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Abstract

We study integrable lattice regularizations of the Singdda model with the help of the

Separation of Variables method of Sklyanin and the Baxtep@rators. This allows us to
characterize the spectrum (eigenvalues and eigenstatag)etely in terms of polynomial

solutions of the Baxter equation with certain propertiebisTesult is analogous to the
completeness of the Bethe ansatz.
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1. Introduction
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The study of the Sine-Gordon model has a long history. It hgmrticular served as an important
toy model for interacting quantum field theories. The inédygity of this model gives access to
detailed non-perturbative information about various ehtaristic quantities, which allows one to
check physical ideas about quantum field theory against exemntitative results.

It is particularly fascinating to compare the Sine-Gordardel with the Sinh-Gordon model. The
Hamiltonian density. s of the Sine-Gordon model and the corresponding olljegt: of the Sinh-
Gordon model,

H = /R dz h(x) hse = 11 + (9,¢)* + 8y cos(260) ,
o 4w hgng = 1% + (9:¢)* + 87y cosh(2b¢) ,
are related by analytic continuation w.r.t. the paramgtand setting3 = ib. The integrability of

both models is governed by the same algebraic strubft&(rzﬁg) with ¢ = e~ This leads one to
expect that both models should be closely related, or at tea® the same “degree of complexity”.

(1.1)

The physics of these two models turns out to be very differdnatugh. Many of the key objects
characteristic for the respective quantum field theoriesrat related by analytic continuation in
the usual sense. While the Sine-Gordon model has much rsgeatrum of excitations and scat-
tering theory in the infrared (infinitd?) limit, one may observe rather intricate structures in the
UV-limit of the Sinh-Gordon model [Za06], which turn out t@ lbelated to the Liouville theory
[£2Z295,[T08al BT09]. These differences can be traced badkdddct that the periodicity of the in-
teraction tern8mu cos(23¢) of the Sine-Gordon model allows one to treat the varigldes angular
variable parameterizing a compact space, wdiiig truly non-compact in the Sinh-Gordon model.

The qualitative differences between the Sine-Gordon aadsthh-Gordon model can be seen as a
simple model for the differences between Nonlinear Signadéls on compact and non-compact
spaces respectively. This forms part of our motivation wisiethe Sine-Gordon model in a way that
makes comparison with the Sinh-Gordon model easier.

1.2

A lot of important exact results are known about the Sineddormodel. Well-understood are in
particular the scattering theory in the infinite volume. Hpectrum of elementary particle excita-
tions and the S-matrix of the theory are known exactly [KTZ&77FST80, Ko80]. Relatedly, there
is a wealth of information on the form-factors of local figldse e.g.[[Sm92, BEKZ, [Z01] for the
state of the art and further references. In the case of fipieial volume, the nonlinear integral
equatior@ derived by Destri and De Vega [DDV92, DDV94, DDV97, FRT99eia powerful tool
for the study of the finite-size corrections to the spectrdithe Sine-Gordon model.

1This type of equations were before introduced in a diffefearnework in [KP91[ KBP91]
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However, there are several questions, some of them faidichahere our understanding does not
seem to be satisfactory. We do not have exact results onatorefunctions on the one hand, or on
expectation values of local fields in the finite volume on ttleeohand at present.

Even the present level of understanding of the spectrumefribdel does not seem to be fully
satisfactory. The truth of the commonly accepted hyposhtsit the equations derived by Destri
and De Vega describe all of the states of the Sine-Gordon hi@denot been demonstrated yet.
The approach of Destri and De Vega is based on the Bethe anghtzfermionized version of the

Sine-Gordon model, the massive Thirring model [DDV87]. STApproach a priori only allows one
to describe the states with even topological charge, anthérits from its roots in the algebraic
Bethe ansatz some difficulties like the issue of its complets.

This paper is intended as a first step in a program to addresdbthve-mentioned deficiencies in our
understanding of the Sine-Gordon model. Our aim in this papt create a new fundament for
future studies the Sine-Gordon model which we hope to bd solough to build the theory higher
than before.

13

To this aim we will use a lattice regularization of the Siner@on model that is different from the
one used by Destri and De Vega. It goes back to [FST80,!IK88],itis related to formulations
of the lattice Sine-Gordon model which have more recentgnb&udied in[[FV94, BBR96, Ba08].
In this class of lattice models one may introduce a certamhmer of “inhomogeneity” parameters.

It has been observed in the past that the algebraic Bethézamsproach can be used for certain
special values of the parameters of the model. However, Wénsiead focus on the values of the
parameters, where the algebraic Bethe ansatatiapplicable due to non-existence of the reference
state. Our approach will instead be based on the combinafi®eparation of Variables method
(SOV-method) of Sklyanin [Sk85, Sk92, SK95] with the usehaf @-operators introduced by Baxter
[Ba73].

One of the main advantages of this approach is due to theHattone directly works with the
discretized Sine-Gordon degrees of freedom, which is nottse in the lattice formulation used
by Destri and De Vega. Working more directly with the Siner@m degrees of freedom should be
useful for the problem to calculate expectation values oéldields. This in particular requires the
determination of the SOV representation of local fields agalisly to what has been done in the
framework of the algebraic Bethe ansatz[in [KMT99, MT00].eTBOV-method in principle offers
a rather direct way to the construction of the expectatidnes as illustrated in the case of the
Sinh-Gordon model by the work [LuD1].

We will furthermore see that our approach allows us to getrg satisfactory understanding of the
spectrum of the lattice model. The SOV method replaces thee inaditional Bethe ansatz as a
tool to construct the eigenstates of the transfer matriresponding to the solutions of an algebraic
system of equations which is very similar to those appeange algebraic Bethe ansatz method.
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In the present case we will be able to show that a completefsgenstates can be obtained in
this way, an issue which is analogous to the problem of cotepéss of the Bethe ansatz. We
furthermore prove the simplicity of the spectrum of the &f@n matrix in the generic case. We will
show in a future publication that the results of our appraaehfully consistent with the results of
Destri and De Vega.

Acknowledgement®Ve would like to thank V. Bazhanov and F. Smirnov for stimimgtdiscussions, and J.-M.
Maillet for interest in our work.

We gratefully acknowledge support from the EC by the Marieé€HExcellence Grant MEXT-CT-2006-042695.

2. Definition of the model

2.1 Classical Sine-Gordon model

The classical counterpart of the Sine-Gordon model is amhjeel system whose degrees of freedom
are described by the fieltlx, t) defined for(z, t) € [0, R] x R with periodic boundary conditions
o(xz + R,t) = ¢(x,t). The dynamics of this model may be described in the Ham#tofidrm in
terms of variables(z, t), II(z, t), the Poisson brackets being

{(z,t), p(z',t)} = 2w d(x —2a').
The time-evolution of an arbitrary observaliit) is then given as
9;0(t) = {H,0()},

with HamiltonianH being defined in[(1]1).

The equation of motion for the Sine-Gordon model can be ssmted as a zero curvature condition,
[0y — V(x,t;N), 0, —Ul(x,t;\)] = 0, (2.2)

with matricesU (z, t; \) andV (z, ¢; A) being given by

1 —1 —iB¢ _ \—1,iB¢
. 7 H Zm(Ae A e )
Uz, t;\) = (—im(Aeiﬁ¢2_ Aemi59) i )
' ; i 1 (2.3)
V(z,t;A) = _ _ i5¢' | +im(Xe ﬁ.¢+)\ 1¢i06)
+im(AeiB? 4 \~Lemi8%) —i5¢

andm related tou by m? = 752 .

2.2 Discretization and canonical quantization

In order to regularize the ultraviolet divergences thateim the quantization of these models we will
pass to integrable lattice discretizations. First diszeghe field variables according to the standard



recipe
on = d(nA), 1I, = All(nA),

whereA = R/N is the lattice spacing. In the canonical quantization onaldiceplacep,,, I1,, by
corresponding quantum operators with commutation reiatio

[¢n ) Hn] = 27Ti5n,m . (24)

Planck’s constant can be identified with by means of a rescaling of the fields.

The scheme of quantization of the Sine-Gordon model corsidie this paper will deviate from
the canonical quantization by usi&“n ande~"#%~ as basic variables. For technical reasons we
will consider representations where bathandv,, have discrete spectrum. Let us therefore take a
moment to explain why one may nevertheless expect that sudtireg quantum theory will describe
the quantum Sine-Gordon model in the continuum limit.

First note (following the discussion in [Za94]) that theipéicity of the potentiaBm . cos(28¢) in
(I.2) implies that shifting the zero modg = % OR dx ¢(x) by the amountr/3 is a symmetry.
In canonical quantization one could build the unitary opmrsly = 277> which generates this
symmetry out of the zero modg, = % OR dzII(x) of the conjugate momentuid. W should
commute with the HamiltoniaH. One may therefore diagonali¥¢ andH simultaneously, leading

to a representation for the space of states in the form

H~ | daH, where W -H, = ¢ “H,. (2.5)
S1

An alternative way to take this symmetry into account in tbastruction of the quantum theory is
to construct the quantum theory separately for eacector. This implies that the field should
be treated as periodic with periodicity/ 3, and that the conjugate variablHs have eigenvalues
quantized in units off, with spectrum contained i62c3/N + 47k ; k € Z}. The spectrum of
IT,, is such that the operatt¥ = ¢25 P with Rp, approximated b[ﬁzl I1,,, is realized as the
operator of multiplication by,

Let us furthermore note that it is possible, and technica#igful to assume that the lattice field
observablep,, has discrete spectrum, which we will take to be quantizeditswof 3. In order to
see this, note that the fielt{x) is not a well-defined observable due to short-distance nges,
whereas smeared fields life dz ¢(x), I C [0, R] may be well-defined. The observalfledz ¢(x)
would in the lattice discretization be approximated by

O] ~ D Adn. (2.6)

nAel

So even ifg,, is discretized in units of,, say, we find that the observali¢l] is quantized in units
of A3, which fills out a continuum foA — 0.



2.3 Non-canonical quantization

As motivated above, we will use a quantization scheme basadeoquantum counterparts of the
variablesu,,, v, n = 1,..., N related tdll,, ¢, as

Uy = eigH", vp = e B (2.7)
The quantization of the variables,, v,, produces operatots,, v,, which satisfy the relations
Up Vo = q‘;"mvmun , where ¢ = e~ (2.8)

We are looking for representations for the commutatiortimia [2.8) which have discrete spectrum
both foru,, andv,,. Such representations exist provided that the paramesea root of unity,

52 = pap€Z>0- (29)

We will restrict our attention to the cageodd andp’ even so tha? = 1. It will often be convenient
to parameterizg as

p=2+1, lez>Y. (2.10)

Let us consider the subs&f = {¢*";n = 0,...,2l} of the unit circle. Note tha$, = {¢";n =
0,...,2l} sinceg®*2? = ¢. This allows us to represent the operataysv,, on the space of complex-
valued functions) : S — C as

Un"[/)(zlv"'va) = unznw(zla"'azna"'azN)v

o (2.11)
Vn'w(zlv"'azN):vnw(zla"'aq Zna"'va)'

The representation is such that the operatplis represented as a multiplication operator. The
parameters.,,, v,, introduced in[(2.111) can be interpreted as “classical etgtien values” of the
operators,, andv,,. The discussion in the previous subsection suggests thay thill be irrelevant

in the continuum limit, while the average valuewf will be related to the eigenvalug® of W via

u, = exp(i?a/N).

2.4 Lattice dynamics

There is a beautiful discrete time evolution that can be ddfin terms of the variables introduced
above which reproduces the Sine-Gordon equation in theickscontinuum limit[[EV94]. It is
simplest in the case whetg, = 1, v, = 1,n = 1,...,N. We will mostl;@ restrict to this case in
the rest of this paper. More general cases were treated iIR§BEBBa08].

2Except for Sectiofil3.



2.4.1 Parameterization of the initial values

As a convenient set of variables let us introduce the obbéasd#;, defined as

fon = e 2P0 fon—1 = ¢¥7 (ntTln 1 =260 =260 1) (2.12)

These observables turn out to represent the initial daténfierevolution in a particularly convenient
way. The quantum operatdrswhich correspond to the classical observalflgsatisfy the algebraic
relations

— i3>

f2n:|:1 f2n = q2 f2n f2n:t1 5 q=e€ 5 fn fner = fner fn for m > 2. (213)

There exist simple representations of the algdbral2.18hwhay be constructed out of the opera-
torsuy,, v,, given by

fon = V2,  fop1 = U Up_1. (2.14)

The change of variables defined[n (2.14) is invertibl it odd.

2.4.2 Discrete evolution law

Let us now describe the discrete time evolution proposedandéev and Volkov [FV94]. Space-
time is replaced by the cylindric lattice

L={(71),vEL/NL, T €L, v+T=ecven}.

The condition that’ + 7 is even means that the lattice is rhombic: The lattice pailoisest tov, )
are(vt1,7+1)and(v+ 1,7 —1). We identify the variable§, with the initial values of a discrete
“field” f, ; as

f2r,0 = for, f2r71.,1 = for1.

One may then extend the definition recursively toallr) € £ by means of the evolution law

fV7T+1 = 9k (qfu—l,r) ' fl/_,ifl ! gm(qfu+l,r) ) (215)

with functiong defined as
K2+ 2z

T rtz (2.16)

gr(2) =
wherex plays the role of a scale-parameter of the theory. We ref¢fEW®4] for a nice discus-
sion of the relation between the lattice evolution equa@il) and the classical Hirota equation,
explaining in particular how to recover the Sine-Gordonatun in the classical continuum limit.
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2.4.3 Construction of the evolution operator

In order to construct the unitary operatatshat generate the time evolutidn (2.15) let us introduce
the function

1+ Ag? !
H T (2.17)

which is cyclic, i.e. defined of,,. The functioni¥,(z) is a solution to the functional equation
(z+ MNWa(gz) = (L+ A2)Wa(g '2), (2.18)
which satisfies the unitarity relation
(Wa(2))" = Wy ()" (2.19)

Note in particular thatV, (z) is "even”, i.e.Wy(z) = Wy (1/z). Further properties of this function
are collected in Appendix A.

Let us then consider the operatdrdefined as

N
w2 (fan) - Uo - [ Whe-2(fan-1) , (2.20)

r=1

HEZ

whereUy is the parity operator that acts dg - f, = f, ' - U,. It easily follows from [2.1B) thalt) is
indeed the generator of the time-evolutibn (2.15),

forpr =U' 1 U, (2.21)

One of our tasks is to exhibit the integrability of this dister time evolution.

3. Separation of variables

In order to exhibit the integrability one needs to constraichutually commutative famil® of
self-adjoint operator$ such that

(A) [T,T']=0, VT, Te€Q,
B) [T,U]=0, VTeQ, (3.1)
(C) it [T,0] =0, VT € Q, then O=0(9),
whereU is the unitary time-evolution operator. We will use the guaminverse scattering method
[EST80] to first construct the famil@. The Separation of Variables (SOV) method of Sklyanin as

developed for lattice Sine-Gordon model in this section thién allow us to take an important step
towards the simultaneous diagonalization of the farglly
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3.1 T-operators

As usual in the quantum inverse scattering method, we wiltegent the family@ by means of a
Laurent-polynomiall (A\) which depends on the spectral parameteThe definition of operators
T(A) for the models in question is standard. It is of the genermahfo

T = tre2M(A),  M(A) = Ly(V/én) .- Li(V&), (3.2)

where we have introduced inhomogeneity parameters ., &x as a useful technical device. The
L-matrix may be chosen as

. _1 +1 —1,,-1 _\y—1,,—1
Lic()\) = K/_n < Zun(q 2I{nvn+q 2Kn Vi ) )\nvn A'n. Vi ) ) (33)

; -1 -1 s =11 -1 -1 -1
i AV — ALV, iu, N qTzR v, + ¢ 2R,V

An important motivation for the definition§ (3.2], (B.3) cemfrom the fact that the Lax-matrix
L3¢ () reproduces the Lax-connectiéf(z) in the continuum limit[(2.R).

The elements of the matriM () will be denoted by

(AN BOY
M= (00 oon) G4

They satisfy commutation relations that may be summariaehe form
R(A/p) (M(QA) ©1) (1@ M(u)) = (1@ M(p)) (M(A) @ 1)R(A/ ) , (3.5)
where the auxiliary R—matrix is given by

gA—q 1A X X
A=A~ —q-
R(u) = P j\l _ ?\—1 . (3.6)
q)\ _ qfl/\fl
It will be useful for us to regard the definitioh (B.2) as thexstouction of operators which generate
a representatio®y of the so-called Yang-Baxter algebra defined by the quadrakations[(3.5).
The representatioRy is characterized by théN parameters = (k1,...,6x), € = (&1,...,&N),
u=(uy,...,un)andv = (vy,...,on).

The fact that the elements &f()\) satisfy the commutation relatioris (B.5) forms the basigtier
application of the quantum inverse scattering method. Theiad commutativity of the T-operators,

[TA), T(w] =0, (3.7)

follows from (3.3) by standard arguments. The expansioii ©f) into powers of\ producesN
algebraically independent operatdrs, ..., Ty. Our main objective in the following will be the
study of the spectral problem fdr(\). The importance of this spectral problem follows from the
fact that the time-evolution operatbrof the lattice Sine-Gordon model will be shown to commute
with T(X) in the next section.
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3.2 The SOV-representation

The separation of variables method of Sklyanin [Sk85]-BjkS based on the observation that the
spectral problem foff (\) simplifies considerably if one works in an auxiliary reprmasgion where
the commutative famil\B(\) of operators is diagonal. In the following section we wilkdiss a
family of representations of the Yang-Baxter algeloral (818} has this property. We will refer to
this class of representations as the SOV-representaWidmwiill subsequently show that our original
representation introduced in (B.4), (3.3) is indeed edentzo a certain SOV-representation.

The operators representing (3.5) in the SOV-representatievant for the case of a lattice with

sites will be denoted as » )
soviyy _ [AN(A) Bn(A
M) = <CN<A> DN<A>) | 3:8)

We will now describe the representation of the algebrd (8.8)hich By () acts diagonally.

3.2.1 The spectrum &y (\)

By definition, we require thaBx (1)) is represented by a diagonal matrix. In order to parameteriz
the eigenvalues, let us fix a tuple= ((;,...,¢y) of complex numbers such thgf # ¢} for

a # b. The vector spac@l’N underlying the SOV representation will be identified witle #pace of
functions¥ () defined for taken from the discrete set

By = {(¢"¢, -, d"™ )5 (ks k) €2} (3.9)

The SOV-representation is characterized by the propeaty®tp\) acts on the function®(n), n =
(m,-...,nn) € By as a multiplication operator,

Ba(A) () = 15 by(N)¥(n),  by(A)

N [N]
H = H (/7 = na/A) ; (3.10)

we have used the notatian, = 1 for evenN, ey = 0 otherwise, andN] = N — ex. We see
thatny, ... ;TN represent the zeros &f ()\). In the case of evel¥ it turns out that we need a
supplementary variablgy in order to be able to parameterize the spectrufd (o).

3.2.2 Representation of the remaining operators

Given thatBx () is represented as in(3110), it can be shawn [Sk85]-[1ﬁ<95§t the representation
of the remaining operatofsy (1)), Cx(A) Dn () is to a large extend determined by the algebrd (3.5).
First note (see e.g. [BT09, Appendix C.2] for a proof) that slo-called quantum determinant

detq(M()\)) = AA)D(¢'\) = B(N)C(g7N) (3.11)

3See[[BT09] for the case of the Sinh-Gordon model which is gémyilar to the case at hand.
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generates central elements of the algebra (3.5). In theseptation defined bf (3.2), (8.3) we find
that \?Ndet,(M())) is a polynomial in\? of order2N. We therefore require that

Ax(MDn(g7!A) = Bx(MN)Cn(g71A) = An(N) -id, (3.12)

with A2NAx()\) being a polynomial in\? of order2N.
The algebra(3]5) furthermore implies thag(\) andDy(A) can be represented in the form

_ Aqs Mt Ay — /A ,
Ax(A) = ex by(\) L?ATN ] +;b];[ e e N an(1a) Ty (3.13)
N]
_ A + Ay — 16/ A +
Dn(A) = ex by(A) L?DTN 2T }+;gna/m T AN ) T (3.14)

whereTZ are the operators defined by

Tf\I/(nl,...,nN) = \Il(nl,...,qilna,...,nN).

The expression$§ (3.1.3) arid (3.14) contain complex-valoefficientsn,, 1y, ax(n,) anddx (1, ).
The coefficientaix (1) anddx () are restricted by the condition

Ax(n.) = aN(nT)dN(qflnT) , Vr=1,...,N, (3.15)

as follows from the consistency ¢f (3112), (3.10). (3.13) &114). This leaves some freedom in the
choice ofan (7)) anddy (n,.) that will be further discussed later.

The operatofn () is finally defined such that the quantum determinant cond{12) is satisfied.

3.2.3 Central elements

For the representations in question, the algebra (3.5) tage center. For its description let us,
following [Ta91], define the average valdkof the elements of the monodromy mathik°v (\) as

p
= [[ow*y, A=, (3.16)
k=1
whereO can beAy, By, Cy or Dy.

Proposition 1. The average valuedy (A), Bn(A), Cx(A), Dx(A) of the monodromy matrikd (A)
elements are central elements.

The proposition is proven in [Ta91], see Appendix]C.2 for haraative proof. The average values
are of course unchanged by similarity transformations.yTherefore represent parameters of the
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representation. Let us briefly discuss how these paranmeterglated to the parameters of the SOV
representations introduced above.

First, let us note thay (A) is easily found from[{3.10) to be given by the formula

] -

Bu(h) = 23 [T 52 TLA/Za — Za/0), "

n=1 a=1 a =

)

(3.17)

The valuesdy (Z,) andDy(Z,) are related to the coefficients; (¢*n,.) anddx (¢*n,) by

p P
EH (g ), EH (g ). (3.18)

Note that the conditiori (3.15) leaves some remaining atiitess in the choice of the coefficients
ax(n), dx(n). The gauge transformations

N
v(n) =[] f0)¥' (), (3.19)
r=1
induce a change of coefficients
’ —a f(q_lnr) / - f(q+177r)
ax(n-) = anx(n:) Fnr) ) N(nr) = dx(nr) Fr) ) (3.20)

but clearly leavedy (Z,) andDy(Z,) unchanged. The datéd, (Z,) andDy(Z,) therefore charac-
terize gauge-equivalence classes of representatiodsfor) andDy () in the form [3.1B).

3.3 Existence of SOV-representation for the lattice Sine-@don model

We are looking for an invertible transformatidfi*°v that maps the lattice Sine-Gordon model
defined in the previous sections to a SOV-representation,

(WSOV)—l . MSOV(/\) WSOV — M(/\) (3.21)

ConstructingM=°Vv () is of course equivalent to the construction of a basisHoconsisting of
eigenvectorgn | of B(\),

(n|B(A) = nx"by(A) (n]. (3.22)
The transformatiofVs°" is then described in terms ¢f)| z ) as
(W=¥g) () = Y (nl2)o(2). (3.23)
ZE(Sp)N

The existence of an eigenbasis B{r\) is not trivial sinceB()\) is not a normal operator. It turns out
that such a similarity transformation exists for generiltiga of the parameteis v, £ andk.
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Theorem1. — Existence of SOV-representation for the lattice Sine-Gordn model —
For generic values of the parametersv, £ and s there exists an invertible operatdys°Y : H —
H=°V which satisfied(3.21).

The proof is given in AppendixIC. It follows fronh (3.3}, (3)jithat the wave-functiong(n) =
(n|t) of eigenstatest ) must satisfy the discrete Baxter equations
t(n)¥(n) = a(n)To ¥ (n) +d(n) Ty T(n), (3.24)

wheren = 1,...,N. Equation[[3.24) represents a systemdfinear equations for thg" different
componentd (n) of the vector. It may be written in the fornD, - ¥ = 0, whereD, is apN x pN-
matrix that depends an= ¢(\). The condition for existence of solutiodst D, = 0 is a polynomial
equation of ordep™ ont(\). We therefore expect to find" different solutions, just enough to get
a basis forH.

We will return to the analysis of the spectral problemTdf\) in Sectiol . Let us now describe
more precisely the set of values of the parameters for whis®¥ representation exists.

3.4 Calculation of the average values

Necessary condition for the existenceVgf®V is of course the equality
M(A) = MPPY(A), (3.25)

of the matrices formed out of the average value$/gh) andMs°V (), respectively. It turns out
that M (A) can be calculated recursively from the average values @léreents of the Lax matrices
L3¢ (X), which are explicitly given by

i? \K,(A/ XV, — X,,V,,/A) U Y K2V, 1+ V) ’

where we have used the notatidlis = <2, X,, = &2, U,, = uf. andV,, = vE. Indeed, we have:

Ln(A) = (3.26)

Proposition 2. We have

My(A) = Ln(A) Ly (A) ... Ly(A). (3.27)

This has been proven in [Ta91], see ApperidiX C.2 for an atesm proof.

The equality[(3.25) defines the mapping between the parasnete,  and¢ of the representation
defined in Subsectidn 3.1 and the parameters of the SOVaemiaion. Formuld (3.27) in particular
allows us to calculat&(A) in terms ofu,v,x and&. Equation [[3.17) then defines the numbers
Z, = nE uniquely up to permutations af=1, ..., [N].

Existence of a SOV-representation in particular requireg ¥, # Z, for all a # b, a,b =
1,...,[N]. It can be shown (see Appendix_C.3) that the subspace of theespf parameters,

v, k and¢ for which this is not the case has codimension at least orfficigat for the existence of
a SOV-representation is the condition that the represen&R ; existforallM =1,...,N — 1.
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4. Integrability

Let us now introduce the Baxt&-operatorQ(u). These operators are mutually commuting for
arbitrary values of the spectral parameteendy, and satisfy a functional relation of the form
TNQM) = a(M)Q(g™'A) +d(N)Q(gN) . (4.28)

with a(A\) andd()) being certain model-dependent coefficient functions. Téreegator of lattice
time evolution will be constructed from the specializatafrthe Q-operators to certain values of the
spectral parametex, making the integrability of the evolution manifest.

In the rest of the paper we will restrict to the case= 1,v, = 1,n = 1, ..., N for the simplicity
of exposition, leaving the general case to a forthcomindipation.

4.1 Q-operators
4.1.1 Construction

In order to construct th&@-operators let us introduce the following renormalizedsiar of the
function W) (z),

n

14 M2 1 l At g2l

2ny\ __

wilg™) = H X+ g1 H T+g1° (4.29)
r=1 r=1

The functionw, (z) is the unique solution to the functional equatibn (2.18)chktis a polynomial of
orderl in X and which satisfies the normalization condition(¢>") = 1.

The Q-operators can then be constructed in the form
QA 1) = Y - (Y(u)', (4.30)

whereY () is defined by its matrix elements with
N
Yi(z,2') = (z|Y(\)|2') = H Wen/wntn (2/2n) Werkn /€n (ZnZ;H»l) ) (4.31)
n=1

wheree = —iq~z, andw, (z) is the discrete Fourier transformationofz),

1 1
M) = 23 Tw@), wl) = 3 uT ). (4.32)

r=—1 r=—1
Note in particular the normalization conditian (¢") = ;..

Despite the fact tha(\, ) is symmetricin\ andu, Q(\, 1) = Q(u, A) as follows from the identity
(B.6) proven in Appendix B, will mostly consideras a fixed parameter which will later be chosen
conveniently. This being understood we will henceforthte/@()\) whenever the dependence of
Q(A, i) onu is not of interest.
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4.1.2 Properties

Theorem 2. — Properties of T- and Q-operators —
(A) ANALYTICITY

The operator)\NT(/\) is a polynomial in\? of degreeN := N + ey — 1 while the operator
Q()) is a polynomial in\ of maximal degre@IN. In the caseN odd the operatorfQqn :=

limy oo A™2NQ()\) andQ := Q(0) are invertible operators and the normalization of tQeoper-
ator can be fixed b@on = id.

(B) BAXTER EQUATION

The operatord (A) andQ(\) are related by the Baxter equation
TNQM) = ax(MQ(a™A) +dx(MQ(aN) 4 (4.33)

with coefficient functions

N
an(A) = (_i)N H Kor A (1 + iq_%/\r“r)(l + iq_%/\r/“r) )

r=1
. (4.34)

(+i)N T /A (1 = ig ™2 Ary ) (L — g2 N /5y

r=1

dn ()

(C) COMMUTATIVITY

Y, 1. (4.35)

(S) SELF-ADJOINTNESS
Under the assumptiofy. andx,. real or imaginary numbers, the following holds:

(TONF =T, QA" = Q). (4.36)

It follows from these properties that ) andQ(u) can be diagonalized simultaneously for alk:.
The eigenvalue®@(A) of Q(A) must satisfy

tNQM) = an(N)Q(g™'\) + dx(M)Q(aN). (4.37)

The proof of Theorem 1 is given in AppendiX B.

4.2 Integrability

In order to recover the light-cone dynamics discussed isectinri 2.4, let us temporarily return to
the homogeneous case wheére= 1 andk,, = x forn = 1,...,N. Let us note that the operators
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Y (A) simplify when A\ is sent to0 or co. Multiplying by suitable normalization factors one find the
unitary operators

whereyy = [T._, (1 — ¢*") andvo, = (—1)'¢' [T._, (1 — ¢*"~2). The operator¥,, andY., have
the simple matrix elements
N
z1Yo |z ) = =2y, (k1)
(z|Yo|z") nllq z = (¢, ..., ¢*),
N if (4.38)
2K} 2k}
(2| Yoo |7} = J] g2 Gothin), z = (¢, "),
n=1
and
Q") =YW -Yh, Q) = (YWY (4.39)
Integrability follows immediately from the following obsetion:
| U=o,UtUT, Ut =Q7(1/s),  UT =Q (s/o), | (4.40)

whereq,, = lezl(l — ¢ 722N /(K2 — ¢*7=2)2N, The proof can be found in Appendix B. Itis very
important to remark that there is of course no problem to toostime evolution operators in the
inhomogeneous cases by specializing the spectral paraofdhe Q-operator in a suitable way. We
are just not able to represent the time evolution as simple €&13). One will still have a lattice
approximation to the time evolution in the continuum fieléahy as long as the inhomogeneity
parameters are scaled to unity in the continuum limit.

5. The spectrum

Let us now return to the analysis of the spectrum of the mdet@lsimplicity we will consider here
the case of oddN, while we will discuss the case of evéhin appendiXID. The existence of the
SQV representation allows one to reformulate the spectoddipm forT(\) as the problem to find
all solution of the discrete Baxter equatiohs (3.24). Thjsaion may be written in the form

D,¥(n) =0,  Dpr=alp)T, +dn)TS —t(n,), (5.41)
wherer = 1,...,N. Previous experience with the SOV method suggests to cenisid ansatz
N
Uy(n) = [J Qim), (5.42)
r=1

whereQ. (1)) is the eigenvalue of the correspondi@epperator which satisfies tHenctionalBaxter
equations

tNQe(N) = an(N)Qi(g™'A) + dn(A) Q¢ (g) - (5.43)
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This approach will turn out to work, but in a way that is mordtbe than in previously analyzed
cases.

5.1 States from solutions of the Baxter equation

First, in the present case it is not immediately clear if iinectional Baxter equation (5.43) and the
discrete Baxter equatioh (5]41) are compatible. The quesdiif one can always assume that the
coefficientsu(n,.) andd(n,.) in (5.43) coincide with the coefficients; (7, ), dx () appearing in the
functional equation(5.43) satisfied by tReoperator. The key point to observe is contained in the
following Lemma.

Lemma 1. LetAy(A) andDy(A) be the average values of the coefficientg) anddx (\) of the
Baxter equation{5.43),

Ax(A) = []ax(@n),  dx(A) = [T antdbne). (5.44)
k=1 k=1
We then have
Ag(A) = An(A) = Bn(A),  Dyn(A) = Ax(A) + By(A). (5.45)

Proof. The claim is checked faX = 1 by straightforward computation. Let us assume now that the
statement holds faX — 1 and let us show it foN. The average valuds;(A) andDy(A) satisfy by
definition the factorization:

An(A) = AN WA (), py(A) =M (A)p{ P (A, (5.46)

where the upper indices are referred to the quantum sites/es while the lower indices to the total
number of sites. We can use now the induction hypothesisttthgeesult:

An(A) = (AN = BNV (W) ATV () = B P (A) = An(A) - Ba(A),  (5.47)
Dn(A) = (AT + BN (W) (AT P () + BE "V (A) = An(A) + Bx(A),  (5.48)

where in the last formulae we have used (B.27) together \ghfact thatdx(A) = Dy (A) and
Bn(A) =Cn(A) foru, =1,v, =1,n=1,...,N. O

The Lemma implies in particular
AN(ZT) = AN(ZT)a DN(ZT‘) = DN(Zr)v (549)

forall» = 1,...,N. We may therefore always find a gauge transformafion13.@2€h shat the
coefficientsay (,) anddy (n,) in (6.41) become equal to

ax(nr) = an(nr), dx(nr) = dn(nr), (5.50)
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respectively. So from now on we will denote also the coeffitsen [3.24) witha andd omitting the
indexN unless necessary. The anséfz (b.42) therefore indeed yirldigenstate af (\) for each
solution@;(\) of the functional Baxter equatioh (4137). We are going tovekizatall eigenstates
can be obtained in this way.

5.2 Non-degeneracy of (A)-eigenvalues

In order to analyze the equatiohs (3.41), let us note thatiiteix representation of the operator.
defined in[(5.41) is block diagonal with blocks labeledrby= 1,...,N. Let ¥, () € CP be the

vector with components
Uok(n) = Weln, oo -1, Grg" e, - 1N) -
Equation[(5.411) is then equivalent to the set of linear dqnat
D W, (n) =0, r=1,...,N. (5.51)

whereD() is thep x p-matrix

t(<r) _d(<r) 0 T 0 _a(<7“)
_a(QCT) t(QCT) _d(qCT) 0 s 0
0 ' :
(5.52)
: . 0
0 e 0 —al@®'¢) tHe''G) —dd®T¢G)
_d(quT) 0 e 0 _a(q2l<r) t(q2l<r)

The equation[{5.51) can have solutions onlylit(D()) = 0. The determinandet(D()) is a
polynomial of degree in each of theN coefficients of the polynomial\).

Proposition 3. Given thatdet(D(")) = 0, the dimension of the space of solutions to the equation
(&51) foranyr = 1,...,N is one for generic values of the parametém@nd .

Proof. Let us decompose thex p matrix D(") into the block form

(r) g
r — (Y
D) = (d(T) w(r)> , (5.53)

where the submatrig(") is a(p — 1) x (p — 1) matrix,»(") andw(™) are column and row vectors
with p — 1 components, respectively. We assume that D(")) = 0, so existence of a solution to
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D)W = 0is ensured. It is easy to see that the equafiéi & = 0 has a unique solution provided
thatdet(E()) # 0.

In remains to show thatet(E(")) # 0 holds for generic values of the parametemnds. To this
aim let us observe that the coefficieatg”¢,) andd(q*¢,) appearing in[{5.51) depend analytically
on the parameters. If det(E()) = 0 is not identically zero, it can therefore only vanish ataet!
points. It therefore suffices to prove the statement in ahimghood of the values for the parameters
x which are such that

a(¢.) =0, d(qilg) =0. (5.54)
Such values of; and¢ exist: Settings,, = +iforn =1,...,N, one finds that
N
Ban(\) = [T (w/es —en/an) (5.55)
n=1

which vanishes fo = ¢z¢,. We may therefore chodjlpen = ¢2&,. We then find[(5.54) from
(4.32), [5.50).

Given that[[(5.54) holds, it is easy to see tHat(E()) # 0 . Indeed, the submatriE,(J), is lower
triangular if [5.54) is valid, and it hasd(¢*¢,.), k = 0, ..., p—2 as its diagonal elements. It follows
thatdet(E(™) = [T2_2 d(¢*¢,) which is always nonzero if{5.b4) is satisfied. O

The previous results admit the following reformulation whis central for the classification and
construction of the spectrum af(\):

Theorem 3. For generic values of the parameter&nd¢ the spectrum of (\) is simple and all the
wave-function®,(n) can be represented in the factorized fofm (5.42) Wihbeing the eigenvalue
of theQ-operator on the eigenstate ).

The eigenvectors ) of T(\) are in one-to-one correspondence with the polynontigls\) of order
2IN, with @Q.(0) # 0, which satisfy the Baxter equatidn (4137) witth) being an even Laurent
polynomial in\ of degreeN — 1.

Proof. Propositiod B implies that the spectrum™f)) is simple. Let ¢ ) be an eigenstate af(\).
Self-adjointness and mutual commutativity Bf\) and Q(n) imply that|¢) is also eigenstate of
Q(N). LetQ:()) be theQ-eigenvalue ot ). The polynomial);()) is related ta(\) by the Baxter
equation[(4.3]7) which specialized to the values- 7, yields the equation$ (5.51). It follows that
there must exist nonzero numbesssuch that

Q(Gd") = v Wi(Gry- . ). (5.56)

This implies that the wave-functionis; () can be represented in the forim (3.42) wijh being the
eigenvalue of th&-operator on the eigenstate). O

“Note that this choice implies that, € (—1)P'/2¢1/2S,,.
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Remarkl. Our proof of existence of a polynomié);(\) which allows to represent the wave-
functions¥.(n) in the factorized form{5.42) is based on the existence offtmperator. It would
be interesting if one could bypass the construction of thep@rator bydefining@:()\) via (5.56);
we plan to comeback to this interesting issue in a next patidio.

5.3 Connection with the Bethe ansatz

It follows from the property (A) oQ(\) that@(A\) must be a polynomial of ord@/N normalized
by the condition)s;n = 1. Such a polynomial is fully characterized by its zeis. . ., Aon,

2IN

Q) = [T =) (5.57)

k=1
It follows from the Baxter equatio (4.B7) that the zeros tmatisfy the Bethe ansatz equations

2IN

)\ _/\rq
H y———rl (5.58)

Conversely, given a solutiofh\, . .., Agn) Of the Bethe ansatz equatiois (3.58), we could try to
construct the polynomia)()\) as in equation (5.57). Let

a(\)Q(g7'\) +d(N)Q(gN)
500 . (5.59)

t(\) is nonsingular fol = A\, k = 1,..., M thanks to the Bethe ansatz equatidns (5.58). However,
in general it is not clear that the functiof\) will satisfy t(\) = ¢(—\).

) =

What we need is therefore a characterization of the substieofolutions of the Bethe ansatz
equations(5.88) that yield even functiaris) via (5.59). To this aim let us consider the logarithmic
version of the Bethe ansatz equatidns (b.58),

2IN
(

+Z1 1: Ard/As (5.60)

2k, +1)m =1
(2h, + 1) = log = .

The integers:,. are called the Bethe quantum numbers. We are going to argu& M) will satisfy
t(A) = t(—2A) if the Bethe quantum numbeks are equal in pairs, i.e. if for each indexhere exists
an indexs such thatk, = k.

In order to see this, let us first introduce the following Leawvhich is of interest in its own right.

Lemma 2. For a givent(\), there is at most one polynomial of deg&® which satisfies the Baxter

equation[(4.3F7).
Proof. Let us define the g-Wronskian:

W) = Qi(N)Q2(g7'A) — Q2(N)Q1(g7'N). (5.61)
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written in terms of two solution§); (\) andQ2()) of the Baxter equation; thei (\) satisfies the
equation
aA) W) = dN)TTW (). (5.62)

Note now that Lemmil 1 implies:

21

21
[Ta0d") # [Ta(rd"), va¢ By, (5.63)

k=0 k=0

so for any\ ¢ By the only solution consistent with cycliciyT™)? = 1is W () = 0. Itis then
easy to see that this implies th@f (\) = Q2 (). O

Let us consider now the ca®eeven andka,+1 = —ka,. In this case we have(—\) = a(\) and
d(—X) = d()). From the previous Lemma follows in particular that the palmials@(\) of degree
2IN which solve the Baxter equation (4137) with\) = ¢(—X) must be even@Q(—\) = Q()\),

which means that for each indexhere exists an index such that\, = —\,... A quick inspection
of (5.60) shows that this implies that = k, for this case. Note that the solutiois of the Bethe
ansatz equations(5160) depend on the parametersx, ..., kn). If the dependence of,. onx

is smooth in the neighborhood of the submanifold defined byctinditionxs,, 1 = —k2,, We may
conclude that,. = k,. holds for generic values &f.

A. Cyclic solutions of the star-triangle relation

It will sometimes be convenient for us to identi#y, = Z/pZ with the subse§, = {¢*;n =
—1,...,1} of the unit circle sincg?*! = 1.

A.1 Definition and elementary properties
A.2 The function w)(z)

Let us define a functiow, : S, — C by

n

l

1+ )\q2r71 )\+q2r71

2ny __ —

wy(¢*") = II T T g1 n=0,....,p—1. (A.1)
r=1 r=1

This function is indeed cyclic (defined 6h) since[[;_, (1 — z¢**) = 1 — 2? implies
wx(g*) = wA(g"?) = wa(1), (A2)
The functionw (z) is the unique solution to the functional equation

(z 4+ Nwxr(gz) = (1+X2)wx(g"'2), (A.3)
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which is a polynomial of orderin A and which satisfies the normalization condition
wi(q") =1 VneZy. (A.4)

The functionw, (z) satisfies the inversion relation

! 2r—1 2r—1
_ oy A+ HA+ AT
w)\(z)wl/k(z) = Xx> X\ = A E (qgr_l ¥ 1)2 (AS)
A.2.1 The functiom(z)
Let us also introduce the functiam, (z) as the discrete Fourier transformationof,
1 l
wy(z) = - Z 2P wx(g") (A.6)
Py
w) (z) can be characterized as the unique solution to the fundtiefzion
(1 —Ag2)Wa(qz) = (2 — g\ Wa(q ' 2), (A.7)

which is a polynomial of orddrin A and which satisfies the normalization condition(¢q™) = 6, 0.
It may therefore be represented by the product

n l

. Iy q)\ _ q2r71 )\q2s -1
U))\(q ) - H )\q2r_1 H q25_1 : (A8)

r=1 s=1

Itis also useful to observe that, andw, are related by complex conjugation as follows:

l

(Wer(2))* = - (2) 1;[1 114:7321 (A.9)
This relation makes it easy to deduce propertieg pfrom those ofw,,.
A.2.2 Further functional relations
Let us list further functional relations satisfied by thedtionw) (z).
A+ 2 wa(g2) = ¢ 2T (L4 gh) wy (2),
L+ N wy(gz) = ¢ 278 (14 A2)w, , (2), A.10)

727 —_— = —_
1— g\ Wy (g2) = ¢ 5 71272 (2 — )W, (2),

(
(
(
(1—qA2)Wy(g2) = ¢ "' 27F (1= N, ,(2).

These relations play a key role in the derivation of the Baatpiation[(4.33).
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A.3 Star-triangle relation

One of the most important properties of the function(x) is the star-triangle relation [FZ82]

Y Walz/u) was(e/v) Wp(e/w) = wa(w/v) Was(u/w) ws(v/u), (A.11)

€S,

see [[Ba0B] for an elegant proof and references to relatet.wdfe are mainly going to use the
following consequence of (A.11) called the exchange refati

> Waly/w) ws(y/v) W, (y/w) ws(y/x) = (A12)
YESy
 Wyyalu/v) _ B
= w,, (x/w) > Way/u) w, (y/v) Ts(y/ww., (y/).
Ble yES,

for ary/88 = 1. In order to prove[{A.12) let us note the relation

l

S Wa(w/2)1/a(z/v) = }9 S (/0) wa (@) w10 (@) = Suwa (A13)

2€S, k=—1

sincexo = wa (2)wy/q(2) is independent of. By inserting [A.IB) into the left hand side 6f (Al12)
we may therefore calculate

Y Walu/y) wy(y/v) W, (y/w) ws(a/y) =

yEeS,

= Xat D0 YD W ) waly /o)W o (0] 2) Ty (219 w5 J2) T (Y fw)

YES, zE€ESy Yy’ €Sy

ol Y wa(v/2)Wa(z/u) wg g (ufv) wsy (w/z) We(=z/w) w, (z/7) .

zZ€ESy

The integrals ovey andy’ have been carried out with the help of the star-triangleticridA.1T). It
remains to recall that,, 'ws, (w/z) = (wy , (w/x))~" to complete the proof of (A.12).

B. Properties of theQ-operator

B.1 Proof of the Baxter equation
The strategy is similar td [Ba73, BS90]. Consider

T(\) - (z|YN)|2") = (2| TN)Y(N)[2'). (B.1)

The operatofl'()\) is the difference operator obtained by replaciij (A\) — LE¢()) in (8:2), with
L3¢ () obtained from[(B.R) by replacing,, andv,, by the corresponding multiplication and shift
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operatora1,, andv,, defined in[(Z.111),

sG __ @ _un(’ﬂ;lvn - ’ﬂnvgl) )\nvn - Aglvgl
b’ =5 ( AVt =N v, gt ) ) (8.2

In writing (B:2) we have introduced the short-hand notatign= iq= < 'and, = \/&,. Note that
T()\) acts on the argument= (z1,...,2x) of Y\ (z,Z'), while it does not act oa’. In order to
simplify the expression fol'(A) we may therefore use a gauge-transformation of the form

/
z, 1

~ _ 1 0
L2900 = gn 1 LSC(N) g7 gn—( ) (8.3)

The key point to observe is that

LLE (Va1 - Ya(22) = Ayt (2 4+ A0, (2 + A0y huy vy b Yy (2,7)
Kn
A, ) (L A0 )y, - Yz, 2) B

nYn*nYn

the last step being an easy consequence of the recursitiomslBA.3), [AT) satisfied by the func-
tionswy (z) andw) (z) which appear in the kern&\ (z, z’).

Equation[[B.%) implies that

N N
T(\) - Ya(z,2') = ( Mo+ I1 EiG(A)22> Yi(z,2'). (B.5)
n=1 n=1
We have
f"fszc(/\)ll ' Y)\(Z? Z/) = = Iz_n’z;l [19;1(277,/2;7, + )\nﬁn)vn - )\;1(1 + ﬂnAnzn/Z;)vgl} ’ Y)x (Zv ZI)
__H_" / 2 1+)\n19nzn/Z;1 -1 /
- i Zn(/\n/,&n 1/)‘n)1+2n241+1)\n/19n Vin Y)\(Z7Z )

By using the recursion relatiors (A]10) one may rewrite &sis
f‘fzc()\)u Y\(z,2') = K_n(Z;z/Z;erl)% (1/An = 1/90)(1 + ¢~ ' Xn) YtrlA(ZaZI) :
(2

We may similarly calculate

f"sz()\n)22 ' Y)T = % [(19”,2;1 + Zn-l—l)\n)vn - (191:1’27:1 + Zn-l—l)\r:l)vrzl} ' Y)\(sz/)
Kn , 1y—1 2 1+ Z:erlZn,l?n//\n -1 /
= In An — 1/\ 0 Y, (2,
R

= = (a1 /2 (U0 +/9,) (1= A,0,) You (2,2).
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It follows that

%(1/,\ —1/9n)(1+q" AV) - Yyoa ) (2,2),

I
:jz

(M1 - Y (z,2)

—=
=
° 4

3
Il
-
3
Il
-

Il
::]z

(N2 - Ya(z, ZI)

—=
=
° 4

Znn(l/)\n + q/ﬁn)(l - )\nﬁn) ' }/q)\(zv Z/) :

3
Il
A
3
Il
-

This concludes the proof.

B.2 Proof of the commutativity

The key observation to be made is the fact that the oper#iorssatisfy the exchange relation
YOO - (Y )t = Y(u) - (YO)F (B.6)

This is an easy consequence of the exchange relfionl(ASl?23e we have\,, /i, = A,/ o for
alln,m =1,...,Nwe may calculate

(z|YO) (Y(u )T |2') =
N
H e)\ /En n/yn)we)\nml( nyn-i-l) et /K, (yn/ziz)weu;ﬁn(yn-l-lziz)

SN n=1
1-7

—(bO Z Hwe)\ /Kn n/yn) e,un/nn(yn/z ) €fp—1Kn— 1(yn ;1 1)’[1} )\n,lnn,l(znflyn)

yESN n=1

N
= (bO Z H Ee,un/rcn (Zn/yn)we)\n/nn (yn/zil)me)\n,lnn,l (ynzilfl)we,un,lnn,l (anlyn)

N p=
yESpnl

N
= Z H mE,Ltn/;-cn (Zn/yn)we,unnn (ZnynJrl)wg)\;/mn (yn/z’;l)wg)\; Ko, (ynJrlZf/z)

yesy n=1

= (2] Y(p) (YO ) 2'),

wherepy = (—1)Ng2Nl+1) as it follows by formula[(AB). The mutual commutativity dfet
operatorRQ is an easy consequence. Let us furthermore note(#fah)* = d()\) and(T(\))t =



T(A) for A € R. Using [B.6) we may calculate

T YO - (Y() = [a(W)Y(g™'A) +4

T
==X =
=

which obviously impliegT(A), Q(\)] = 0.

B.3 Proof of integrability

In order to provel(4.40) first note thai(4132) allows us taevri
l
(zolwa(fon) |21) = D (20 [ |20) WA(").
r=-—1
Noting that( g~ |, | g?#n ) = (q*»~2" | ¢®n) = 6,4 _i, we find that

(20 [wa(fan) | 2, ) = Wa(z,/2,) -

Thanks to this identity an@ (Al4) it is easy to see that

N N
(2| Y(1/ke)|2') = [] 0o eau2(zufzh) = (2] [T w2(fon) 12,
n=1 n=1
which implies
N
1//436 H f2'n,
Similarly note that
N
(z|Y(s/e) wa zuzhir) = (2] [[ we(fanin) 12)

n=1

which implies

N
Q( H W2 (fony1))
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(B.7)

(B.8)

(B.9)

(B.10)
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It remains to notice tha¥! - Y, = U, to conclude the proof. Indeed, using the notatior-
(%, ... ¢®)andz” = (¢%7 ..., ¢®~), we may calculate

1 ’ ’7 1" 1"
(z|Yl, - Yolz') = = > Hq 2k (kb ea) g =2k, (k)
Pk ey =1

N N
= H 5kn+kn+1+k4{+k;{+1,o = H 51%,—1@;:
n=1 n=1
"
= (z|Uo|2"),

keeping in mind that we consider the case of ddd

C. Separation of variables

C.1 Construction of an eigenbasis foB(\)

We will construct the eigenstatés | of B(\) = By (\) recursively by induction oiN. The corre-
sponding eigenvalueB(\) are parameterized by the tupje= (1.),—, _n as

N [N]
e Kn
BO) =3 by(N), 0y(N) = [ = [T /e —1a/2) 5 (C.11)
n=1 a=1
We remind thaty, is zero forN odd andl for N even.
In the caseN = 1 we may simply takeé n; | = (v|, where(v | is an eigenstate of the operator

with eigenvaluey. It is useful to note that the inhomogeneity parameter dategs the subset @t
on which the variable, lives,n; € &S,

Now assume we have constructed the eigenstatéof By, (\) for anyM < N. The eigenstates

{(nl],n= x,-...,m), of By(\) may then be constructed in the following form
(=Y > Kinlxaix,) (1@ (x|, (C.12)
X1 Xz

where( x, | and(x, | are eigenstates &,,(\) andBy_, () with eigenvalues parameterized as in

(C.11) by the tuples, = (Xoa)a=1... . @NAX, = (Xaa)a=1,.. ~_n FESPECtively. It suffices to
consider the cases wheke— M is odd.

It follows from the formula

BN()\) = AM(/\) ® BN—M(/\) + BM()\) & DN—M()\)

(C.13)
A, M()\)Bl N—M()\) + B, M(/\)Dl N—M()\)
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that the matrix element& (7| x,; x, ) have to satisfy the relations

(Az M(/\)Bl N—M(/\) + B, M()\)Dl N—M(/\))t KN(77 | X253 Xl)

S (C.14)
= 0 [T 5 TT Oa = na/2) Kl x2x4).
n=1 a=1

where we used the notati@ for the transpose of an operator

Let us assume that

Xlath ¢ Ay, Xzbqh2 ¢ A, and Xlath # Xzbqh2, (C.15)

whereh; € {1,....,p},a € {1,..,.N=M},b e {1,..,M} andA; is the set of zeros of the quantum
determinant on the subchalnwnh 1 = 1,2. Under these assumpu%e previous equations yield
recursion relations for the dependence of the kernels indhiablesy,, andy.; simply by setting

A = X1q @ndX = x,p. Indeed for\ = y,, the first term on the left of (C.14) is killed leading to

N-M
TlaKN(n|Xz;X1) dl(q71X1a XM H H Xla/Xzb XZb/Xla)

[ (C.16)
= Ko(nxix0) m8 [ 0a/m = 6/ Xaa) -
b=1
while for A = x,, one finds similarly
N M i N—-M

TZGKN( n | Xz2a) Xl q Xza H Ii_ H (Xza/le - le/Xza)
Ry (C.17)

= Ko(nlxaim) m [ 0Ga/m = 6/ Xoa) -

b=1

If M is even we find the recursion relation determining the deproe ony,,, by sendingh\ — o

in (C.13), leading to

N ] Mot NeMo N
TZMKN(n|XZ;X1) N H H _ 77|X27771 H_ (C18)
X2A a=1 Xza b=1 X1b bh=1 77

The recursion relation§ (C 6], (C]17) have solutions catibfe with the requirement of cyclicity,
(T,,)P =1and(T, T, .)F = 1for all values ofa, provided that the algebraic equations

[N]

D Xla X?ﬂ H H Xla/X;_b Xzb/xla) = (n;N)p H(Xll)a/ng - nb/xll)a) )
=t b=t (C.19)

p
where D, (xX1a) = H (4" x2a)

5The subspace within the space of parameters where thesiimem@re not satisfied has codimension at least one.
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and

M ., N— [N]
Z (¢}
2 (Xza) H —~ H Oa/ X0 = X0/ XE) = @) [T OB/ = X5 /%)
. b=l (C.20)

hS]

where A,(x,q) = H q Xza) 5

are satisfied. IM is even the recursion relatidn (C]18) yields the additioakltion

1 M-—1 1 N-—-M 1 1
- I1-=. (C.21)
Xoa aI;II X’a bl;[l X0y b[[lni)

We will show in the next subsection that the equatidns (IC(C921) completly determing? in
terms ofx%,, x%a.

By using [3.1F) and (5.49) it is easy to see that the condit{@1I9) and{C.20) are nothing but the
equations

Bx(A) = Am(N)Bn-m(A) + Bm(A)Dn-m(A), (C.22)

evaluated ah = y,, and\ = x,,, respectively. The relatiob (C.21) follows from (Cl22) etlimit

A — oo. The relations[{C.22) are implied by (3127). We conclude tha construction oB()\)-
eigenstates will work if the representatioRs, Ry andRx_ v are all non-degenerate. Theorem 1
follows by induction.

C.2 On average value formulae

Proposition 4. The average values of the Yang-Baxter generators are dexiénments which satisfy
the following recursive equations:

Bx(A) = Am(A)Bx-m(A) + Bu(A)Dn-m(A), (C.23)

Cn(A) = Dum(A)Cn—m(A) +Cu(A)Ax-m(A), (C.24)
and

An(A) = Am(A)Ax-Mm(A) + Bu(A)Cn—m(A), (C.25)

Dn(A) = Dm(A)Dn-m(A) + Cm(A)Br—m(A), (C.26)

whereN — M or M is odd.

Proof. In the previous subsection we have proven the existence bf i@presentations, i.e. the
diagonalizability of theB-operator. First of all let us point out that{ ), B(A), C(\) andD(\) are
one parameter families of commuting operators. This insghat the corresponding average values
are functions ofA = AP.
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The fact thatBy (A) is central trivially follows from the fact thaBy()) is diagonal in the SOV-
representation, while for the operatoksand D we have that forN odd, Ax(\)APN-1 and
Dn(AM)APN=1) are polynomials im\?” of degreeN — 1. It follows that the special values given
by (3.18) characterize them completely,

[N]

N/ Zy — Zy /A
) = 3 1] P ) A,

[N]
-y (N Zy — Zy/N)
e = a=1 bl;]c:z (Za/Zy — Zb/Za) On(Za),

(C.27)

whereAx (Z,) andDn(Z,) are the average values of the coefficients of the SOV reptegsam In
the case olN even we have just to add the asymptotic propertylf\) andDx () discussed in
appendiXE to complete the statement. Finally, the fact@kéd) is central follows by its diagonal-
izability in the cyclic representations.

Now the above recursive formulde (C23-C.26) are a simpieseguence of the centrality of the
average values of the monodromy matrix elements. Let usid®nenly the case of the average
value ofAx (). We have the expansion:

An(A) = A, (M)A nom(A) + Bo m(A)C nem(N), (C.28)

in terms of the entries of the monodromy matrix of the subahaiand 2 with (N — M)-sites and
M-sites, respectively. It follows directly from definitioB.0(8) of the average value together with
(C.28) thatAx () can be represented in the form

AN(/\) =A, M(/\)Al N,M()\) + B, M(/\)Cl N,M()\) + AN(/\) (C.Zg)

where Ay () is a sum over monomials which contain at least one and at mes® factors of
A, m(Ag™). As before, we may work in a representation whereBhe; (\¢™) are diagonal, spanned
by the stateg x, | introduced in the previous subsection. As the factors:(A\¢™) contained in
An(A) produce states with modified eigenvaludafy: (Ag™), none of the states produced by acting
with Ax(A) on (x, | can be proportional t¢x, |. This would be in contradiction to the fact that
An(X) is central unlesé\n () = 0. O

C.3 Non-degeneracy condition

Proposition 5. The conditionZ, = Z for certainr # s withr; s € {1, ..., [N]} defines a subspace
in the space of the parametefs,, ..., kx, &1, ..., } € C2Y of codimension at least one.

Proof. The parameterg,. are related to the expectation valig(A) by means of the equation

N [N]
Bx(A) =z [ Z—p” [[A/z. - Za/A). (C.30)
n=1 a=1
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It follows from (3.27) and[{3.26) thaBn(A) is a Laurent polynomial inX,, that depends poly-
nomially on each of the parametef§,. Equation [[C.3D) defines the tuple = (7,,..., Z[N])
uniquely up to permutations ¢f;, . . Z[N] as function of the parametels = (X1,..., Xx) and
K = (Ki,...,KnN). We are going to show tf@t

0Z,
J(X:K) = det( ) £ 0. (C.31)
X r,s=1,...,[N]

.....

The dependence of( X ; K) on the variabled,, is clearly polynomial. It therefore suffices to show
thatJ(X; K) # 0 for special values of¢ in order to prove thaff (X; K) # 0 except for values of
K within a subset of£N of dimension less thaN.

Let us choosek? = ¥ for n = 1,...,[N], then the average valuds (3.26) of the Lax operators

simplify to
0 A/ X, — X /A
LG (\) = (A/X XA 0 ) (C.32)

Inserting this into[(3.27) yields
[N]
Bx(A) = (K& + 1)~ H (A/X, — X,/A). (C.33)

The fact that/(X; K) # 0 follows for the case under consideration easily from (€.33)

WheneverJ(X; K) # 0, we have invertibility of the mapping = Z(X,,..., X}y)). The claim
follows from this observation. O

D. Spectrum of the even chain

D.1 The©-charge

In the case of a lattice witll even quantum sites, we can introduce the operator:

N
H e (D.34)

Proposition 6. © commutes with the transfer matrix and satisfies the follgw@ommutation rela-
tions with the entries of the monodromy matrix:

OC(\) = ¢C(NO, [A(N),0] =0, (D.35)
B(\N)O = g¢OB()\), [D()),0]=0. (D.36)

81t should be noted that for evéXi it is indeed sufficient to consider the dependence wAfit, . .., Xy — 1.
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Proof. The claim can be easily verified explicitly fof = 2 The proof for the case of general even
N = 2M follows by induction. Indeed,

2 MI g = Adn Asovowny T Baw Govenry Adm Banowy + Ban Dano
(N=) CimAsn—m) + Do Gveny o Bavowy + Dan Davo

which easily allows one to deduce that the claim holds if Idedor all M < N. O

D.2 T-©-spectrum simplicity

Lemma 3. Letk € {—I, ..,1} and|t;) be a simultaneous eigenstate of the transfer maf(ix) and
of the©-charge with eigenvalues;, (A) and q", respectively, thenNt‘k‘ (\) is a polynomial in\?
of degreeN which is a solution of the system of equations:

det(DM(N) = 0 Vre{1,..,[N]}, (D.37)
where thep x p matricesD(")(¢,.) are defined in[{5.52), with asymptoticstgfi(\) given by:

N

lim  ATNt () = (H ”“551> (" +q7%). (D.38)

log(A )
og(A)—+oo a1

Proof. The fact that the generic eigenvalue of the transfer magsdh satisfy the systefn (DI37) has
been discussed in sectibh 5; so we have just to verify the pistios [D.38) for theT-eigenvalue
t1x/(A). This follows by the assumption thf,) is an eigenstate b with eigenvalue;*, and by

formulae
N

lim  ATNT(A) = (H @) (e+067, (D.39)

log A—+o00
a=1

derived in appendiXIE. O

The previous Lemma implies in particular the following:

Theorem 4. For generic values of the parametetsand ¢ the simultaneous spectrum 6fand ©
operators is simple and the generic eigenstaté of theT-O-eigenbasis has a wave-function of the
form

N-1
Uy, () = 5" TT v (na), (D.40)
a=1

where, for anyr € {1,...,N — 1}, the vector( (¢ ), ¥k (G-@), - W‘(grqﬂ)) is the unique (up
to normalization) solution of the linear equatiofis (3.5byresponding td ().
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Proof. Let us use the SOV-construction 6feigenstates and let us observe that an analog of Propo-
sition[3 also holcﬂsfor evenN. This implies that the wave-functiob,, () can be represented in the
form

N—-1
Wi, (1) = fo (o) T w1 (ma) - (D:41)
a=1
Finally, using thatt;) is eigenstate o® with eigenvalue/® we getf;, (1n) o« ny". O

Thanks to the explicit construction of the simultanedu® eigenstates given if_(D.%0), we have
that the eigenstates @f(\) with ©-charge eigenvalue 1 are simple, while all the others arélgou
degenerate with eigenspaces generated by a p@edjenstates witkd-charge eigenvalueg-*.

D.3 Q-operator and Bethe ansatz

Let us point out some peculiarity of tlig-operator in the case of even chain.

Proposition 7. The Q-operators commute with th@-charge and|t. ;) are Q-eigenstates with
common eigenvalu@,; (A\) of degree2/N — k(aXp+1)in X and a zero of order‘c(agtp +1) at
A = 0, whereag andaZ, are non-negative integers, whil§ anda__ are positive integers.

Proof. The commutativity ofT and Q-operators implies that th&-eigenspace (|t x)) corre-
sponding to the eigenvalug, () is invariant under the action &® and so fork = 0 any 7-
eigenstatet,) is directly aQ-eigenstate. Let us observe that the self-adjointnessiafplies that

in the two-dimensionaTl -eigenspace (|t )) with & # 0 we can always take two linear combi-
nations of the statgs) and|t_ ) which areQ-eigenstates. Now thanks to the Lenima 2 for fixed
T-eigenvalue;, (A) the correspondin@-eigenvalueR, (A) is unique which implies that ;)

are themselve§-eigenstates. The commutativity of tiieoperator with thed-charge follows by
observing that thé . |, ) define a basis.

Let us complete the proof showing that the conditions on tigrmial Q) (\) stated in the propo-
sition are simple consequences of the fact thag,|) are eigenstates of th@-charge with eigen-
valuesg®!*l. Indeed, the compatibility of the asymptotics conditidBs3g) with theT'Q Baxter
equation implies

. QA . Q) _
hm _— = ‘k" hm —_— (Ni‘k‘)7 D42
Ao Q) 4 e Q) ! s
which are equivalent to the conditions on the polynor@igl () stated in the proposition. O

Note that the uniqueness of tieeigenvalue ;| (\) corresponding to a givef-eigenvalue (1))
implies that each vectof) i (¢-), ¥k (¢-q), -, Yk (¢-¢*)) appearing in[{D.40) must be propor-
tional to the vectoQ i (¢+), Qx| ((rq), -, Qx (¢r¢?')) so that the previous results admit the fol-
lowing reformulation:

"The proof given previously holds for both the cadesven and odd just changifg into [N] everywhere.
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Theorem 5. The pairs of eigenvectots;,|) and|t_ ;) of T(\) are in one-to-one correspondence
with the polynomial®) ;| (A) of maximal orde2IN which have the asymptotids (Dl42) and satisfy
the Baxter equation (4.87) witty, (A) being an even Laurent polynomial iof degreeN.

As in the case oN odd this reformulation allows the classification and camngton of the spectrum
of T(\) by the analysis of the solutions to the system of the Bethatéans.

E. Asymptotics of Yang-Baxter generators

From the known form of the Lax operator we derive the follogvasymptotics foh — +oco and0
of the generators of the Yang-Baxter algebras.

N odd: The leading operators aEEN()\) andCy(A) with asymptotics:

N (—1)1+e N
Bx()) = <H ““) ( AN v AN ] gavg—”“> + sub-leading  (E.43)

a=1 a=la
N (1

Cn(N) = <H "’”“) ( AN H ”ag AN Hg o ) + sub-leading  (E.44)
a=1

N even: The leading operators afe;(\) andDy (\) with asymptotics:

N (—1)tte N
Ax()\) = (H ““) ( AN H ”“ + AN H gaug—1>“> + sub-leading  (E.45)

a=1
N v(fl)a 14a

Dn(V) = [ ]] 7“ AN H ag + AN H&a - + sub-leading  (E.46)
a=1 a=1 a=1

Note that these asymptotics imply for the SOV-represetiadif the Yang-Baxter generators the
following formula@:

N odd:

zz

o (Y- & o
a=1

a1 Ma

N even:

N N—1
[T& (W) "o wso = <77A 11 m) T (E.48)

a=1 a=1

N—-1
Hsa sov) T owSV = (WH%) T, (E.49)
a=1

8Note that the transformation/S% is meant to act as a similarity transformation in the spadhefepresentation, i.e.
WSOV = wSOVT wherewS© is a non-trivial operator on space of the states.
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Note that taking the average value of the last two formulagetdorN odd:

X, .
Ao _ (—pite
[17=IIvi (E.50)
a=1 a=1
while for N even:

N-1 N

Za=©)" ] 2. [[ Xa»  Zp = Z24(0)*, (E.51)
a=1 a=1

where(O) is the average value of the chai@e
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