
The Simulation Semantics of SystemC

Wolfgang Mueller
C-LAB/Paderborn University

Paderborn, Germany

Juergen Ruf, Dirk Hoffmann, Joachim Gerlach, Thomas Kropf, Wolfgang Rosenstiehl
University of Tuebingen

Tuebingen, Germany

Abstract

We present a rigorous but transparent semantics defini-
tion of SystemC that covers method, thread, and clocked
thread behavior as well as their interaction with the sim-
ulation kernel process. The semantics includes watching
statements, signal assignment, and wait statements as they
are introduced in SystemC V1.0. We present our definition
in form of distributed Abstract State Machines (ASMs) rules
reflecting the view given in the SystemC User’s Manual and
the reference implementation. We mainly see our formal
semantics as a concise, unambiguous, high–level specifica-
tion for SystemC–based implementations and for standard-
ization. Additionally, it can be used as a sound basis to in-
vestigate SystemC interoperability with Verilog and VHDL.

1. Introduction

SystemC is the emerging de-facto-standard for system-
level modeling and design from the Open SystemC Initia-
tive (OSCI) which is controlled by a steering group and
backed by a growing community of currently over 50 char-
ter member companies from the systems, semiconductor,
IP, embedded software, and EDA industries. SystemC has
received an extreme increase in acceptance over the last
months for system specification and simulation. Although
SystemC comes with a well-written User’s Manual and a
reference implementation of the simulator the documenta-
tion leaves some open question w.r.t. the precise meaning.
However, a precise semantics of SystemC is mandatory for
various applications in simulation, synthesis, and formal
verification.

To our knowledge, this article is the first publication of a
formal SystemC semantics. Our semantics description is in-
tended to provide a concise definition of the complete Sys-

temC V1.0 simulation semantics for potential standardiza-
tion. This is an important step towards future SystemC com-
pliant implementations and applications in various fields
like formal verification. In the domain of system synthesis
and simulation our formal semantics can be used as a sound
basis for SyntemsC language extensions and to define inter-
operability with Verilog and VHDL models by their ASMs
representation such as described in [11].

We present a concise and rigorous but yet intuitive se-
mantic definition of SystemC V1.0 [9] in terms of Gure-
vich’s distributed Abstract State Machines[6]. ASMs al-
lows us to produce our specification following the termi-
nology and the view given in the SystemC User’s Man-
ual and corresponding to the VHDL’93 semantics in [2].
We develop a mathematical definition of SystemC in terms
of a SystemC Algebraconsidering methods, threads, and
Cthreads with signal assignments, wait statements, and
watching statements as well as the full computational model
of interaction between the user defined processes and the
simulation kernel process.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related works. In Section 3, we briefly in-
troduce what is needed from distributed ASMs. Section 4
gives an introduction to SystemC and its behavioral seman-
tics in terms of aSystemC Algebra. Section 5 closes with a
conclusion and outlook.

2. Related Works

Over previous years, research in formal semantics in
EDA mainly focused on VHDL. There were quite a cou-
ple of approaches based on temporal logic, functional se-
mantics, denotational semantics, and operational semantics
applying Boyer-Moore Logic, Process Algebras, Petri-Nets
etc. [4]. Most of the approaches cover subsets dedicated
for application in formal verification. Olcoz et al., Reetz
et al., and Boerger et al. [4] have covered the complete

VHDL language. Their definitions were based on Colored
Petri-Nets [7], Flow Graphs [10], and Abstract State Ma-
chines [2]. The latter covered VHDL’93 and was extended
for VHDL-AMS in [12]. Other applications investigated
VHDL-Verilog interoperability [11].

ASMs have been applied for formal specification in var-
ious other domains such as hardware and software architec-
tures, protocols, and programming languages [1]. Exam-
ples for programming languages are semantics definitions
of Java [3] and C++ [13]. Furthermore, it is expected that
the ITU standard SDL 2000 will be partly underlined by an
ASM definition [5].

All these investigations demonstrated that ASMs, i.e.,
distributed ASMs, have excellent capabilities to capture the
behavioral semantics of programming and specification lan-
guages. This is particularly true for the specification of un-
derlying virtual machines as required for the formal cover-
age of the SystemC simulator. In this article, we focus our
investigations on SystemC V1.0 since it is currently the lat-
est version which is supported by a reference implementa-
tion. However, as soon as other versions will be established
we see no problem to scale our model to future SystemC
extensions.

Our Algebra gives definitions of variable assignments,
signal assignments, watching, and wait statements. The
model is defined along the lines of the basic concepts of
the VHDL’93 definition in [2] so that future work on inter-
operability with VHDL and Verilog are possible.

3. Abstract State Machines

Abstract State Machine (ASM) specifications can be un-
derstood as ‘pseudocode over abstract data’, without any
particular theoretical prerequisites. Here, we list only the
basic definitions and refer to [6] for a formal introduction.

An ASM specification comes in form of guarded func-
tion updates (rules). Rules are basically nested if–then–else
clauses with a set of function updates in their body. When
executing the rules the underlying ASM abstract machine
performs state transitions with algebras as states. A state
transition is performed by firing a set of rules in one step.
Only those rules are fired whose guards (Condition) evalu-
ate to true. Rules are of form

if Condition then <Updates> else <Updates> endif

At each step the guards evaluate to a set of function updates
(block) each of formf(t1; :::; tr) := t0 whereti are terms
(including functions). Note that 0-ary functions play the
role of variablesin imperative programming languages. A
block is a set of function updates separated by a comma1.
The individual function updates of each block are collected

1In extension to [6] we use a comma in order to have an explicit sepa-
rator between single updates.

in a so–called update set. The individual updates of the up-
date set are simultaneously executed in one step. Each func-
tion update changes a value at a specific location given by
the left–hand–side of the assignment. Functions are consid-
ered to be global. Two or more simultaneous updates of the
same location in one update set defines inconsistency. In
the case of an inconsistency no state transition is performed
and no update in the update set is being executed.

We demonstrate a simple guarded update by the follow-
ing example:

if true thenA := B;B := A endif

That definition gives an simultaneous update of the0-ary
functionsA andB. Since both updates are simultaneously
executed,A becomes the value ofB and vice versa. Due to
its true condition the rule fires at each step.

ASMs are multi–sorted based on the notion of universes.
We assume the standard mathematic universes of booleans,
integers, lists, etc. as well as the standard operations on
them without further mentioning. Thevar rule constructor
defines the simultaneous instantiation of a rule over a uni-
verse:

var v ranges over Universe <Rules>

The constructor spawns and executes the rules for each
element inUniverse simultaneously, i.e., the constructor
spawnsn rules wheren is the (finite) number of elements
in Universe.

The extension of basic ASMs todistributed ASMs

partitions rules into modules where each module is given
by its module name�. A module is instantiated to execute
by settingMod(a) := � for an agenta. The symbolSelf refers
toa after the instantiation. The execution is defined by partially or-
dered state transitions where agents are asynchronously executed.

The SystemC specification in the next section comes in the
form of two modules: One for the kernel process and one for the
processes.

4. SystemC

The SystemC language is basically a C++ language extension.
SystemC comes as a freely available C++ library with header
files describing the classes and a link library that contains the
simulation kernel. A SystemC description can be compiled by
any ANSI-compliant C++ compiler. The resulting executable
specification realizes a cycle-based simulator that allows high
speed simulation with integrated simulation control facilities. In
the following, we focus on SystemC V1.0 [9] since that version
is the latest one which is completely supported by the reference
implementation. We first give a brief introduction to the structural
SystemC aspects. Thereafter, we introduce the behavioral aspects
by the means of an ASM specification.

4.1. Structure
In SystemC, the fundamental building block is a module

(SC MODULE). The main routine (sc main) instantiates a

set of hierarchically embedded submodules which are connected
via in, out, and inout ports2. PORTs can connect toSIGNALs

and otherPORTs. SIGNALs are data containers whose
value changes generate events for the event-based simulator.
SIGNALs can create connections between modulePORTs
establishing a direct communication link between modules.
PORTs can be seen as pointers toSIGNALs so that each
PORT has to refer to exactly oneSIGNAL. SystemC supports
resolved and unresolved signals. Resolved signals can have more
than one driver (busses) while unresolved signals can only have
a single driver. Modules can contain definitions of SystemC
functional units (processes) typically given in the constructor
(SC CTOR) of the module.

4.2. Formal Behavioral Semantics

The next paragraphs give the stepwise development of a formal
SystemC V1.0 semantics starting with the basic behavioral
concepts. Thereafter, we present a formal definition of the
simulation kernel and the various SystemC specific statements,
i.e., watching statements, signal assignment, and wait statements.
Due to page limitation, we unfortunately cannot give detailed
SystemC examples here and have to presume a basic knowledge
of the SystemC syntax.

4.2.1. Basic Concepts

Derived from hierarchically organized modules, SystemC es-
tablishes a hierarchical network of a finite number of parallel
communicating processesp 2 METHOD [THREAD [

CTHREAD
3 which, under the supervision of the distinguished

simulation kernel process, concurrently update new values for
given SIGNALs and V ARIABLEs. Signals do not change
their values immediately. Their assignments become effective
only in the next simulation cycle.

SIMULATION

START OF

*

END OF

SIMULATION

...1

All Processes Suspended

nProcess Process
executing executing

Kernel process executing

Initialization

Figure 1. SystemC Simulation Cycles

The simulation is initiated by thesc start command which
first assigns initial values to signals. After the initial generation of
events, there is a mutually exclusive execution of the simulation
kernel process and the concurrently running (user defined) pro-
cesses, i.e., the kernel process periodically starts its execution if all

2Note here, that in contrast toVHDL, SystemC has no elaboration
phase.

3clocked threads

user defined processes are suspended and vice versa (cf. Figure 1).
Each user defined process isactive until it suspends upon reach-
ing a wait statement or after executing the last process statement.
Before gettingactive again, a process first checks its watching
conditions and sets its program counter accordingly. Due to the
life cycle of a processp we setstatus(p) 2 factive, suspended,
checkGlobalWatching, checkLocalWatchingg. After invocation, a
method moves fromstatus suspended toactive. A thread has to
check its global watching conditions before proceeding toactive;
Cthreads check their global and local watching conditions (see
Fig. 2).

active

suspended checkGlobalWatching

checkLocalWatching

methods
threads Cthreads

threads/
Cthreads

Figure 2. Life Cycle of a Process

Given the underlying discrete SystemC time model, the domain
TIME is linearly ordered and contains the distinguished element
Tc for current simulation time. There are distinguished CLOCK
objects. Ac 2 CLOCK is represented as a list. Each list has
the form< c1; :::; cn > with ci 2 TIME � EDGE. Lists are
linearily ordered w.r.t. their time component2 IR. Elements of
EDGE are of valueneg (negative) orpos (positive).

When all user defined processes aresuspended, the kernel
process goes through different phases and updates signals and
clocks, invokes processes, and advances simulation time. Ad-
vancements of clocks and assignments to signals which are per-
formed by user defined processes cause events which may trig-
ger processes again to execute. SystemC processes are classi-
fied into methods, threads andclockedthreads, i.e.,METHOD,
THREAD, CTHREAD. Clocked threads are executed only
on request of time advancement, i.e., after allMETHODs and
THREADs require no further execution atTc. Before resuming
processes and executing them, the new signal values have to be as-
signed to current values which may lead to the generation of new
events.

The rules in the following paragraphs constitute the program
of ASM agents, one for the simulation kernel process and one for
each user defined process. Agents are instantiations of ASM mod-
ules. We first define rules for theKERNEL Module. There-
after, we define the semantics of distinguished statements executed
in instantiations of thePROCESS Module. For initialization
we set

Mod(a):= PROCESS Module

8a2METHOD [THREAD [CTHREAD and
Mod(k):=KERNEL Module

for the simulation kernel processk2KERNEL
4. Modules of

threads and clocked threads are setundef after executing the last
statement which disables these processes until the end of simula-
tion (EOS). We supposephase = executeProcessesand current

4The universeKERNEL is introduced here for technical purpose and
has only one element.

timeTc to be set to 0.0. Events for all clocks with first elements at
time 0.0 are set to true. Unless otherwise stated all functions are
assumed to beundef and sets and lists to be empty.

The remainder of this document first defines the behavior of
the simulation kernel. Thereafter, we give the semantics of the
SystemC V1.0 specific statements.

Execute Processes

ScheduleCThreads

Generate Events

ExecuteCThreads

AdvanceTime

UpdateClocks

ev
en

ts

no events

CheckEventsUpdateSignals

Figure 3. Phases of the Simulation Kernel

4.2.2. SystemC Simulation Kernel

The SystemC kernel is a separate process which is executed as
soon as all user defined processes are suspended (cf. Figure 1).
We abbreviate this by:

AllProcessesSuspended �

8p 2METHOD [THREAD [CTHREAD :

status(p) = suspended

When all processes are suspended, the kernel goes through
different states (see Fig. 3) by setting the functionphase where
GenerateEvents generates initial events for allCLOCKs

which are active atTc. Thereafter, METHODs and
THREADs with events are executed until they suspend.
THREADs are suspended after executing a wait statement.
METHODs are suspended after their last statement. There-
after, CTHREADs with events are scheduled for future ex-
ecution. When no further events are generated, the scheduled
CTHREADs are finally executed, the simulation time is ad-
vanced, andCLOCKs are updated w.r.t. the time of the next
active clock. These phases are expressed by the following rules
where we have used placeholders for the individual sequential
phasesExecuteProcesses, SCheduleCThreads etc.5

if AllProcessesSuspended
then
ExecuteProcesses

ScheduleCThreads

UpdateSignals

CheckEvents

ExecuteCThreads

AdvanceT ime

UpdateClocks

endif

5Though we do not see any necessity tore-runScheduleCThreads
every cycle, we would like to keep it as given in the SystemC V1.0 User’s
Manual [9].

In details, ExecuteProcesses checks for events of all
SIGNALs and CLOCKs in all sensitivityLists6 of all
METHODs andTHREADs. In the case of anevent each
threadt is set tostatus checkGlobalWatching after which it
will be activated. Methods are immediately setactive since no
watchings are permitted.phase is finally incremented.

ExecuteProcesses �

var m ranges overMETHOD

var t ranges overTHREAD

var s ranges overSIGNAL [CLOCK

if phase = executeProcesses

then
if event(s) ^ s 2 sensitivityList(t)

then status(t) := checkGlobalWatching endif
if event(s) ^ s 2 sensitivityList(m)

then status(m) := active endif
phase := scheduleCThreads

endif

ScheduleCThreads checks for events onCLOCKs over
all sensitivityLists of all CTHREADs. In the case of an
event the correspondingCTHREAD p is added to the set of
scheduled CTHREADs, clock events are reset, and the next
phase is being assigned.

ScheduleCThreads �

if phase = scheduleCThreads

then var p ranges overCTHREAD

var c ranges overCLOCK
if event(c) ^ c 2 sensitivityList(p)

then scheduled := scheduled [fpg

endif
event(c) := false;

phase := updateSignals

endif

After schedulingCTHREADs their outputs are updated if
the new value of the output signal does not equal the old value.
Each signal update generates an event. Other events of other sig-
nals are reset tofalse.

UpdateSignals �

if phase = updateSignals

then var s ranges overSIGNAL

if value(s) 6= newV alue(s)

then value(s) := newV alue(s);

event(s) := true

else event(s) := false

endif
phase := checkEvents

endif

The next phase checks if any events have been generated on
signals and sets the next phase either toexecuteProcesses or
toexecuteCThreads.

6For better readability we uses 2 sensitivityList(p) as an abbrevi-
ation forhead(s) 2 sensitivityList(p) if s 2 CLOCK.

CheckEvents �
if phase = checkEvents

then if 9s 2 SIGNAL : event(s) = true

then phase := executeProcesses;

else phase := executeCThreads

endif
endif

When no further events are generated at the current time
Tc the set of postponedCTHREADs are executed by setting
their status to checkGlobalWatching which lateron proceeds
to active. Additionally, the set ofscheduled processes has to be
reset for the next cycle, andphase proceeds toadvanceT ime.

ExecuteCThreads �

var p ranges overscheduled
if phase = ExecuteCThreads

then
status(p) := checkGlobalWatching;

scheduled := ;;

phase := advanceT ime

endif

For advancing the time, we first have to check for the final end
of simulation (EOS) at which the simulation kernel is deactivated
to undef . Otherwise, the current timeTc is advanced to the next
point in timeTn and clocks are updated accordingly.

AdvanceT ime �

if phase = advanceT ime

then if Tn = EOS

thenMod(Self) := undef

elseTc := Tn;

phase := updateClocks

endif
endif

Tn is computed by considering the minimum of all first and
second element of all clock waveforms� Tc. If the time of
the first element equals the current time, the time of the second
element has to be considered.

Tn = minft j t = time(ci;j)g; where

j =

�
1; if time(ci;1)) > Tc

2; otherwise

8 ci;j 2 CLOCK denoting thej-th waveform element of clock
i. Clocks which have an active edge at the new current timeTc

are updated by removing the outdated first element, i.e., setting
c := tail(c) if the second element of the clock waveformc equals
the current timeTc. Thereafter, an event is set for each of those
signals andphase proceeds to perform the execution of processes
again.

UpdateClocks �

if phase = updateClocks

then phase := executeProcesses;

var c ranges overCLOCK
if tail(c) 6= ; ^ time(c2) = Tc

then c := tail(c);

event(c) := true

endif
endif

4.2.3. Checking Watching Conditions

After invocation and before becomingactive, each process
first has to check for true global and local watching conditions
(see Fig. 2)7. A global watching can be defined for clocked and
unclocked threads. Local watchings are only allowable within a
Cthread and can be nested. If a watching condition evaluates to
true the continuation of the program either

(i) resets to the first statement of the thread/Cthread in the case
of a global watching or

(ii) proceeds to the first statement of the escape subblock within
the local watching block.

To model these continuations, we use the function
programCounter which gives an abstraction of the con-
trol flow when executing statements of a SystemC program. To
model the global watching, we specify the setglobalWatch(p)

for each processp with elements2 CONDITION representing
the global watching conditionscond(Expr) of a processp.
Conditions are derived from the expressionExpr of a watching
statement. globalWatch(p) represents one condition with
disjunctively combined subconditions, all with same priority.

For modeling local watchings, we use a priority list
localWatch(p) with elements2 CONDITION �ESCAPE

for each processp. Elements in that list are tuples with a con-
dition and an abstract representation of an escape block. For
e 2 ESCAPE, the functionfirst(e) returns the first statement
in that block andsucc(e) returns the successor statement of that
block, i.e., the first statement after theW END. Both functions
are required to reset the program counter during the execution.
The listlocalWatch is ordered w.r.t. the priority of the watching
statement. We assume that the list has one distinguished element
with highest priority. When there are several watching conditions
defined in the same watching block, their conditions are disjunc-
tively joined within one list element. For nested local watching
blocks the priority of the enclosing block is higher than priority
of the enclosed block. Global watching conditions have higher
priorities than local ones.

In statuscheckGlobalWatching global watching conditions
of processesSelf 2 THREAD [CTHREAD are checked.
Note here, thatglobalWatch becomes true when one of its sub-
conditions evaluate to true. In that case theprogramCounter

is adjusted accordingly, i.e., it is reset to the first statement of the
thread. Thereafter, all local watchings are inactivated by setting

7For the syntax of the statements the reader is referred to the watching
statements paragraph on the next page.

their list to ;. This has to be done since the priority of global
watching is higher than the one for the local watchings. Finally,
CTHREADs are set tostatus checkLocalWatching; other
threads directly proceed toactive.

if status(Self) := checkGlobalWatching

then if globalWatch(Self) = true

then
programCounter(Self) :=

jump(Self; f irstStatement(Self));

localWatch(Self) := ;;

mode(Self) := global

endif
if Self 2 CTHREAD

then status(Self) = checkLocalWatching

elsestatus(Self) = active

endif
endif

In statuscheckLocalWatching aCTHREAD checks for a
list elemente of highest priority with true watching condition. If
there exists one, that element is extracted fromlocalWatch by
the functionfindLocalCond. We leave that function unspecified
since its definition should be intuitively clear. If it does not exist,
i.e.,e = ?, the processSelf proceeds to status active. Otherwise,
theprogramCounter is reset to the first statement of the escape
block ofe, i.e.,first(escape(e)). Additionally, trunc prunes the
lower priority tail elements includinge from localWatch.

if status(Self) = checkLocalWatching

then
if (e := findLocalCond(localWatch(Self))) 6= ?

then
programCounter(Self) :=

jump(Self; f irst(escape(e)));

localWatch(Self) := trunc(e; localWatch(Self))

endif
status(Self) := active

endif

4.2.4. SystemC Statements

We now can proceed with the semantics definition of the Sys-
temC V1.0 specific statements given in the below table. The table
shows their allowable usage within the different sorts of processes.

Methods Threads CThreads

global watching - x x
local watching - - x
signal assignment x x x
wait - x x
wait until - - x

We first discuss the role of the program pointer. Thereafter, we
give the semantics of watching statements, signal assignment, and
wait statements.

In order to focus on the essential behavioral semantics of Sys-
temC, we basically assume that the continuation of the control–
flow of each (sequential) process is determined by values of the

function programCounterwhich is initially set to the first state-
ment of each processp. After checking their current watching
conditions, allactive processes execute their statements. In or-
der to express that a user defined processSelf can be executed
only when it isactive and theprogramCounteris assigned to the
specific statement we use the following abbreviation:

Self executes statement �

programCounter(Self) = statement^ status(Self) = active

The semantics of the individual watching, signal assignment, and
wait statements are given hereafter.

Watching Statements. We start with the semantics elaborat-
ing global and local watching statements. In order to decide if
the current watching definition (watching(Expr)) appears in the
context of a global watching or of the current local one we set
mode(p) 2 flocal; globalg. Since the program counter starts in
the outer scope, we initially set all threads to modeglobal. Global
watchings are typically defined in the constructorSC CTOR of
a SystemC module, e.g.:

SC_CTOR {
SC_CTHREAD(cthread_fct, clk.pos());
watching(reset.delayed() == true);

}

In contrast, local watchings are defined within the scope of a
Cthread. Each local watching block is enclosed byW BEGIN

andW END and has the form

W_BEGIN<...>W_DO<...>W_ESCAPE<...>W_END

where the list of watching conditions are specified after
W BEGIN . The control flow of a CThread continues after the
W DO if all watching conditions evaluate tofalse and jumps to
the first statement afterW ESCAPE as soon as one condition
evaluates totrue. Otherwise, that part is skipped and the program
continues afterW END.

For global watching definitions, the condition given by an indi-
vidual expression is added toglobalWatch. Otherwise, inmode
local the current condition is joined with the condition of the ac-
tual list element of the actual local watching block.

if Self executes hwatching (Expr)i

then programCounter(Self) := nextStmt(Self)

if mode(Self) = global

then globalWatch(Self) := globalWatch(Self)

[cond(Expr)

elselocalWatch(Self) :=

addToActual(localWatch(Self); cond(Expr))

endif
endif

Upon reaching aW BEGIN , watching conditions are de-
cided to be local thereafter. Additionally, an new actual element
for the local watching list is generated through the abstract func-
tion addNewActual. Its initial condition is setfalse. All lo-
cal watching conditions inside theW BEGIN W DO block are

disjunctively added to the actuallocalWatch element by the func-
tion addToActual.

if Self executes hWBEGINi
then mode(Self) := local;

localWatch(p) = addNewActual(localWatch(p);

(false; ESC Block(programCounter(Self)));

programCounter(Self) := nextStmt(Self)

endif

Upon reaching aW DO, the conditions thereafter can be of
type global again. Thus, we resetmode to global.

if Self executes hWDOi
thenmode(Self) := global;

programCounter(Self) := nextStmt(Self)

endif

When executingW ESCAPE (i.e., after having completed
theW DO block) theprogramCounteris set to the successor of
theW END statement, i.e., the successor ofescape block of the
actual watching block. Additionally, the currently executed local
watching is removed from the priority list of local watchings by
removeActual.

if Self executes hWESCAPEi
then programCounter(Self) :=

succ(escape(actual(localWatch(Self))));

localWatch(Self) :=

removeActual(localWatch(Self))

endif

Signal Assignment.Right-hand-side values in signal assignments
are not immediately assigned to the current value of signalS but
to its potentialnewV alue. Updating a current value with a new
value generates an event if the values are different. The update
is performed by the simulation kernel process. This operation is
equivalent with thewrite statement. Note here, that parallel write
accesses to thenewV alue are allowable. Corresponding to the se-
mantics of global variable assignments the competing assignments
to S are non-deterministically resolved.

if Self executes hS = Expri

then newV alue(S) :=

resolve(competingNewV alues(S));

programCounter(Self) := nextStmt(Self)

endif

Wait Statements.On reaching a wait statement a process simply
stops execution by setting itsstatus to suspended.

if Self executes hwait ()i
then status(Self) := suspended;

programCounter(Self) := nextStmt(Self)

endif

Due to the SystemC User’s Manual[8], other variations can
be derived from that basic definition. The variantwait(n) in
CTHREADs may be expressed by a sequence ofnwait() state-
ments and

wait until(Expr) � do wait(); while(!Expr);

5. Conclusion and Outlook

This article introduces the simulation semantics of complete
SystemC V1.0 by the means of ASMs. We have limited our def-
initions to SystemC V1.0 since this is the latest version with a
reference implementation at the time when this article was writ-
ten. However, due to the scalability of ASM specifications our
semantics definition should be easily scalable to future SystemC
versions.

Our future investigations will focus on extensions of our ASM
definition towards future versions of SystemC and on interoper-
abilities and equivalences betweenVHDL’93 and SystemC mod-
els.

References

[1] E. Börger. Annotated Bibliography on Evolving Algebras.
In E. Börger, editor,Specification and Validation Methods.
Oxford University Press, 1994.

[2] E. Börger, U. Glässer, and W. M¨uller. Formal Definition
of an Abstract VHDL’93 Simulator by EA-Machines. In
C. Delgado Kloos and P. T. Breuer, editors,Formal Seman-
tics for VHDL, pages 107–139. Kluwer, 1995.

[3] E. Börger and W. Schulte. Defining the Java Virtual Ma-
chine as Platform for Provably Correct Java Compilation. In
L. Brim, J. Gruska, and J. Zlatuska, editors,Mathematical
Foundations of Computer Science, MFCS 98, Lecture Notes
in Computer Science. Springer, 1998.

[4] C. Delgado Kloos and P. T. Breuer.Formal Semantics For
VHDL. Kluwer, Boston/London/Dordrecht, 1995.

[5] U. Glaesser, R. Gotzhein, and A. Prinz. Towards a new for-
mal SDL semantics based on Abstract State Machines. In
R. Dssouli, G. Bochmann, and Y. Lahav, editors,Proceed-
ings of the 9th SDL Forum. Elsevier Science B.V., 1999.

[6] Y. Gurevich. Evolving algebra 1993: Lipari guide. In
E. Börger, editor,Specification and Validation Methods. Ox-
ford University Press, Oxford, 1994.

[7] S. Olcoz. A Formal Model of VHDL Using Colored Petri-
Nets. In C. Delgado Kloos and P. T. Breuer, editors,Formal
Semantics For VHDL. Kluwer, Boston, 1995.

[8] Open SystemC Initiative, Synopsys Inc, CoWare Inc, Fron-
tier Inc. SYSTEM C Version 0.9 User’s Guide, 1999.

[9] Open SystemC Initiative, Synopsys Inc, CoWare Inc, Fron-
tier Inc. SYSTEM C Version 1.0 User’s Guide, 2000.

[10] R. Reetz and T. Kropf. Correct system level design with
VHDL. In C. Delgado Kloos and P. T. Breuer, editors,For-
mal Semantics For VHDL. Kluwer, Boston, 1995.

[11] H. Sasaki. A Formal Semantics for Verilog-VHDL Simula-
tion Interoperability by Abstract State Machine. InDesign,
Automation and Test in Europe, 1999.

[12] H. Sasaki, K. Mizushima, and T. Sasaki. Semantic Vali-
dation of VHDL-AMS by an Abstract State Machine. In
IEEE/VIUF International Workshop on Behavioral Model-
ing and Simulation, 1997.

[13] C. Wallace. The Semantics of the C++ Programming Lan-
guage. In E. B¨orger, editor,Specification and Validation
Methods. Oxford University Press, 1995.

