined as the number of uncom-
pleted execution cycles from a given interval due to a
reduced speed setting. For example, if a given trace interval
was found to have 70% activity when running at full speed,
and their processor was scheduled to be running at 50%
speed for that interval, they assign the value of
excess_cycles to be 20%. This value (20%) would then be
used by the scheduling algorithms to calculate the speed set-
ting for the next interval.

The use of excess_cycles is intractable in that a real execut-
ing algorithm could not know that 70% activity was
expected, and therefore could not use the 20% value to cal-
culate the next speed setting. We modified the implementa-
tions of these algorithms from their original specification,
removing the dependence onexcess_cycles.

4.2 Algorithm Description
We analyze four different algorithms in this paper. Two of
the algorithms, FLAT and COPT, are used as baselines for
analysis; PAST and AVG are taken from [6] and are the ‘real
algorithms’ analyzed.

• FLAT<speed> is what would happen without voltage
scaling. The operating voltage is fixed at a constant level
and further scheduling is disabled.

• COPT is the theoretical optimum operating point gener-
ated by post-simulation trace analysis and is used for
comparison with realizable algorithms. COPT (clipped-
optimal) is the minimum energy at which a system can
obtain a given delay. See Section 8.1 for a more detailed
explanation.

• PAST: This simple algorithm was the baseline for the
analysis in the [6] paper. The algorithm limits itself to
analysis of the previous interval only: if the system was
near busy it increases speed, if it was near idle it
decreases speed.

• AVG<weight>: computes an exponentially moving aver-
age of the previous intervals. At each interval the run-per-
cent from the previous interval is combined with the
previous running average, forming a long-term prediction
of system behavior. <weight> is the relative weighting of
past intervals relative to the current interval (larger values
mean a greater weight on the past) using the equation

. It was found that
the results were weakly dependent on moderate values of
the weight parameter and thus a value of 3 will be used
throughout this paper.

5. BENCHMARKS
To compare the algorithms, we have created a benchmark
suite targeted specifically at PDA-class devices. Standard
batch-oriented benchmarks, such as compilation or simula-
tion, are abandoned in favor of applications one might find
on a PDA. We employ three benchmarks, each with a con-
trasting workload:

• Address Book (UI) User-interfaces differ from data pro-
cessing [5] in that they are characterized by an alternation
between idle (waiting for the user) and maximum perfor-
mance processing. The processing bursts are typically
small, such as drawing an activated button, but are occa-
sionally larger, such as a spreadsheet update. Ideally, the
delay for these interactive applications should be reduced
to the point at which the user is no longer is aware of
them or other limitations become dominant (such as com-
munications bandwidth). We use a simple address book
application with operations such as searching, update
across a wireless connection, and simple editing.

• Real-Time Audio (AUDIO) This benchmark is an
encrypted (IDEA) stream of high-quality audio running at
512Kb/s. Data is brought into the processor, decrypted,
and then transferred to an external audio device. Running
at full processor speed the processing consumes approxi-
mately 20% of the processor’s cycles. There is every rea-
son to expect an optimal algorithm: the workload is
predictably constant with equally sized packets arriving at
a constant rate.

• MPEG Decompression (MPEG)The core of this appli-
cation is an inverse discrete cosine transform (IDCT)
which is used to decompress MPEG video frames. From
frame to frame, the decompression work required varies
widely due to the number of IDCTs required, however,
the time to available process any given frame is constant
at 71 ms (14 frames/sec). This workload is similar to that
found in [4].

6. METRICS AND DEFINITIONS
The choice of metrics is critical to obtain meaningful com-
parisons of algorithm. The most obvious metric for our eval-
uations, an energy/delay graph, was found to be misleading
in that it penalizes increases in delay even when there is no
real penalty. For example, if an MPEG frame is processed in
a record-breaking 1 ms, there is still 70 ms of excess time
waiting for the next frame (assuming a 71 ms frame rate). If
instead the frame is processed in exactly 71 ms there is no

weight old new+×() weight 1+()⁄

77

noticeable delay increase to the user. A similar effect occurs
with UI events such as mouse clicks or pen movement with
visual user feedback.

To overcome these limitations we have created the clipped-
delay metric, described below, to best evaluate DVS. For
comparison, our results are normalized to the processor run-
ning at full speed without DVS (FLAT<100>).

6.1 Events
We divide the processing of each benchmark into subunits
called events. Events are benchmark specific entities that
signify an occurrence that requires computation. The event
definitions for each benchmark are as follows:

• UI : A UI event starts at the moment of a mouse action,
i.e. button down, and it is completed the next time the
application enters the idle state. An event, therefore,
includes all application-specific processing as well as the
cycles necessary for UI functions (drawing buttons,
etc...). For this benchmark, the events are variable length;
furthermore, the spacing between events is effectively
random as it depends on human interaction.

• AUDIO : The event definition for AUDIO is the process-
ing of one complete incoming network audio packet
(1024 bytes). These events are fairly regular: all packets
are the same size and they arrive at fixed intervals.

• MPEG: An MPEG event is defined as the decoding of
one complete video frame. These events have a constant
period (71 ms for 14 frames/sec) and a variable workload.
This variable workload is primarily due to the variable
number of IDCTs required to generate each frame.

6.2 Sufficiency, Delay, and Energy
An algorithm is consideredsufficient if it allows bench-
marks to execute “correctly.” It is possible, for example, for
an algorithm to run the processor too slowly, causing the
loss of data due to exhausted buffers or a real-time latency
bound to be exceeded.

Figure 1 shows delay impulse graphs for each of the three
benchmarks. Each vertical line represents the delay for that
event with the processor running at full speed. We measure
delayas the sum of all event times for a given application.
The x-axis shows only the ordering of the events, not neces-
sarily the delay between them; not all events are shown as
the complete data set would be cluttering.

Theenergyconsumed is the sum of the energy all the indi-
vidual event energies. The absolute (un-normalized) energy
per instruction of the processor is discussed in Section 7.1.

6.3 Clipped-Delay Metric
We have developed theclipped-delaymetric which takes
into account the potential that some events can have their
delays increased (voltage reduced) without effecting the

user1. Any event completed before its deadline, , effec-
tively completes at its deadline. We therefore define

clipped-delay with deadline to be:

For human interactive tasks (UI), the deadline is dependent
on human perception time. A lower bound of 10 ms given
from the limitations of human visual [7] and audio percep-α

1. [5] discusses a similar metric for the bechmarking of
workstation user-interfaces.

Figure 1: Event Delay Impulse Graphs

0

20

40

60

80

100

120

140

160

E
ve

nt
 D

el
ay

 (
m

s)

 Event Number

(404)
(312)

(637)
UI Event Delays

1 855

1

1.5

2

2.5

3

3.5

E
ve

nt
 D

el
ay

 (
m

s)

Event Number

AUDIO Event Delays

1 515

0

20

40

60

80

100

120

E
ve

nt
 D

el
ay

 (
m

s)

 Event Number

MPEG Event Delays

1 385

α

Cα MAX Di α,[]
events
∑=

78

tion, while an upper bound [8] is user and application
dependent. For these simulations we use a value = 50 ms.

For data processing events (AUDIO and MPEG), we use the
time from the start of one event until the start of the next as
the event deadline. If an event is completed before the next
one arrives there is nothing left for the processor to do: it
must idle. Processing continuing past the deadline has the
unfortunate effect of requiring additional data storage for
buffering the incoming data while the current data set fin-
ishes processing.

7. ENVIRONMENT
Our research group is currently under development of a
DVS hardware implementation. To ensure that our hardware
implementation delivers all the necessary functionality, we
have developed a comprehensive simulation environment.
Algorithms are simulated in this environment and make use
of special additions targeted for DVS. This section describes
the system and highlights these modifications.

7.1 Hardware Model
Figure 2 is a summary of our simulated system. Our micro-
processor is based on the ARM8 microprocessor core [1].
Included in our energy model is the core, cache, external
processor bus, and external memory devices. Not measured
in our energy simulations are external IO devices such as a

communication channel, display device, and user input
devices. These devices are simulated at a functional level,
the delay through the communication channel is modeled,
but no energy information is predicted.

In the hardware under development, the processor clock is
generated by a ring oscillator driven by the operating volt-
age. To effect DVS, the current clock frequency is compared
against the target frequency; the result is used to dynami-
cally adjust the operating voltage. The expected worst-case
settling time for this feedback loop is 10us.

Hardware counters, such as cumulative sleep time and
active cycles, have been added and are available to the soft-
ware. These counters allow DVS algorithms to accurately
determine the level of system activity at run-time.

The implementation of DVS requires the redesign of some
critical hardware components in a microprocessor system.
The description of these modifications is beyond the scope
of this paper. However, we estimate that these modifications
will increase the energy/operation of the processor on the
order of 10% over a system not capable of DVS.

7.2 Software Model
Our benchmarks use ARM’s standard runtime library distri-
bution extended with multi-threading support: the system is
multi-threaded uni-process with a single address space. The
thread scheduler (which thread runs when) is implemented
as a preemptive round-robin scheduler without priorities.
We have ported various libraries from the public domain
(cryptography, MPEG, graphics, etc...) to support out appli-
cations.

Our OS also supports a “sleep until system activity” func-
tion for scheduler threads. This function allows a thread to
sleep until some other system activity is detected, thereby
preventing the system from wasting energy while idle.

7.3 Input Model
Simulated user inputs, such as mouse actions, are trace-
driven. Activity traces recording the time and location of
user actions were recorded in real-time and can be played
back during simulation. Data for the AUDIO and MPEG
benchmarks is sent through the simulated 1Mb/s communi-
cation channel.

Data flowing into the system causes the simulation of the
complete input data path: an interrupt is taken and data is
read from an external IO device. This level of detail is nec-
essary to ensure comprehensive results because DVS analy-
sis is fundamentally sensitive to timing fluctuations.

8. RESULTS
In this section we present graphs of the different algorithms
applied to our benchmark suite. For simplicity, we show
only one parameterization of the AVG algorithm
(AVG<3>).

8.1 The COPT Curve
Using the (optimal) COPT algorithm, we can generate a plot

α

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70 80 90 100

E
ne

rg
y/

In
st

ru
ct

io
n

(n
J)

Frequency (MHz)

Energy/Instruction vs. Frequency

Figure 2: Hardware Specifications

System Summary

Processor Core ARM8

Cache
Configuration

16K unified,
4-way writeback

Memory 1Meg SRAM

External Comm 1Mb/s, half-duplex

Display Device 640x480, 8-bit Color

Input Device Pen

79

of the minimum energy for any given (clipped) delay
(Figure 3). To generate this curve we start with the proces-
sor running at full speed and increase the delay (by decreas-
ing the voltage) of each event so that it completes exactly on
deadline. For those events already over deadline, the voltage
is left unchanged. This process generates the lowest
clipped--delay (highest energy) point for this curve. The
remaining values on this curve corresponding to increased
delay (lower energy) are generated by restricting the proces-
sors speed to be below its maximum.

We define sufficiency for this case to be that there is a maxi-
mum of two events overlapping at any given time; this is
equivalent to requiring a maximum of one events worth of
buffering (e.g. AUDIO packet or MPEG frame).

8.2 Energy/Clipped-Delay Graphs
Figure 3 contains the energy/clipped-delay graphs for all
our benchmarks. For PAST and AVG, we generate curves
by varying the interval length from 10ms to 100ms (in 10ms
increments). For FLAT, we vary the constant speed setting
from 10 MHz to 100 MHz (in 5 MHz increments). The low-
est-delay point for the PAST and AVG curves corresponds
to the 10ms parameterization, while the lowest-delay point
for the FLAT curve corresponds to 100 MHz.

A brief analysis of the results is given below:

• UI : The performance of the algorithms depends heavily
on the increase in delay allowed. For no increase (1x),
only COPT offers a 20% reduction in energy. At a delay
factor of 1.2x, the results for all algorithms vary between
a 30% and 50% reduction in energy consumed.

• AUDIO : Because of its regularity, we should expect
results close to optimal. Indeed, the AVG algorithm
achieves an 82% decrease in energy while the optimal is
84%, allowing for a small increase in delay.

• MPEG: The variability of this workload causes difficulty
for the DVS algorithms: the AVG algorithm achieves a
maximum 24% reduction while the optimum is a 60%
reduction in energy.

The vertical portions of the energy/clipped-delay graphs of
Figure 3 represent areas where energy was saved due to
voltage reduction that caused no effective performance deg-
radation. For example, stretching an AUDIO event so that it
completes on deadline, instead of before deadline, would
have this impact.

For the two real algorithms (PAST and AVG) there is an
overhead of approximately 1% (in energy) for running the
scheduling algorithm with an interval of 20 ms. This num-
ber is small enough that it does not significantly affect the
results.

8.3 Summarized Benchmark Performance
Figure 4 summarizes the simulated results. Percentages
indicate the energy consumed relative to the processor run-
ning at full speed. The final column is an average of each
algorithm across all the benchmarks, assuming an equal
weight for each activity.

To generate this table, we have fixed each algorithm with a
specific parameterization. The PAST algorithm was fixed
with an interval length of 10 ms, while the AVG<3> algo-
rithm was fixed at interval length 20 ms. For the COPT data,
which is not interval based, we chose a clipped-delay factor
of 1.1x as the intercept point. Although this table is useful
for generalizing results, it is dangerous to draw strong con-
clusions based on these parameterizations. It is unclear, for
example, if these parameterizations will be effective for a
benchmark with different workload characterizations.

From Figure 4, one can see that the results of these interval-
based algorithms have the potential to offer significant

Figure 3: Energy/Clipped-Delay Graphs

COPT
FLAT
PAST

AVG<3>

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2

E
ne

rg
y

R
at

io

Clipped-Delay Ratio

UI Results

0

0.1

0.2

0.3

0.4

0.5

1 1.2 1.4 1.6 1.8 2

E
ne

rg
y

R
at

io
(z

oo
m

ed
)

Clipped-Delay Ratio

AUDIO Results

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2

E
ne

rg
y

R
at

io

Clipped-Delay Ratio

MPEG Results

COPT
FLAT
PAST

AVG<3>

COPT
FLAT
PAST

AVG<3>

2x view

80

improvements over a system without DVS. However, there
is still much to be gained by an improved algorithm for
benchmarks with complex workloads, such as MPEG and
UI.

9. CONCLUSION AND FUTURE WORK
We have implemented and analyzed several DVS algorithms
on benchmarks applied to PDA devices. These algorithms
reduce system energy by about 46% while maintaining the
peak performance demanded by general purpose systems.

Our detailed simulation environment incorporates several
unique elements necessary for accurate run-time DVS mod-
eling; without these elements we would be limited to artifi-
cial post-trace analysis techniques. Simulation ensures that
the hardware will support all necessary features to support
DVS algorithms.

The algorithms analyzed fall short of optimal, due to the
restricted environment afforded by the interval approach to
scheduling. Additionally, a specific choice of parameters for
the algorithms is necessary, which is difficult to justify
acrossall applications. An adaptive strategy which does not
require such parameterization is clearly required.

There are two approaches to increasing the effectiveness of
DVS algorithms. First, we can analyze the system behavior
with attention placed on the behavior of individual threads.
Each thread could be tagged with an expected workload to
be used by a voltage scheduler when that thread is queued to
run.

Alternatively, application developers could annotate their

applications with hints to the OS of expected behavior. This
second technique is likely to produce better results than the
first; unfortunately, it requires modification of the applica-
tion source.

10. ACKNOWLEDGEMENTS
This work was funded by DARPA and made possible by
cooperation with Advanced RISC Machines Ltd (ARM).
The authors would like to thank Jeff Gilbert and Jason Wu
for their help with this paper. Special thanks to Eric Ander-
son for his insightful comments and discussions.

11. References
[1] ARM 8 Data-Sheet, Document Number ARM

DDI0080C, Advanced RISC Machines Ltd, July 1996.

[2] T. Burd and R. W. Brodersen, “Energy efficient CMOS
microprocessor design,”Proc. 28th Hawaii Int’l Conf.
on System Sciences, Vol.1, pp. 288-297, Jan. 1995.

[3] A. Chandrakasan, S. Sheng, R. W. Brodersen, “Low-
power CMOS digital design,”IEEE Journal of Solid-
State Circuits, Vol. 27, pp. 473-484, Ap. 1992

[4] A. Chandrakasan, V. Gutnik, T. Xanthopoulos, “Data
Driven Signal Processing: An Approach for Energy
Efficient Computing,”Proc. 1996 Int’l Symp. on Low
Power Electronics and Design,Aug 1996.

[5] Y. Endo, Z. Wang, J. B. Chen, and M. Seltzer, “Using
Latency to Evaluate Interactive System Performance,”
Proc. 2nd Symp. on Operating Systems Design and
Implementation, Nov. 1996.

[6] K. Govil, E. Chan, H. Wasserman, “Comparing
Algorithms for Dynamic Speed-Setting of a Low-
Power CPU”,Proc. 1st Int’l Conference on Mobile
Computing and Networking, Nov 1995.

[7] C. J. Linbald and D. L. Tennenhouse, “The VuSystem:
A Programming System for Compute-Intensive
Multimedia,” IEEE Journal of Slected Areas in
Communication, 1996.

[8] B. Shneiderman,Designing the User Interface,
Addison-Wesley, 1992.

[9] M. Weiser, “Some computer science issues in
ubiquitous computing,”Communications of the ACM,
Vol. 36, pp. 74-83, July 1993.

[10]M. Weiser, B. Welch, A. Demers, and S. Shenker,
“Scheduling for reduced CPU energy,”Proc. 1st Symp.
on Operating Systems Design and Implementation, pp.
13-23, Nov. 1994.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

UI AUDIO MPEG AVERAGE

E
ne

rg
y

PAST AVG<3> COPT

E
ne

rg
y

UI AUDIO MPEG AVG.

PAST AVG<3> COPT

Figure 4: Energy Summary

81

