
ar
X

iv
:0

91
0.

31
73

v1
  [

he
p-

th
]  

16
 O

ct
 2

00
9

The Sine-Gordon model revisited I

G. Niccoli(2), J. Teschner(2)

(2) Notkestr. 85, 22603 Hamburg, Germany

DESY 09-170

Abstract

We study integrable lattice regularizations of the Sine-Gordon model with the help of the
Separation of Variables method of Sklyanin and the Baxter Q-operators. This allows us to
characterize the spectrum (eigenvalues and eigenstates) completely in terms of polynomial
solutions of the Baxter equation with certain properties. This result is analogous to the
completeness of the Bethe ansatz.
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1. Introduction

1.1

The study of the Sine-Gordon model has a long history. It has in particular served as an important
toy model for interacting quantum field theories. The integrability of this model gives access to
detailed non-perturbative information about various characteristic quantities, which allows one to
check physical ideas about quantum field theory against exact quantitative results.

It is particularly fascinating to compare the Sine-Gordon model with the Sinh-Gordon model. The
Hamiltonian densityhSG of the Sine-Gordon model and the corresponding objecthShG of the Sinh-
Gordon model,

H =

∫ R

0

dx

4π
h(x) ,

hSG = Π2 + (∂xφ)2 + 8πµ cos(2βφ) ,

hShG = Π2 + (∂xφ)2 + 8πµ cosh(2bφ) ,
(1.1)

are related by analytic continuation w.r.t. the parameterβ and settingβ = ib. The integrability of
both models is governed by the same algebraic structureUq(ŝl2) with q = e−πiβ2

. This leads one to
expect that both models should be closely related, or at least have the same “degree of complexity”.

The physics of these two models turns out to be very different, though. Many of the key objects
characteristic for the respective quantum field theories are not related by analytic continuation in
the usual sense. While the Sine-Gordon model has much richerspectrum of excitations and scat-
tering theory in the infrared (infiniteR) limit, one may observe rather intricate structures in the
UV-limit of the Sinh-Gordon model [Za06], which turn out to be related to the Liouville theory
[ZZ95, T08a, BT09]. These differences can be traced back to the fact that the periodicity of the in-
teraction term8πµ cos(2βφ) of the Sine-Gordon model allows one to treat the variableφ as angular
variable parameterizing a compact space, whileφ is truly non-compact in the Sinh-Gordon model.

The qualitative differences between the Sine-Gordon and the Sinh-Gordon model can be seen as a
simple model for the differences between Nonlinear Sigma-Models on compact and non-compact
spaces respectively. This forms part of our motivation to revisit the Sine-Gordon model in a way that
makes comparison with the Sinh-Gordon model easier.

1.2

A lot of important exact results are known about the Sine-Gordon model. Well-understood are in
particular the scattering theory in the infinite volume. Thespectrum of elementary particle excita-
tions and the S-matrix of the theory are known exactly [KT77,Za77, FST80, Ko80]. Relatedly, there
is a wealth of information on the form-factors of local fields, see e.g. [Sm92, BFKZ, LZ01] for the
state of the art and further references. In the case of finite spacial volume, the nonlinear integral
equations1 derived by Destri and De Vega [DDV92, DDV94, DDV97, FRT99] give a powerful tool
for the study of the finite-size corrections to the spectrum of the Sine-Gordon model.

1This type of equations were before introduced in a differentframework in [KP91, KBP91]
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However, there are several questions, some of them fairly basic, where our understanding does not
seem to be satisfactory. We do not have exact results on correlation functions on the one hand, or on
expectation values of local fields in the finite volume on the other hand at present.

Even the present level of understanding of the spectrum of the model does not seem to be fully
satisfactory. The truth of the commonly accepted hypothesis that the equations derived by Destri
and De Vega describe all of the states of the Sine-Gordon model has not been demonstrated yet.
The approach of Destri and De Vega is based on the Bethe ansatzin the fermionized version of the
Sine-Gordon model, the massive Thirring model [DDV87]. This approach a priori only allows one
to describe the states with even topological charge, and it inherits from its roots in the algebraic
Bethe ansatz some difficulties like the issue of its completeness.

This paper is intended as a first step in a program to address the above-mentioned deficiencies in our
understanding of the Sine-Gordon model. Our aim in this paper is to create a new fundament for
future studies the Sine-Gordon model which we hope to be solid enough to build the theory higher
than before.

1.3

To this aim we will use a lattice regularization of the Sine-Gordon model that is different from the
one used by Destri and De Vega. It goes back to [FST80, IK82], and it is related to formulations
of the lattice Sine-Gordon model which have more recently been studied in [FV94, BBR96, Ba08].
In this class of lattice models one may introduce a certain number of “inhomogeneity” parameters.
It has been observed in the past that the algebraic Bethe ansatz approach can be used for certain
special values of the parameters of the model. However, we will instead focus on the values of the
parameters, where the algebraic Bethe ansatz isnotapplicable due to non-existence of the reference
state. Our approach will instead be based on the combinationof Separation of Variables method
(SOV-method) of Sklyanin [Sk85, Sk92, Sk95] with the use of the Q-operators introduced by Baxter
[Ba73].

One of the main advantages of this approach is due to the fact that one directly works with the
discretized Sine-Gordon degrees of freedom, which is not the case in the lattice formulation used
by Destri and De Vega. Working more directly with the Sine-Gordon degrees of freedom should be
useful for the problem to calculate expectation values of local fields. This in particular requires the
determination of the SOV representation of local fields analogously to what has been done in the
framework of the algebraic Bethe ansatz in [KMT99, MT00]. The SOV-method in principle offers
a rather direct way to the construction of the expectation values, as illustrated in the case of the
Sinh-Gordon model by the work [Lu01].

We will furthermore see that our approach allows us to get a very satisfactory understanding of the
spectrum of the lattice model. The SOV method replaces the more traditional Bethe ansatz as a
tool to construct the eigenstates of the transfer matrix corresponding to the solutions of an algebraic
system of equations which is very similar to those appearingin the algebraic Bethe ansatz method.
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In the present case we will be able to show that a complete set of eigenstates can be obtained in
this way, an issue which is analogous to the problem of completeness of the Bethe ansatz. We
furthermore prove the simplicity of the spectrum of the transfer matrix in the generic case. We will
show in a future publication that the results of our approachare fully consistent with the results of
Destri and De Vega.

Acknowledgements.We would like to thank V. Bazhanov and F. Smirnov for stimulating discussions, and J.-M.
Maillet for interest in our work.

We gratefully acknowledge support from the EC by the Marie Curie Excellence Grant MEXT-CT-2006-042695.

2. Definition of the model

2.1 Classical Sine-Gordon model

The classical counterpart of the Sine-Gordon model is a dynamical system whose degrees of freedom
are described by the fieldφ(x, t) defined for(x, t) ∈ [0, R] × R with periodic boundary conditions
φ(x + R, t) = φ(x, t). The dynamics of this model may be described in the Hamiltonian form in
terms of variablesφ(x, t), Π(x, t), the Poisson brackets being

{Π(x, t) , φ(x′, t) } = 2π δ(x− x′) .

The time-evolution of an arbitrary observableO(t) is then given as

∂tO(t) = {H , O(t) } ,

with HamiltonianH being defined in (1.1).

The equation of motion for the Sine-Gordon model can be represented as a zero curvature condition,

[ ∂t − V (x, t;λ) , ∂σ − U(x, t;λ) ] = 0 , (2.2)

with matricesU(x, t;λ) andV (x, t;λ) being given by

U(x, t;λ) =

(
iβ
2 Π −im(λe−iβφ − λ−1eiβφ)

−im(λeiβφ − λ−1e−iβφ) −iβ
2 Π

)

V (x, t;λ) =

(
iβ
2φ

′ +im(λe−iβφ + λ−1eiβφ)

+im(λeiβφ + λ−1e−iβφ) −iβ
2φ

′

) (2.3)

andm related toµ bym2 = πβ2µ.

2.2 Discretization and canonical quantization

In order to regularize the ultraviolet divergences that arise in the quantization of these models we will
pass to integrable lattice discretizations. First discretize the field variables according to the standard
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recipe

φn ≡ φ(n∆) , Πn ≡ ∆Π(n∆) ,

where∆ = R/N is the lattice spacing. In the canonical quantization one would replaceφn, Πn by
corresponding quantum operators with commutation relations

[φn , Πn ] = 2πiδn,m . (2.4)

Planck’s constant can be identified withβ2 by means of a rescaling of the fields.

The scheme of quantization of the Sine-Gordon model considered in this paper will deviate from
the canonical quantization by usingei β

2
Πn ande−iβφn as basic variables. For technical reasons we

will consider representations where bothun andvn have discrete spectrum. Let us therefore take a
moment to explain why one may nevertheless expect that the resulting quantum theory will describe
the quantum Sine-Gordon model in the continuum limit.

First note (following the discussion in [Za94]) that the periodicity of the potential8πµ cos(2βφ) in
(1.1) implies that shifting the zero modeφ0 ≡ 1

R

∫ R

0 dxφ(x) by the amountπ/β is a symmetry.

In canonical quantization one could build the unitary operator W = e
i

2β
Rp0 which generates this

symmetry out of the zero modep0 ≡ 1
R

∫ R

0
dxΠ(x) of the conjugate momentumΠ. W should

commute with the HamiltonianH. One may therefore diagonalizeW andH simultaneously, leading
to a representation for the space of states in the form

H ≃

∫

S1

dα Hα where W · Hα = eiαHα . (2.5)

An alternative way to take this symmetry into account in the construction of the quantum theory is
to construct the quantum theory separately for eachα-sector. This implies that the fieldφ should
be treated as periodic with periodicityπ/β, and that the conjugate variablesΠn have eigenvalues
quantized in units ofβ, with spectrum contained in{ 2αβ/N + 4πβk ; k ∈ Z }. The spectrum of
Πn is such that the operatorW = e

i
2β

Rp0 , with Rp0 approximated by
∑N

n=1 Πn, is realized as the
operator of multiplication byeiα.

Let us furthermore note that it is possible, and technicallyuseful to assume that the lattice field
observableφn has discrete spectrum, which we will take to be quantized in units of β. In order to
see this, note that the fieldφ(x) is not a well-defined observable due to short-distance singularities,
whereas smeared fields like

∫
I dxφ(x), I ⊂ [0, R] may be well-defined. The observable

∫
I dxφ(x)

would in the lattice discretization be approximated by

φ[I] ∼
∑

n∆∈I

∆φn . (2.6)

So even ifφn is discretized in units ofβ, say, we find that the observableφ[I] is quantized in units
of ∆β, which fills out a continuum for∆ → 0.
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2.3 Non-canonical quantization

As motivated above, we will use a quantization scheme based on the quantum counterparts of the
variablesun, vn n = 1, . . . ,N related toΠn, φn as

un = ei β

2
Πn , vn = e−iβφn . (2.7)

The quantization of the variablesun, vn produces operatorsun, vm which satisfy the relations

unvm = qδnmvmun , where q = e−πiβ2

. (2.8)

We are looking for representations for the commutation relations (2.8) which have discrete spectrum
both forun andvn. Such representations exist provided that the parameterq is a root of unity,

β2 =
p′

p
, p, p ∈ Z

>0 . (2.9)

We will restrict our attention to the casep odd andp′ even so thatqp = 1. It will often be convenient
to parameterizep as

p = 2l+ 1 , l ∈ Z
≥0 . (2.10)

Let us consider the subsetSp = {q2n;n = 0, . . . , 2l} of the unit circle. Note thatSp = {qn;n =

0, . . . , 2l} sinceq2l+2 = q. This allows us to represent the operatorsun, vn on the space of complex-
valued functionsψ : SN

p → C as

un · ψ(z1, . . . , zN) = unznψ(z1, . . . , zn, . . . , zN) ,

vn · ψ(z1, . . . , zN) = vnψ(z1, . . . , q
−1zn, . . . , zN) .

(2.11)

The representation is such that the operatorun is represented as a multiplication operator. The
parametersun, vn introduced in (2.11) can be interpreted as “classical expectation values” of the
operatorsun andvn. The discussion in the previous subsection suggests that thevn will be irrelevant
in the continuum limit, while the average value ofun will be related to the eigenvalueeiα of W via
un = exp(iβ2α/N).

2.4 Lattice dynamics

There is a beautiful discrete time evolution that can be defined in terms of the variables introduced
above which reproduces the Sine-Gordon equation in the classical continuum limit [FV94]. It is
simplest in the case whereun = 1, vn = 1, n = 1, . . . ,N. We will mostly2 restrict to this case in
the rest of this paper. More general cases were treated in [BBR96, Ba08].

2Except for Section 3.
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2.4.1 Parameterization of the initial values

As a convenient set of variables let us introduce the observablesfk defined as

f2n ≡ e−2iβφn , f2n−1 ≡ ei β

2
(Πn+Πn−1−2φn−2φn−1) . (2.12)

These observables turn out to represent the initial data fortime evolution in a particularly convenient
way. The quantum operatorsfn which correspond to the classical observablesfn satisfy the algebraic
relations

f2n±1 f2n = q2 f2n f2n±1 , q = e−πiβ2

, fn fn+m = fn+m fn for m ≥ 2 . (2.13)

There exist simple representations of the algebra (2.13) which may be constructed out of the opera-
torsun, vn, given by

f2n = v2
n , f2n−1 = unun−1 . (2.14)

The change of variables defined in (2.14) is invertible ifN is odd.

2.4.2 Discrete evolution law

Let us now describe the discrete time evolution proposed by Faddeev and Volkov [FV94]. Space-
time is replaced by the cylindric lattice

L ≡
{

(ν, τ) , ν ∈ Z/NZ , τ ∈ Z , ν + τ = even
}
.

The condition thatν+ τ is even means that the lattice is rhombic: The lattice pointsclosest to(ν, τ)
are(ν± 1, τ +1) and(ν± 1, τ − 1). We identify the variablesfn with the initial values of a discrete
”field” fν,τ as

f2r,0 ≡ f2r , f2r−1,1 ≡ f2r−1 .

One may then extend the definition recursively to all(ν, τ) ∈ L by means of the evolution law

fν,τ+1 ≡ gκ

(
qfν−1,τ

)
· f−1

ν,τ−1 · gκ

(
qfν+1,τ

)
, (2.15)

with functiong defined as

gκ(z) =
κ2 + z

1 + κ2z
(2.16)

whereκ plays the role of a scale-parameter of the theory. We refer to[FV94] for a nice discus-
sion of the relation between the lattice evolution equation(2.15) and the classical Hirota equation,
explaining in particular how to recover the Sine-Gordon equation in the classical continuum limit.
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2.4.3 Construction of the evolution operator

In order to construct the unitary operatorsU that generate the time evolution (2.15) let us introduce
the function

Wλ(q2n) =

n∏

r=1

1 + λq2r−1

λ+ q2r−1
, (2.17)

which is cyclic, i.e. defined onZp. The functionWλ(z) is a solution to the functional equation

(z + λ)Wλ(qz) = (1 + λz)Wλ(q−1z) , (2.18)

which satisfies the unitarity relation

(Wλ(z))∗ = (Wλ∗(z))−1 . (2.19)

Note in particular thatWλ(z) is ”even”, i.e.Wλ(z) = Wλ(1/z). Further properties of this function
are collected in Appendix A.

Let us then consider the operatorU, defined as

U =

N∏

n=1

Wκ−2(f2n) · U0 ·

N∏

r=1

Wκ−2(f2n−1) , (2.20)

whereU0 is the parity operator that acts asU0 · fk = f−1
k ·U0. It easily follows from (2.18) thatU is

indeed the generator of the time-evolution (2.15),

fν,τ+1 = U−1 · fν,τ−1 · U . (2.21)

One of our tasks is to exhibit the integrability of this discrete time evolution.

3. Separation of variables

In order to exhibit the integrability one needs to constructa mutually commutative familyQ of
self-adjoint operatorsT such that

(A) [ T , T′ ] = 0,

(B) [ T , U ] = 0,

(C) if [ T , O ] = 0 ,

∀T,T′ ∈ Q ,

∀T ∈ Q ,

∀T ∈ Q, then O = O(Q) ,

(3.1)

whereU is the unitary time-evolution operator. We will use the quantum inverse scattering method
[FST80] to first construct the familyQ. The Separation of Variables (SOV) method of Sklyanin as
developed for lattice Sine-Gordon model in this section will then allow us to take an important step
towards the simultaneous diagonalization of the familyQ.



11

3.1 T-operators

As usual in the quantum inverse scattering method, we will represent the familyQ by means of a
Laurent-polynomialT(λ) which depends on the spectral parameterλ. The definition of operators
T(λ) for the models in question is standard. It is of the general form

T(λ) = tr
C2M(λ) , M(λ) ≡ LN(λ/ξN) . . . L1(λ/ξ1) , (3.2)

where we have introduced inhomogeneity parametersξ1, . . . , ξN as a useful technical device. The
L-matrix may be chosen as

LSG

n (λ) =
κn

i

(
i un(q−

1
2κnvn + q+

1
2κ−1

n v−1
n ) λnvn − λ−1

n v−1
n

λnv−1
n − λ−1

n vn i u−1
n (q+

1
2κ−1

n vn + q−
1
2 κnv−1

n )

)
. (3.3)

An important motivation for the definitions (3.2), (3.3) comes from the fact that the Lax-matrix
LSG

n (λ) reproduces the Lax-connectionU(x) in the continuum limit (2.2).

The elements of the matrixM(λ) will be denoted by

M(λ) =

(
A(λ) B(λ)

C(λ) D(λ)

)
. (3.4)

They satisfy commutation relations that may be summarized in the form

R(λ/µ) (M(λ) ⊗ 1) (1 ⊗ M(µ)) = (1 ⊗ M(µ)) (M(λ) ⊗ 1)R(λ/µ) , (3.5)

where the auxiliary R–matrix is given by

R(u) =




qλ− q−1λ−1

λ− λ−1 q − q−1

q − q−1 λ− λ−1

qλ− q−1λ−1



 . (3.6)

It will be useful for us to regard the definition (3.2) as the construction of operators which generate
a representationRN of the so-called Yang-Baxter algebra defined by the quadratic relations (3.5).
The representationRN is characterized by the4N parametersκ = (κ1, . . . , κN), ξ = (ξ1, . . . , ξN),
u = (u1, . . . , uN) andv = (v1, . . . , vN).

The fact that the elements ofM(λ) satisfy the commutation relations (3.5) forms the basis forthe
application of the quantum inverse scattering method. The mutual commutativity of the T-operators,

[ T(λ) , T(µ) ] = 0 , (3.7)

follows from (3.5) by standard arguments. The expansion ofT(λ) into powers ofλ producesN
algebraically independent operatorsT1, . . . ,TN. Our main objective in the following will be the
study of the spectral problem forT(λ). The importance of this spectral problem follows from the
fact that the time-evolution operatorU of the lattice Sine-Gordon model will be shown to commute
with T(λ) in the next section.
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3.2 The SOV-representation

The separation of variables method of Sklyanin [Sk85]-[Sk95] is based on the observation that the
spectral problem forT(λ) simplifies considerably if one works in an auxiliary representation where
the commutative familyB(λ) of operators is diagonal. In the following section we will discuss a
family of representations of the Yang-Baxter algebra (3.5)that has this property. We will refer to
this class of representations as the SOV-representations.We will subsequently show that our original
representation introduced in (3.2), (3.3) is indeed equivalent to a certain SOV-representation.

The operators representing (3.5) in the SOV-representation relevant for the case of a lattice withN
sites will be denoted as

MSOV(λ) =

(
AN(λ) BN(λ)

CN(λ) DN(λ)

)
. (3.8)

We will now describe the representation of the algebra (3.5)in whichBN(λ) acts diagonally.

3.2.1 The spectrum ofBN(λ)

By definition, we require thatBN(λ) is represented by a diagonal matrix. In order to parameterize
the eigenvalues, let us fix a tupleζ = (ζ1, . . . , ζN) of complex numbers such thatζp

a 6= ζp
b for

a 6= b. The vector spaceCpN

underlying the SOV representation will be identified with the space of
functionsΨ(η) defined forη taken from the discrete set

BN ≡
{

(qk1ζ1, . . . , q
kNζN) ; (k1, . . . , kN) ∈ Z

N
p

}
. (3.9)

The SOV-representation is characterized by the property thatB(λ) acts on the functionsΨ(η), η =

(η1, . . . , ηN) ∈ BN as a multiplication operator,

BN(λ)Ψ(η) = ηeN
N bη(λ)Ψ(η) , bη(λ) ≡

N∏

n=1

κn

i

[N]∏

a=1

(λ/ηa − ηa/λ) ; (3.10)

we have used the notationeN = 1 for evenN, eN = 0 otherwise, and[N] ≡ N − eN. We see
that η1, . . . , η[N] represent the zeros ofbη(λ). In the case of evenN it turns out that we need a
supplementary variableηN in order to be able to parameterize the spectrum ofB(λ).

3.2.2 Representation of the remaining operators

Given thatBN(λ) is represented as in (3.10), it can be shown [Sk85]-[Sk95]3 that the representation
of the remaining operatorsAN(λ), CN(λ) DN(λ) is to a large extend determined by the algebra (3.5).
First note (see e.g. [BT09, Appendix C.2] for a proof) that the so-called quantum determinant

detq(M(λ)) ≡ A(λ)D(q−1λ) − B(λ)C(q−1λ) (3.11)

3See [BT09] for the case of the Sinh-Gordon model which is verysimilar to the case at hand.
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generates central elements of the algebra (3.5). In the representation defined by (3.2), (3.3) we find
thatλ2Ndetq(M(λ)) is a polynomial inλ2 of order2N. We therefore require that

AN(λ)DN(q−1λ) − BN(λ)CN(q−1λ) = ∆N(λ) · id , (3.12)

with λ2N∆N(λ) being a polynomial inλ2 of order2N.

The algebra (3.5) furthermore implies thatAN(λ) andDN(λ) can be represented in the form

AN(λ) = eN bη(λ)

[
λ

ηA

T+
N −

ηA

λ
T−

N

]
+

[N]∑

a=1

∏

b6=a

λ/ηb − ηb/λ

ηa/ηb − ηb/ηa
aN(ηa)T−

a , (3.13)

DN(λ) = eN bη(λ)

[
λ

ηD

T−
N −

ηD

λ
T+

N

]
+

[N]∑

a=1

∏

b6=a

λ/ηb − ηb/λ

ηa/ηb − ηb/ηa
dN(ηa)T+

a , (3.14)

whereT±
a are the operators defined by

T±
a Ψ(η1, . . . , ηN) = Ψ(η1, . . . , q

±1ηa, . . . , ηN) .

The expressions (3.13) and (3.14) contain complex-valued coefficientsηA, ηD, aN(ηr) anddN(ηr).
The coefficientsaN(ηr) anddN(ηr) are restricted by the condition

∆N(ηr) = aN(ηr)dN(q−1ηr) , ∀r = 1, . . . ,N , (3.15)

as follows from the consistency of (3.12), (3.10), (3.13) and (3.14). This leaves some freedom in the
choice ofaN(ηr) anddN(ηr) that will be further discussed later.

The operatorCN(λ) is finally defined such that the quantum determinant condition (3.12) is satisfied.

3.2.3 Central elements

For the representations in question, the algebra (3.5) has alarge center. For its description let us,
following [Ta91], define the average valueO of the elements of the monodromy matrixMSOV(λ) as

O(Λ) =

p∏

k=1

O(qkλ) , Λ = λp, (3.16)

whereO can beAN, BN, CN or DN.

Proposition 1. The average valuesAN(Λ), BN(Λ), CN(Λ), DN(Λ) of the monodromy matrixM(λ)

elements are central elements.

The proposition is proven in [Ta91], see Appendix C.2 for an alternative proof. The average values
are of course unchanged by similarity transformations. They therefore represent parameters of the
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representation. Let us briefly discuss how these parametersare related to the parameters of the SOV
representations introduced above.

First, let us note thatBN(Λ) is easily found from (3.10) to be given by the formula

BN(Λ) = ZeN
N

N∏

n=1

Kn

ip

[N]∏

a=1

(Λ/Za − Za/Λ) ,
Za ≡ ηp

a ,

Ka ≡ κp
a .

(3.17)

The valuesAN(Zr) andDN(Zr) are related to the coefficientsaN(qkηr) anddN(qkηr) by

AN(Zr) ≡

p∏

k=1

aN(qkηr) , DN(Zr) ≡

p∏

k=1

dN(qkηr) . (3.18)

Note that the condition (3.15) leaves some remaining arbitrariness in the choice of the coefficients
aN(η), dN(η). The gauge transformations

Ψ(η) ≡
N∏

r=1

f(ηr)Ψ
′(η) , (3.19)

induce a change of coefficients

a′N(ηr) = aN(ηr)
f(q−1ηr)

f(ηr)
, d′N(ηr) = dN(ηr)

f(q+1ηr)

f(ηr)
, (3.20)

but clearly leaveAN(Zr) andDN(Zr) unchanged. The dataAN(Zr) andDN(Zr) therefore charac-
terize gauge-equivalence classes of representations forAN(λ) andDN(λ) in the form (3.13).

3.3 Existence of SOV-representation for the lattice Sine-Gordon model

We are looking for an invertible transformationWSOV that maps the lattice Sine-Gordon model
defined in the previous sections to a SOV-representation,

(WSOV)−1 · MSOV(λ) · WSOV = M(λ) . (3.21)

ConstructingMSOV(λ) is of course equivalent to the construction of a basis forH consisting of
eigenvectors〈 η | of B(λ),

〈 η |B(λ) = ηeN
N bη(λ) 〈 η | . (3.22)

The transformationWSOV is then described in terms of〈 η | z 〉 as

(WSOVψ)(η) =
∑

z∈(Sp)N

〈 η | z 〉ψ(z) . (3.23)

The existence of an eigenbasis forB(λ) is not trivial sinceB(λ) is not a normal operator. It turns out
that such a similarity transformation exists for generic values of the parametersu, v, ξ andκ.
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Theorem 1. — Existence of SOV-representation for the lattice Sine-Gordon model —

For generic values of the parametersu, v, ξ andκ there exists an invertible operatorWSOV : H →

HSOV which satisfies (3.21).

The proof is given in Appendix C. It follows from (3.13), (3.14) that the wave-functionsΨt(η) =

〈 η | t 〉 of eigenstates| t 〉 must satisfy the discrete Baxter equations

t(ηr)Ψ(η) = a(ηr)T
−
a Ψ(η) + d(ηr)T

+
a Ψ(η) , (3.24)

wheren = 1, . . . ,N. Equation (3.24) represents a system ofpN linear equations for thepN different
componentsΨ(η) of the vectorΨ. It may be written in the formDt ·Ψ = 0, whereDt is apN × pN-
matrix that depends ont = t(λ). The condition for existence of solutionsdetDt = 0 is a polynomial
equation of orderpN on t(λ). We therefore expect to findpN different solutions, just enough to get
a basis forH.

We will return to the analysis of the spectral problem ofT(λ) in Section 5. Let us now describe
more precisely the set of values of the parameters for which aSOV representation exists.

3.4 Calculation of the average values

Necessary condition for the existence ofWSOV is of course the equality

M(Λ) = MSOV(Λ) , (3.25)

of the matrices formed out of the average values ofM(λ) andMSOV(λ), respectively. It turns out
thatM(Λ) can be calculated recursively from the average values of theelements of the Lax matrices
LSG

n (λ), which are explicitly given by

Ln(Λ) =
1

ip

(
Un(K2

nVn + V −1
n ) Kn(ΛVn/Xn −Xn/VnΛ)

Kn(Λ/XnVn −XnVn/Λ) U−1
n (K2

nV
−1
n + Vn)

)
, (3.26)

where we have used the notationsKn = κp
n,Xn = ξp

n, Un = up
n andVn = vp

n. Indeed, we have:

Proposition 2. We have

MN(Λ) = LN(Λ)LN−1(Λ) . . . L1(Λ) . (3.27)

This has been proven in [Ta91], see Appendix C.2 for an alternative proof.

The equality (3.25) defines the mapping between the parametersu, v, κ andξ of the representation
defined in Subsection 3.1 and the parameters of the SOV-representation. Formula (3.27) in particular
allows us to calculateB(Λ) in terms ofu, v, κ andξ. Equation (3.17) then defines the numbers
Za ≡ ηp

a uniquely up to permutations ofa = 1, . . . , [N].

Existence of a SOV-representation in particular requires that Za 6= Zb for all a 6= b, a, b =

1, . . . , [N]. It can be shown (see Appendix C.3) that the subspace of the space of parametersu,
v, κ andξ for which this is not the case has codimension at least one. Sufficient for the existence of
a SOV-representation is the condition that the representationsRM exist for allM = 1, . . . ,N − 1.
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4. Integrability

Let us now introduce the BaxterQ-operatorsQ(µ). These operators are mutually commuting for
arbitrary values of the spectral parametersλ andµ, and satisfy a functional relation of the form

T(λ)Q(λ) = a(λ)Q(q−1λ) + d(λ)Q(qλ) , (4.28)

with a(λ) andd(λ) being certain model-dependent coefficient functions. The generator of lattice
time evolution will be constructed from the specializationof theQ-operators to certain values of the
spectral parameterλ, making the integrability of the evolution manifest.

In the rest of the paper we will restrict to the caseun = 1, vn = 1, n = 1, . . . ,N for the simplicity
of exposition, leaving the general case to a forthcoming publication.

4.1 Q-operators

4.1.1 Construction

In order to construct theQ-operators let us introduce the following renormalized version of the
functionWλ(z),

wλ(q2n) =
n∏

r=1

1 + λq2r−1

λ+ q2r−1

l∏

r=1

λ+ q2r−1

1 + q2r−1
, (4.29)

The functionwλ(z) is the unique solution to the functional equation (2.18) which is a polynomial of
orderl in λ and which satisfies the normalization conditionw1(q

2n) = 1.

TheQ-operators can then be constructed in the form

Q(λ, µ) = Y(λ) · (Y(µ∗))† , (4.30)

whereY(λ) is defined by its matrix elements with

Yλ(z, z′) ≡ 〈 z |Y(λ) | z′ 〉 =

N∏

n=1

wǫλ/κnξn
(zn/z

′
n)wǫλκn/ξn

(znz
′
n+1) , (4.31)

whereǫ = −iq−
1
2 , andwλ(z) is the discrete Fourier transformation ofw(z),

wλ(z) =
1

p

l∑

r=−l

zr wλ(qr) , wλ(y) =

l∑

r=−l

y−r wλ(qr) . (4.32)

Note in particular the normalization conditionw1(q
r) = δr,0.

Despite the fact thatQ(λ, µ) is symmetric inλ andµ, Q(λ, µ) = Q(µ, λ) as follows from the identity
(B.6) proven in Appendix B, will mostly considerµ as a fixed parameter which will later be chosen
conveniently. This being understood we will henceforth write Q(λ) whenever the dependence of
Q(λ, µ) onµ is not of interest.
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4.1.2 Properties

Theorem 2. — Properties ofT- and Q-operators —

(A) A NALYTICITY

The operatorλÑT(λ) is a polynomial inλ2 of degreeÑ := N + eN − 1 while the operator
Q(λ) is a polynomial inλ of maximal degree2lN. In the caseN odd the operatorsQ2lN :=

limλ→∞ λ−2lNQ(λ) andQ0 := Q(0) are invertible operators and the normalization of theQ oper-
ator can be fixed byQ2lN = id.

(B) BAXTER EQUATION

The operatorsT(λ) andQ(λ) are related by the Baxter equation

T(λ)Q(λ) = aN(λ)Q(q−1λ) + dN(λ)Q(qλ) , (4.33)

with coefficient functions

aN(λ) = (−i)N
N∏

r=1

κr/λr(1 + iq−
1
2 λrκr)(1 + iq−

1
2λr/κr) ,

dN(λ) = (+i)N
N∏

r=1

κr/λr(1 − iq+
1
2 λrκr)(1 − iq+

1
2λr/κr) .

(4.34)

(C) COMMUTATIVITY

[ Q(λ) , Q(µ) ] = 0 ,

[ T(λ) , Q(µ) ] = 0 ,
∀λ, µ . (4.35)

(S) SELF-ADJOINTNESS

Under the assumptionξr andκr real or imaginary numbers, the following holds:

(T(λ))† = T(λ∗) , (Q(λ))† = Q(λ∗) . (4.36)

It follows from these properties thatT(λ) andQ(µ) can be diagonalized simultaneously for allλ, µ.
The eigenvaluesQ(λ) of Q(λ) must satisfy

t(λ)Q(λ) = aN(λ)Q(q−1λ) + dN(λ)Q(qλ) . (4.37)

The proof of Theorem 1 is given in Appendix B.

4.2 Integrability

In order to recover the light-cone dynamics discussed in subsection 2.4, let us temporarily return to
the homogeneous case whereξn = 1 andκn = κ for n = 1, . . . ,N. Let us note that the operators
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Y(λ) simplify whenλ is sent to0 or ∞. Multiplying by suitable normalization factors one find the
unitaryoperators

Y0 ≡ γN
0 Y(0) and Y∞ ≡ lim

µ→∞
γN
∞ µ−2lNY(µ) ,

whereγ0 =
∏l

r=1(1 − q4r) andγ∞ = (−1)lql
∏l

r=1(1 − q4r−2). The operatorsY0 andY∞ have
the simple matrix elements

〈 z |Y0 | z
′ 〉 =

N∏

n=1

q−2kn(k′

n+k′

n+1) ,

〈 z |Y∞ | z′ 〉 =
N∏

n=1

q+2kn(k′

n+k′

n+1) ,

if






z = (q2k1 , . . . , q2kN),

z
′ = (q2k′

1 , . . . , q2k′

N),




 (4.38)

and
Q+(λ) = Y(λ) · Y†

∞ , Q−(λ) =
(
Y(λ) · Y†

0

)−1
(4.39)

Integrability follows immediately from the following observation:

U = ακ U+ · U−, U+ = Q+(1/κǫ), U− = Q−(κ/ǫ), (4.40)

whereακ ≡
∏l

r=1(1− q
4r−2)2N/(κ2− q4r−2)2N. The proof can be found in Appendix B. It is very

important to remark that there is of course no problem to construct time evolution operators in the
inhomogeneous cases by specializing the spectral parameter of theQ-operator in a suitable way. We
are just not able to represent the time evolution as simple asin (2.15). One will still have a lattice
approximation to the time evolution in the continuum field theory as long as the inhomogeneity
parameters are scaled to unity in the continuum limit.

5. The spectrum

Let us now return to the analysis of the spectrum of the model.For simplicity we will consider here
the case of oddN, while we will discuss the case of evenN in appendix D. The existence of the
SOV representation allows one to reformulate the spectral problem forT(λ) as the problem to find
all solution of the discrete Baxter equations (3.24). This equation may be written in the form

Dr Ψ(η) = 0 , Dr ≡ a(ηr)T
−
a + d(ηr)T

+
a − t(ηr) , (5.41)

wherer = 1, . . . ,N. Previous experience with the SOV method suggests to consider the ansatz

Ψt(η) =

N∏

r=1

Qt(ηr) , (5.42)

whereQt(λ) is the eigenvalue of the correspondingQ-operator which satisfies thefunctionalBaxter
equations

t(λ)Qt(λ) = aN(λ)Qt(q
−1λ) + dN(λ)Qt(qλ) . (5.43)
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This approach will turn out to work, but in a way that is more subtle than in previously analyzed
cases.

5.1 States from solutions of the Baxter equation

First, in the present case it is not immediately clear if the functional Baxter equation (5.43) and the
discrete Baxter equation (5.41) are compatible. The question is if one can always assume that the
coefficientsa(ηr) andd(ηr) in (5.41) coincide with the coefficientsaN(ηr), dN(ηr) appearing in the
functional equation (5.43) satisfied by theQ-operator. The key point to observe is contained in the
following Lemma.

Lemma 1. Let AN(Λ) andDN(Λ) be the average values of the coefficientsaN(λ) anddN(λ) of the
Baxter equation (5.43),

AN(Λ) ≡

p∏

k=1

aN(qkηr) , DN(Λ) ≡

p∏

k=1

dN(qkηr) . (5.44)

We then have

AN(Λ) = AN(Λ) − BN(Λ) , DN(Λ) = AN(Λ) + BN(Λ) . (5.45)

Proof. The claim is checked forN = 1 by straightforward computation. Let us assume now that the
statement holds forN − 1 and let us show it forN. The average valuesAN(Λ) andDN(Λ) satisfy by
definition the factorization:

AN(Λ) = A
(N)
1 (Λ)A

(N−1,...,1)
N−1 (Λ), DN(Λ) = D

(N)
1 (Λ)D

(N−1,...,1)
N−1 (Λ), (5.46)

where the upper indices are referred to the quantum sites involved while the lower indices to the total
number of sites. We can use now the induction hypothesis to get the result:

AN(Λ) = (A
(N)
1 − B

(N)
1 (Λ))(A

(N−1,...,1)
N−1 (Λ) − B

(N−1,...,1)
N−1 (Λ)) = AN(Λ) − BN(Λ), (5.47)

DN(Λ) = (A
(N)
1 + B

(N)
1 (Λ))(A

(N−1,...,1)
N−1 (Λ) + B

(N−1,...,1)
N−1 (Λ)) = AN(Λ) + BN(Λ), (5.48)

where in the last formulae we have used (3.27) together with the fact thatAN(Λ) = DN(Λ) and
BN(Λ) = CN(Λ) for un = 1, vn = 1, n = 1, . . . ,N.

The Lemma implies in particular

AN(Zr) = AN(Zr) , DN(Zr) = DN(Zr) , (5.49)

for all r = 1, . . . ,N. We may therefore always find a gauge transformation (3.20) such that the
coefficientsaN(ηr) anddN(ηr) in (5.41) become equal to

aN(ηr) = aN(ηr) , dN(ηr) = dN(ηr) , (5.50)
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respectively. So from now on we will denote also the coefficients in (3.24) witha andd omitting the
indexN unless necessary. The ansatz (5.42) therefore indeed yields an eigenstate ofT(λ) for each
solutionQt(λ) of the functional Baxter equation (4.37). We are going to show thatall eigenstates
can be obtained in this way.

5.2 Non-degeneracy ofT(λ)-eigenvalues

In order to analyze the equations (5.41), let us note that thematrix representation of the operatorDr

defined in (5.41) is block diagonal with blocks labeled byn = 1, . . . ,N. Let Ψn(η) ∈ Cp be the
vector with components

Ψrk(η) = Ψt(η1, . . . , ηr−1, ζrq
k, ηr+1, . . . , ηN) .

Equation (5.41) is then equivalent to the set of linear equations

D(r) · Ψr(η) = 0 , r = 1, . . . ,N . (5.51)

whereD(r) is thep× p-matrix





t(ζr) −d(ζr) 0 · · · 0 −a(ζr)

−a(qζr) t(qζr) −d(qζr) 0 · · · 0

0
. . .

...
... · · ·

...
... · · ·

...
...

. . . 0

0 . . . 0 −a(q2l−1ζr) t(q2l−1ζr) −d(q2l−1ζr)

−d(q2lζr) 0 . . . 0 −a(q2lζr) t(q2lζr)





(5.52)

The equation (5.51) can have solutions only ifdet(D(r)) = 0. The determinantdet(D(r)) is a
polynomial of degreep in each of theN coefficients of the polynomialt(λ).

Proposition 3. Given thatdet(D(r)) = 0, the dimension of the space of solutions to the equation
(5.51) for anyr = 1, . . . ,N is one for generic values of the parametersξ andκ.

Proof. Let us decompose thep× p matrixD(r) into the block form

D(r) =

(
v(r) E(r)

d(r) w(r)

)
, (5.53)

where the submatrixE(r) is a(p − 1) × (p − 1) matrix,v(r) andw(r) are column and row vectors
with p − 1 components, respectively. We assume thatdet(D(r)) = 0, so existence of a solution to
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D(r)Ψ = 0 is ensured. It is easy to see that the equationD(r)Ψ = 0 has a unique solution provided
thatdet(E(r)) 6= 0.

In remains to show thatdet(E(r)) 6= 0 holds for generic values of the parametersξ andκ. To this
aim let us observe that the coefficientsa(qkζr) andd(qkζr) appearing in (5.51) depend analytically
on the parametersκ. If det(E(r)) = 0 is not identically zero, it can therefore only vanish at isolated
points. It therefore suffices to prove the statement in a neighborhood of the values for the parameters
κ which are such that

a(ζr) = 0 , d(q−1ζr) = 0 . (5.54)

Such values ofκ andξ exist: Settingκn = ±i for n = 1, . . . ,N, one finds that

BN(λp) =

N∏

n=1

(λp/ξp
n − ξp

n/λ
p) , (5.55)

which vanishes forλ = q
1
2 ξn. We may therefore choose4 ζn = q

1
2 ξn. We then find (5.54) from

(4.34), (5.50).

Given that (5.54) holds, it is easy to see thatdet(E(r)) 6= 0 . Indeed, the submatrixE(r)
kl , is lower

triangular if (5.54) is valid, and it has−d(qkζr), k = 0, . . . , p−2 as its diagonal elements. It follows
thatdet(E(r)) =

∏p−2
k=0 d(q

kζr) which is always nonzero if (5.54) is satisfied.

The previous results admit the following reformulation which is central for the classification and
construction of the spectrum ofT(λ):

Theorem 3. For generic values of the parametersκ andξ the spectrum ofT(λ) is simple and all the
wave-functionsΨt(η) can be represented in the factorized form (5.42) withQt being the eigenvalue
of theQ-operator on the eigenstate| t 〉.

The eigenvectors| t 〉 of T(λ) are in one-to-one correspondence with the polynomialsQt(λ) of order
2lN, with Qt(0) 6= 0, which satisfy the Baxter equation (4.37) witht(λ) being an even Laurent
polynomial inλ of degreeN − 1.

Proof. Proposition 3 implies that the spectrum ofT(λ) is simple. Let| t 〉 be an eigenstate ofT(λ).
Self-adjointness and mutual commutativity ofT(λ) andQ(µ) imply that | t 〉 is also eigenstate of
Q(λ). LetQt(λ) be theQ-eigenvalue on| t 〉. The polynomialQt(λ) is related tot(λ) by the Baxter
equation (4.37) which specialized to the valuesλ = ηr yields the equations (5.51). It follows that
there must exist nonzero numbersνr such that

Qt(ζrq
k) = νrΨrk(ζ1, . . . , ζN) . (5.56)

This implies that the wave-functionsΨt(η) can be represented in the form (5.42) withQt being the
eigenvalue of theQ-operator on the eigenstate| t 〉.

4Note that this choice implies thatvn ∈ (−1)p′/2q1/2Sp.
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Remark1. Our proof of existence of a polynomialQt(λ) which allows to represent the wave-
functionsΨt(η) in the factorized form (5.42) is based on the existence of theQ-operator. It would
be interesting if one could bypass the construction of the Q-operator bydefiningQt(λ) via (5.56);
we plan to comeback to this interesting issue in a next publication.

5.3 Connection with the Bethe ansatz

It follows from the property (A) ofQ(λ) thatQ(λ) must be a polynomial of order2lN normalized
by the conditionQ2lN = 1. Such a polynomial is fully characterized by its zerosλ1, . . . , λ2lN,

Q(λ) =

2lN∏

k=1

(λ− λk) . (5.57)

It follows from the Baxter equation (4.37) that the zeros must satisfy the Bethe ansatz equations

a(λr)

d(λr)
= −

2lN∏

s=1

λs − λrq

λs − λr/q
. (5.58)

Conversely, given a solution(λ1, . . . , λ2lN) of the Bethe ansatz equations (5.58), we could try to
construct the polynomialQ(λ) as in equation (5.57). Let

t(λ) =
a(λ)Q(q−1λ) + d(λ)Q(qλ)

Q(λ)
. (5.59)

t(λ) is nonsingular forλ = λk, k = 1, . . . ,M thanks to the Bethe ansatz equations (5.58). However,
in general it is not clear that the functiont(λ) will satisfy t(λ) = t(−λ).

What we need is therefore a characterization of the subset ofthe solutions of the Bethe ansatz
equations (5.58) that yield even functionst(λ) via (5.59). To this aim let us consider the logarithmic
version of the Bethe ansatz equations (5.58),

(2kr + 1)π = log
d(λr)

a(λr)
+

2lN∑

s=1

log
1 − λrq/λs

1 − λr/qλs
. (5.60)

The integerskr are called the Bethe quantum numbers. We are going to argue that t(λ) will satisfy
t(λ) = t(−λ) if the Bethe quantum numberskr are equal in pairs, i.e. if for each indexr there exists
an indexs such thatkr = ks.

In order to see this, let us first introduce the following Lemma which is of interest in its own right.

Lemma 2. For a givent(λ), there is at most one polynomial of degree2lN which satisfies the Baxter
equation (4.37).

Proof. Let us define the q-Wronskian:

W (λ) = Q1(λ)Q2(q
−1λ) −Q2(λ)Q1(q

−1λ) . (5.61)
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written in terms of two solutionsQ1(λ) andQ2(λ) of the Baxter equation; thenW (λ) satisfies the
equation

a(λ)W (λ) = d(λ)T+W (λ) . (5.62)

Note now that Lemma 1 implies:

2l∏

k=0

a(λqk) 6=

2l∏

k=0

d(λqk), ∀λ /∈ BN, (5.63)

so for anyλ /∈ BN the only solution consistent with cyclicity(T+)p = 1 is W (λ) ≡ 0. It is then
easy to see that this implies thatQ1(λ) = Q2(λ).

Let us consider now the caseN even andκ2n+1 = −κ2n. In this case we havea(−λ) = a(λ) and
d(−λ) = d(λ). From the previous Lemma follows in particular that the polynomialsQ(λ) of degree
2lN which solve the Baxter equation (4.37) witht(λ) = t(−λ) must be even,Q(−λ) = Q(λ),
which means that for each indexr there exists an indexr′ such thatλr = −λr′ . A quick inspection
of (5.60) shows that this implies thatkr = kr′ for this case. Note that the solutionsλr of the Bethe
ansatz equations (5.60) depend on the parametersκ = (κ1, . . . , κN). If the dependence ofλr onκ
is smooth in the neighborhood of the submanifold defined by the conditionκ2n+1 = −κ2n, we may
conclude thatkr = kr′ holds for generic values ofκ.

A. Cyclic solutions of the star-triangle relation

It will sometimes be convenient for us to identifyZp ≡ Z/pZ with the subsetSp = {q2n;n =

−l, . . . , l} of the unit circle sinceq2l+1 = 1.

A.1 Definition and elementary properties

A.2 The functionwλ(z)

Let us define a functionwλ : Sp → C by

wλ(q2n) =

n∏

r=1

1 + λq2r−1

λ+ q2r−1

l∏

r=1

λ+ q2r−1

1 + q2r−1
, n = 0, . . . , p− 1 . (A.1)

This function is indeed cyclic (defined onSp) since
∏p

k=1(1 − xq2k) = 1 − xp implies

wλ(q2p) = wλ(q4l+2) = wλ(1) , (A.2)

The functionwλ(z) is the unique solution to the functional equation

(z + λ)wλ(qz) = (1 + λz)wλ(q−1z) , (A.3)
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which is a polynomial of orderl in λ and which satisfies the normalization condition

w1(q
n) = 1 ∀ n ∈ Zp . (A.4)

The functionwλ(z) satisfies the inversion relation

wλ(z)w1/λ(z) = χλ , χλ = λ−l
l∏

r=1

(λ+ q2r−1)(1 + λq2r−1)

(q2r−1 + 1)2
. (A.5)

A.2.1 The functionwλ(z)

Let us also introduce the functionwλ(z) as the discrete Fourier transformation ofwλ,

wλ(z) =
1

p

l∑

k=−l

zk wλ(qk) (A.6)

wλ(z) can be characterized as the unique solution to the functional relation

(1 − λqz)wλ(qz) = (z − qλ)wλ(q−1z) , (A.7)

which is a polynomial of orderl in λ and which satisfies the normalization conditionw1(q
n) = δn,0.

It may therefore be represented by the product

wλ(q2n) =

n∏

r=1

qλ− q2r−1

λq2r − 1

l∏

s=1

λq2s − 1

q2s − 1
. (A.8)

It is also useful to observe thatwλ andwλ are related by complex conjugation as follows:

(wǫλ(z))∗ = wǫλ∗(z)

l∏

s=1

1 − q2s

1 + q2s−1
. (A.9)

This relation makes it easy to deduce properties ofwλ from those ofwλ.

A.2.2 Further functional relations

Let us list further functional relations satisfied by the functionwλ(z).

(λ+ z)wλ(qz) = ql2+l z+ 1
2 (1 + qλ)wqλ(z),

(1 + λ)wλ(qz) = ql2+l z−
1
2 (1 + λz)wλ/q(z),

(1 − qλ)wλ(qz) = q−l2−l z−
1
2 (z − qλ)wqλ(z),

(1 − qλz)wλ(qz) = q−l2−l z+ 1
2 (1 − λ)wλ/q(z).

(A.10)

These relations play a key role in the derivation of the Baxter equation (4.33).
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A.3 Star-triangle relation

One of the most important properties of the functionwλ(x) is the star-triangle relation [FZ82]
∑

x∈Sp

wα(x/u)wαβ(x/v)wβ(x/w) = wα(w/v)wαβ(u/w)wβ(v/u) , (A.11)

see [Ba08] for an elegant proof and references to related work. We are mainly going to use the
following consequence of (A.11) called the exchange relation

∑

y∈Sp

wα(y/u)wβ(y/v)wγ(y/w)wδ(y/x) = (A.12)

=
wβ/α(u/v)

wβ/α(x/w)

∑

y∈Sp

wβ(y/u)wα(y/v)wδ(y/w)wγ(y/x) .

for αγ/βδ = 1. In order to prove (A.12) let us note the relation

∑

z∈Sp

wα(u/z)w1/α(z/v) =
1

p

l∑

k=−l

(u/v)kwα(qk)w1/α(qk) = δu,vχα , (A.13)

sinceχα ≡ wα(z)w1/α(z) is independent ofz. By inserting (A.13) into the left hand side of (A.12)
we may therefore calculate

∑

y∈Sp

wα(u/y)wβ(y/v)wγ(y/w)wδ(x/y) =

= χ−1
α

∑

y∈Sp

∑

z∈Sp

∑

y′∈Sp

wα(y/u)wβ(y/v)wβ/α(y/z) wδ/γ(z/y′)wδ(y
′/x)wγ(y′/w)

= χ−1
α

∑

z∈Sp

wα(v/z)wβ(z/u)wβ/α(u/v) wδ/γ(w/x)wδ(z/w)wγ(x/z) .

The integrals overy andy′ have been carried out with the help of the star-triangle relation (A.11). It
remains to recall thatχ−1

α wδ/γ(w/x) = (wβ/α(w/x))−1 to complete the proof of (A.12).

B. Properties of theQ-operator

B.1 Proof of the Baxter equation

The strategy is similar to [Ba73, BS90]. Consider

T(λ) · 〈 z |Y(λ) | z′ 〉 ≡ 〈 z |T(λ)Y(λ) | z′ 〉 . (B.1)

The operatorT(λ) is the difference operator obtained by replacingLSG

n (λ) → L
SG

n (λ) in (3.2), with
L

SG

n (λ) obtained from (B.2) by replacingun andvn by the corresponding multiplication and shift
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operatorsun andvn defined in (2.11),

L
SG

n =
κn

i

(
−un(ϑ−1

n vn − ϑnv
−1
n ) λnvn − λ−1

n v
−1
n

λnv
−1
n − λ−1

n vn u
−1
n (ϑnvn − ϑ−1

n v
−1
n )

)
. (B.2)

In writing (B.2) we have introduced the short-hand notationϑn = iq
1
2κ−1

n andλr ≡ λ/ξn. Note that
T(λ) acts on the argumentz = (z1, . . . , zN) of Yλ(z, z′), while it does not act onz′. In order to
simplify the expression forT(λ) we may therefore use a gauge-transformation of the form

L̃
SG

n (λ) = gn+1 L
SG
n (λ) g−1

n , gn =

(
1 0

z′n 1

)
. (B.3)

The key point to observe is that

i

κn
L̃

SG

n (λ)21 · Yλ(z, z′) = λ−1
n (z′n + λnϑnun) (z′n+1 + λnϑ

−1
n u

−1
n )v−1

n · Yλ(z, z′)

− λ−1
n (1 + λnϑnz

′
nu

−1
n ) (1 + λnϑ

−1
n z′n+1un)vn · Yλ(z, z′)

= 0 ,

(B.4)

the last step being an easy consequence of the recursion relations (A.3), (A.7) satisfied by the func-
tionswλ(z) andwλ(z) which appear in the kernelYλ(z, z′).

Equation (B.4) implies that

T(λ) · Yλ(z, z′) =

(
N∏

n=1

L̃
SG

n (λ)11 +

N∏

n=1

L̃
SG

n (λ)22

)
· Yλ(z, z′) . (B.5)

We have

L̃
SG

n (λ)11 · Yλ(z, z′) = −
κn

i
z′n
[
ϑ−1

n (zn/z
′
n + λnϑn)vn − λ−1

n (1 + ϑnλnzn/z
′
n)v−1

n

]
· Yλ(z, z′)

= −
κn

i
z′n(λn/ϑ

2
n − 1/λn)

1 + λnϑnzn/z
′
n

1 + znz
′
n+1λn/ϑn

v
−1
n · Yλ(z, z′) .

By using the recursion relations (A.10) one may rewrite thisas

L̃
SG

n (λ)11 · Yλ(z, z′) =
κn

i
(z′n/z

′
n+1)

1
2 (1/λn − 1/ϑn)(1 + q−1λnϑn)Yq−1λ(z, z′) .

We may similarly calculate

L̃
SG

n (λn)22 · Y
r
λ =

κn

i

[
(ϑnz

−1
n + zn+1λn)vn − (ϑ−1

n z−1
n + zn+1λ

−1
n )v−1

n

]
· Yλ(z, z′)

= −
κn

i
(z′n)−1(λn − 1/λnϑ

2
n)

1 + z′n+1znϑn/λn

1 + zn/z
′
nλnϑn

v
−1
n · Yλ(z, z′)

= −
κn

i
(z′n+1/z

′
n)

1
2 (1/λn + q/ϑn)(1 − λnϑn)Yqλ(z, z′) .
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It follows that

N∏

n=1

L̃
SG

n (λ)11 · Yλ(z, z′) =
N∏

n=1

κn

i
(1/λn − 1/ϑn)(1 + q−1λnϑn) · Yq−1λ(z, z′) ,

N∏

n=1

L̃
SG

n (λ)22 · Yλ(z, z′) =

N∏

n=1

iκn(1/λn + q/ϑn)(1 − λnϑn) · Yqλ(z, z′) .

This concludes the proof.

B.2 Proof of the commutativity

The key observation to be made is the fact that the operatorsY(λ) satisfy the exchange relation

Y(λ) · (Y(µ∗))† = Y(µ) · (Y(λ∗))† . (B.6)

This is an easy consequence of the exchange relation (A.12).Since we haveλn/µn = λm/µm for
all n,m = 1, . . . ,N we may calculate

〈 z |Y(λ) (Y(µ∗))† | z′ 〉 =

=
∑

y∈SN
p

N∏

n=1

wǫλn/κn
(zn/yn)wǫλnκn

(znyn+1)wǫµ∗

n/κn
(yn/z

′
n)wǫµ∗

nκn
(yn+1z

′
n)

= φ0

∑

y∈SN
p

N∏

n=1

wǫλn/κn
(zn/yn)wǫµn/κn

(yn/z
′
n)wǫµn−1κn−1

(ynz
′
n−1)wǫλn−1κn−1

(zn−1yn)

= φ0

∑

y∈SN
p

N∏

n=1

wǫµn/κn
(zn/yn)wǫλn/κn

(yn/z
′
n)wǫλn−1κn−1

(ynz
′
n−1)wǫµn−1κn−1

(zn−1yn)

=
∑

y∈SN
p

N∏

n=1

wǫµn/κn
(zn/yn)wǫµnκn

(znyn+1)wǫλ∗

n/κn
(yn/z

′
n)wǫλ∗

nκn
(yn+1z

′
n)

= 〈 z |Y(µ) (Y(λ∗))† | z′ 〉 ,

whereφ0 ≡ (−1)lNq2Nl(l+1) as it follows by formula (A.9). The mutual commutativity of the
operatorsQ is an easy consequence. Let us furthermore note that(a(λ))∗ = d(λ) and(T(λ))† =
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T(λ) for λ ∈ R. Using (B.6) we may calculate

T(λ) · Y(λ) · (Y(µ))† =
[
a(λ)Y(q−1λ) + d(λ)Y(qλ)

]
· (Y(µ))†

= a(λ)Y(µ) · (Y(qλ))† + d(λ)Y(µ) · (Y(q−1λ))†

= Y(µ) ·
[
d(λ)Y(qλ) + a(λ)Y(q−1λ)

]†

= Y(µ) ·
[
T(λ) · Y(λ)

]†

= Y(µ) · (Y(λ))† · T(λ),

which obviously implies[T(λ),Q(λ)] = 0.

B.3 Proof of integrability

In order to prove (4.40) first note that (4.32) allows us to write

〈 zn |wλ(f2n) | z′n 〉 =

l∑

r=−l

〈 zn | f−r
2n | z′n 〉wλ(qr) . (B.7)

Noting that〈 q2kn | f−r
2n | q2k′

n 〉 = 〈 q2kn−2r | q2k′

n 〉 = δr,k′

n−kn
we find that

〈 zn |wλ(f2n) | z′n 〉 = wλ(zn/z
′
n) . (B.8)

Thanks to this identity and (A.4) it is easy to see that

〈 z |Y(1/κǫ) | z′ 〉 =

N∏

n=1

δz′

n,zn
wκ−2(zn/z

′
n) = 〈 z |

N∏

n=1

wκ−2(f2n) | z′ 〉 ,

which implies

Q+(1/κǫ) =

N∏

n=1

wκ−2(f2n) · Y†
∞ . (B.9)

Similarly note that

〈 z |Y(κ/ǫ) | z′ 〉 =

N∏

n=1

wκ2(znz
′
n+1) = 〈 z |

N∏

n=1

wκ2(f2n+1) | z
′ 〉 ,

which implies

Q−(κ/ǫ) = Y0 ·
N∏

n=1

(wκ2(f2n+1))
−1 . (B.10)
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It remains to notice thatY†
∞ · Y0 = U0 to conclude the proof. Indeed, using the notationz =

(q2k1 , . . . , q2kN) andz
′′ = (q2k′′

1 , . . . , q2k′′

N), we may calculate

〈 z |Y†
∞ · Y0 | z

′′〉 =
1

pN

∑

(k′

1,...,k′

N
)∈ZN

p

N∏

n=1

q−2k′

n(kn+kn+1)q−2k′

n(k′′

n+k′′

n+1)

=
N∏

n=1

δkn+kn+1+k′′

n+k′′

n+1
,0 =

N∏

n=1

δkn,−k′′

n

= 〈 z |U0 | z
′′〉 ,

keeping in mind that we consider the case of oddN.

C. Separation of variables

C.1 Construction of an eigenbasis forB(λ)

We will construct the eigenstates〈 η | of B(λ) ≡ BN(λ) recursively by induction onN. The corre-
sponding eigenvaluesB(λ) are parameterized by the tupleη = (ηa)a=1,...,N as

B(λ) = ηeN
N bη(λ) , bη(λ) ≡

N∏

n=1

κn

i

[N]∏

a=1

(λ/ηa − ηa/λ) ; (C.11)

We remind thateN is zero forN odd and1 for N even.

In the caseN = 1 we may simply take〈 η1 | = 〈 v |, where〈 v | is an eigenstate of the operatorv1

with eigenvaluev. It is useful to note that the inhomogeneity parameter determines the subset ofC
on which the variableη1 lives,η1 ∈ ξ1Sp.

Now assume we have constructed the eigenstates〈χ | of BM(λ) for anyM < N. The eigenstates
〈 η |, η = (ηN, . . . , η1), of BN(λ) may then be constructed in the following form

〈 η | =
∑

χ
1

∑

χ
2

K
N
( η |χ

2
;χ

1
) 〈χ

2
| ⊗ 〈χ

1
| , (C.12)

where〈χ
2
| and〈χ

1
| are eigenstates ofBM(λ) andBN−M(λ) with eigenvalues parameterized as in

(C.11) by the tuplesχ
2

= (χ
2a)a=1,...,M andχ

1
= (χ

1a)a=1,...,N−M
, respectively. It suffices to

consider the cases whereN − M is odd.

It follows from the formula

BN(λ) = AM(λ) ⊗ BN−M(λ) + BM(λ) ⊗ DN−M(λ)

≡ A2 M(λ)B1 N−M(λ) + B2 M(λ)D1 N−M(λ)
(C.13)
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that the matrix elementsKN( η |χ
2
;χ

1
) have to satisfy the relations

(
A2 M(λ)B1 N−M(λ) + B2 M(λ)D1 N−M(λ)

)t
K

N
( η |χ

2
;χ

1
)

= ηeN
N

N∏

n=1

κn

i

[N]∏

a=1

(λ/ηa − ηa/λ) KN
( η |χ

2
;χ

1
) ,

(C.14)

where we used the notationOt for the transpose of an operatorO.

Let us assume that

χ1aq
h1 /∈ ∆1, χ2bq

h2 /∈ ∆2 and χ1aq
h1 6= χ2bq

h2 , (C.15)

wherehi ∈ {1, ..., p}, a ∈ {1, ...,N−M} , b ∈ {1, ...,M} and∆i is the set of zeros of the quantum
determinant on the subchaini, with i = 1,2. Under these assumptions5 the previous equations yield
recursion relations for the dependence of the kernels in thevariablesχ1a andχ2b simply by setting
λ = χ1a andλ = χ2b. Indeed forλ = χ1a the first term on the left of (C.14) is killed leading to

T
−

1aKN
( η |χ

2
;χ

1
) d

1
(q−1χ

1a) χeM
M

N−M∏

n=1

i

κn

[M]∏

a=1

(χ
1a/χ2b − χ

2b/χ1a)

= K
N
( η |χ

2
;χ

1
) ηeN

N

[N]∏

b=1

(χ
1a/ηb − ηb/χ1a) ,

(C.16)

while for λ = χ2a one finds similarly

T
+

2aKN
( η |χ

2a;χ
1
) a

2
(q+1χ

2a)
M∏

n=1

i

κn

N−M∏

b=1

(χ
2a/χ1b − χ

1b/χ2a)

= K
N
( η |χ

2
; η

1
) ηeN

N

[N]∏

b=1

(χ
2a/ηb − ηb/χ2a) .

(C.17)

If M is even we find the recursion relation determining the dependence onχ2M by sendingλ → ∞

in (C.14), leading to

T
+

2M
K

N
( η |χ

2
;χ

1
)

1

χ
2A

M−1∏

a=1

1

χ
2a

N−M∏

b=1

1

χ
1b

= K
N
( η |χ

2
; η

1
)

N∏

b=1

1

ηb

. (C.18)

The recursion relations (C.16), (C.17) have solutions compatible with the requirement of cyclicity,
(T

−

1a)p = 1 and(T
+

2a)p = 1 for all values ofa, provided that the algebraic equations

D
1
(χ

1a) (χeM
2M

)p
N−M∏

n=1

ip

κp
n

[M]∏

b=1

(χp
1a/χ

p
2b − χp

2b/χ
p
1a) = (ηeN

N
)p

[N]∏

b=1

(χp
1a/η

p
b − ηb/χ

p
1a) ,

where D1(χ1a) ≡

p∏

k=1

d1(qkχ1a) ,

(C.19)

5The subspace within the space of parameters where these conditions are not satisfied has codimension at least one.
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and

A
2
(χ2a)

M∏

n=1

ip

κp
n

N−M∏

b=1

(χp
2a/χ

p
1b − χp

1b/χ
p
2a) = (ηeN

N
)p

[N]∏

b=1

(χp
2a/η

p
b − χp

b/η
p
2a) ,

where A2(χ2a) ≡

p∏

k=1

a2(q
kχ2a) ,

(C.20)

are satisfied. IfM is even the recursion relation (C.18) yields the additionalrelation

1

χp
2A

M−1∏

a=1

1

χp
2a

N−M∏

b=1

1

χp
1b

=

N∏

b=1

1

ηp
b

. (C.21)

We will show in the next subsection that the equations (C.19)-(C.21) completly determineηp
a in

terms ofχp
2a, χp

1a.

By using (3.17) and (5.49) it is easy to see that the conditions (C.19) and (C.20) are nothing but the
equations

BN(λ) = AM(λ)BN−M(λ) + BM(λ)DN−M(λ), (C.22)

evaluated atλ = χ1a andλ = χ2a, respectively. The relation (C.21) follows from (C.22) in the limit
λ → ∞. The relations (C.22) are implied by (3.27). We conclude that our construction ofB(λ)-
eigenstates will work if the representationsRN, RM andRN−M are all non-degenerate. Theorem 1
follows by induction.

C.2 On average value formulae

Proposition 4. The average values of the Yang-Baxter generators are central elements which satisfy
the following recursive equations:

BN(Λ) = AM(Λ)BN−M(Λ) + BM(Λ)DN−M(Λ), (C.23)

CN(Λ) = DM(Λ)CN−M(Λ) + CM(Λ)AN−M(Λ), (C.24)

and

AN(Λ) = AM(Λ)AN−M(Λ) + BM(Λ)CN−M(Λ), (C.25)

DN(Λ) = DM(Λ)DN−M(Λ) + CM(Λ)BN−M(Λ), (C.26)

whereN − M or M is odd.

Proof. In the previous subsection we have proven the existence of SOV representations, i.e. the
diagonalizability of theB-operator. First of all let us point out thatA(λ), B(λ), C(λ) andD(λ) are
one parameter families of commuting operators. This implies that the corresponding average values
are functions ofΛ = λp.



32

The fact thatBN(Λ) is central trivially follows from the fact thatBN(λ) is diagonal in the SOV-
representation, while for the operatorsA and D we have that forN odd, AN(λ)λp(N−1) and
DN(λ)λp(N−1) are polynomials inλ2p of degreeN − 1. It follows that the special values given
by (3.18) characterize them completely,

AN(Λ) =

[N]∑

a=1

∏

b6=a

(Λ/Zb − Zb/Λ)

(Za/Zb − Zb/Za)
AN(ηa) ,

DN(Λ) =

[N]∑

a=1

∏

b6=a

(Λ/Zb − Zb/Λ)

(Za/Zb − Zb/Za)
DN(Za),

(C.27)

whereAN(Za) andDN(Za) are the average values of the coefficients of the SOV representation. In
the case ofN even we have just to add the asymptotic property ofAN(λ) andDN(λ) discussed in
appendix E to complete the statement. Finally, the fact thatCN(λ) is central follows by its diagonal-
izability in the cyclic representations.

Now the above recursive formulae (C.23-C.26) are a simple consequence of the centrality of the
average values of the monodromy matrix elements. Let us consider only the case of the average
value ofAN(λ). We have the expansion:

AN(λ) = A2 M(λ)A1 N−M(λ) + B2 M(λ)C1 N−M(λ), (C.28)

in terms of the entries of the monodromy matrix of the subchains1 and2 with (N − M)-sites and
M-sites, respectively. It follows directly from definition (3.16) of the average value together with
(C.28) thatAN(λ) can be represented in the form

AN(λ) = A2 M(λ)A1 N−M(λ) + B2 M(λ)C1 N−M(λ) + ∆N(λ) (C.29)

where∆N(λ) is a sum over monomials which contain at least one and at mostp − 2 factors of
A2 M(λqm). As before, we may work in a representation where theB2 M(λqn) are diagonal, spanned
by the states〈χ2 | introduced in the previous subsection. As the factorsA2 M(λqm) contained in
∆N(λ) produce states with modified eigenvalue ofB2 M(λqn), none of the states produced by acting
with ∆N(λ) on 〈χ2 | can be proportional to〈χ2 |. This would be in contradiction to the fact that
AN(λ) is central unless∆N(λ) = 0.

C.3 Non-degeneracy condition

Proposition 5. The conditionZr = Zs for certainr 6= s with r, s ∈ {1, ..., [N]} defines a subspace
in the space of the parameters{κ1, ..., κN, ξ1, ..., ξN} ∈ C2N of codimension at least one.

Proof. The parametersZr are related to the expectation valueBN(Λ) by means of the equation

BN(Λ) = ZeN
N

N∏

n=1

Kn

ip

[N]∏

a=1

(Λ/Za − Za/Λ) . (C.30)
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It follows from (3.27) and (3.26) thatBN(Λ) is a Laurent polynomial inXn that depends poly-
nomially on each of the parametersKn. Equation (C.30) defines the tupleZ = (Z1, . . . , Z[N])

uniquely up to permutations ofZ1, . . . , Z[N] as function of the parametersX = (X1, . . . , XN) and

K = (K1, . . . ,KN). We are going to show that6

J(X ;K) ≡ det

(
∂Zr

∂Xs

)

r,s=1,...,[N]

6= 0 . (C.31)

The dependence ofJ(X ;K) on the variablesKn is clearly polynomial. It therefore suffices to show
thatJ(X ;K) 6= 0 for special values ofK in order to prove thatJ(X ;K) 6= 0 except for values of
K within a subset ofCN of dimension less thanN.

Let us chooseK2
n = ip for n = 1, ..., [N], then the average values (3.26) of the Lax operators

simplify to

LSG
n (λ) =

(
0 Λ/Xn −Xn/Λ

Λ/Xn −Xn/Λ 0

)
. (C.32)

Inserting this into (3.27) yields

BN(Λ) = (K2
N + 1)eN

[N]∏

n=1

(Λ/Xn −Xn/Λ) . (C.33)

The fact thatJ(X ;K) 6= 0 follows for the case under consideration easily from (C.33).

WheneverJ(X ;K) 6= 0, we have invertibility of the mappingZ = Z(X1, . . . , X[N]). The claim
follows from this observation.

D. Spectrum of the even chain

D.1 TheΘ-charge

In the case of a lattice withN even quantum sites, we can introduce the operator:

Θ =

N∏

n=1

v(−1)1+n

n . (D.34)

Proposition 6. Θ commutes with the transfer matrix and satisfies the following commutation rela-
tions with the entries of the monodromy matrix:

ΘC(λ) = qC(λ)Θ, [A(λ),Θ] = 0, (D.35)

B(λ)Θ = qΘB(λ), [D(λ),Θ] = 0. (D.36)

6It should be noted that for evenN it is indeed sufficient to consider the dependence w.r.t.X1, . . . , XN − 1.
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Proof. The claim can be easily verified explicitly forN = 2 The proof for the case of general even
N = 2M follows by induction. Indeed,

M2

2M M1

2(N−M) =

(
A2

2M A1

2(N−M) + B2

2M C1

2(N−M) A2

2M B1

2(N−M) + B2

2M D1

2(N−M)

C2

2M A1

2(N−M) + D2

2M C1

2(N−M) C2

2M B1

2(N−M) + D2

2M D1

2(N−M)

)
,

which easily allows one to deduce that the claim holds if it holds for allM < N.

D.2 T -Θ-spectrum simplicity

Lemma 3. Letk ∈ {−l, .., l} and|tk〉 be a simultaneous eigenstate of the transfer matrixT(λ) and
of theΘ-charge with eigenvaluest|k|(λ) andqk, respectively, thenλNt|k|(λ) is a polynomial inλ2

of degreeN which is a solution of the system of equations:

det(D(r)(λ)) = 0 ∀r ∈ {1, ..., [N]}, (D.37)

where thep× p matricesD(r)(ζr) are defined in (5.52), with asymptotics oft|k|(λ) given by:

lim
log(λ)→±∞

λ∓Nt|k|(λ) =

(
N∏

a=1

κaξ
∓1
a

i

)
(
qk + q−k

)
. (D.38)

Proof. The fact that the generic eigenvalue of the transfer matrix has to satisfy the system (D.37) has
been discussed in section 5; so we have just to verify the asymptotics (D.38) for theT-eigenvalue
t|k|(λ). This follows by the assumption that|tk〉 is an eigenstate ofΘ with eigenvalueqk, and by
formulae

lim
log λ→±∞

λ∓NT(λ) =

(
N∏

a=1

κaξ
∓1
a

i

)
(
Θ + Θ∓1

)
, (D.39)

derived in appendix E.

The previous Lemma implies in particular the following:

Theorem 4. For generic values of the parametersκ andξ the simultaneous spectrum ofT andΘ

operators is simple and the generic eigenstate|tk〉 of theT-Θ-eigenbasis has a wave-function of the
form

Ψtk
(η) = η−k

N

N−1∏

a=1

ψ|k|(ηa), (D.40)

where, for anyr ∈ {1, ...,N − 1}, the vector(ψ|k|(ζr), ψ|k|(ζrq), ..., ψ|k|(ζrq
2l)) is the unique (up

to normalization) solution of the linear equations (5.51) corresponding tot|k|(λ).
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Proof. Let us use the SOV-construction ofT-eigenstates and let us observe that an analog of Propo-
sition 3 also holds7 for evenN. This implies that the wave-functionΨtk

(η) can be represented in the
form

Ψtk
(η) = ftk

(ηN)

N−1∏

a=1

ψ|k|(ηa) . (D.41)

Finally, using that|tk〉 is eigenstate ofΘ with eigenvalueqk we getftk
(ηN) ∝ η−k

N .

Thanks to the explicit construction of the simultaneousT-Θ eigenstates given in (D.40), we have
that the eigenstates ofT(λ) with Θ-charge eigenvalue 1 are simple, while all the others are doubly
degenerate with eigenspaces generated by a pair ofT-eigenstates withΘ-charge eigenvaluesq±k.

D.3 Q-operator and Bethe ansatz

Let us point out some peculiarity of theQ-operator in the case of even chain.

Proposition 7. TheQ-operators commute with theΘ-charge and|t±|k|〉 are Q-eigenstates with
common eigenvalueQ|k|(λ) of degree2lN − k(a±∞p ± 1) in λ and a zero of orderk(a±0 p ± 1) at
λ = 0, wherea+

0 anda+
∞ are non-negative integers, whilea−0 anda−∞ are positive integers.

Proof. The commutativity ofT andQ-operators implies that theT-eigenspaceL(|t±|k|〉) corre-
sponding to the eigenvaluet|k|(λ) is invariant under the action ofQ and so fork = 0 any T -
eigenstate|t0〉 is directly aQ-eigenstate. Let us observe that the self-adjointness ofQ implies that
in the two-dimensionalT-eigenspaceL(|t±|k|〉) with k 6= 0 we can always take two linear combi-
nations of the states|t|k|〉 and|t−|k|〉 which areQ-eigenstates. Now thanks to the Lemma 2 for fixed
T-eigenvaluet|k|(λ) the correspondingQ-eigenvalueQ|k|(λ) is unique which implies that|t±|k|〉

are themselvesQ-eigenstates. The commutativity of theQ-operator with theΘ-charge follows by
observing that the|t±|k|〉 define a basis.

Let us complete the proof showing that the conditions on the polynomialQ|k|(λ) stated in the propo-
sition are simple consequences of the fact that|t±|k|〉 are eigenstates of theΘ-charge with eigen-
valuesq±|k|. Indeed, the compatibility of the asymptotics conditions (D.38) with theTQ Baxter
equation implies

lim
λ→0

Q|k|(λq)

Q|k|(λ)
= q±|k|, lim

λ→∞

Q|k|(λq)

Q|k|(λ)
= q−(N±|k|), (D.42)

which are equivalent to the conditions on the polynomialQ|k|(λ) stated in the proposition.

Note that the uniqueness of theQ-eigenvalueQ|k|(λ) corresponding to a givenT-eigenvaluet|k|(λ)
implies that each vector(ψ|k|(ζr), ψ|k|(ζrq), ..., ψ|k|(ζrq

2l)) appearing in (D.40) must be propor-
tional to the vector(Q|k|(ζr), Q|k|(ζrq), ..., Q|k|(ζrq

2l)) so that the previous results admit the fol-
lowing reformulation:

7The proof given previously holds for both the casesN even and odd just changingN into [N] everywhere.
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Theorem 5. The pairs of eigenvectors|t|k|〉 and |t−|k|〉 of T(λ) are in one-to-one correspondence
with the polynomialsQ|k|(λ) of maximal order2lN which have the asymptotics (D.42) and satisfy
the Baxter equation (4.37) witht|k|(λ) being an even Laurent polynomial inλ of degreeN.

As in the case ofN odd this reformulation allows the classification and construction of the spectrum
of T(λ) by the analysis of the solutions to the system of the Bethe equations.

E. Asymptotics of Yang-Baxter generators

From the known form of the Lax operator we derive the following asymptotics forλ → +∞ and0

of the generators of the Yang-Baxter algebras.

N odd: The leading operators areBN(λ) andCN(λ) with asymptotics:

BN(λ) =

(
N∏

a=1

κa

i

)(
λN

N∏

a=1

v
(−1)1+a

a

ξa
− λ−N

N∏

a=1a

ξav
(−1)a

a

)
+ sub-leading, (E.43)

CN(λ) =

(
N∏

a=1

κa

i

)(
λN

N∏

a=1

v
(−1)a

a

ξa
− λ−N

N∏

a=1

ξav
(−1)1+a

a

)
+ sub-leading. (E.44)

N even:The leading operators areAN(λ) andDN(λ) with asymptotics:

AN(λ) =

(
N∏

a=1

κa

i

)(
λN

N∏

a=1

v
(−1)1+a

a

ξa
+ λ−N

N∏

a=1

ξav
(−1)a

a

)
+ sub-leading, (E.45)

DN(λ) =

(
N∏

a=1

κa

i

)(
λN

N∏

a=1

v
(−1)a

a

ξa
+ λ−N

N∏

a=1

ξav
(−1)1+a

a

)
+ sub-leading. (E.46)

Note that these asymptotics imply for the SOV-representation of the Yang-Baxter generators the
following formulae8:

N odd:
(
wSOV

)−1

(
N∏

a=1

v(−1)1+a

a

)
wSOV =

N∏

a=1

ξa
ηa
. (E.47)

N even:
N∏

a=1

ξa
(
wSOV

)−1
Θ−1wSOV =

(
ηA

N−1∏

a=1

ηa

)
T−

N , (E.48)

N∏

a=1

ξa
(
wSOV

)−1
ΘwSOV =

(
ηD

N−1∏

a=1

ηa

)
T+

N, (E.49)

8Note that the transformationWSOV is meant to act as a similarity transformation in the space ofthe representation, i.e.
WSOV

≡ wSOVI wherewSOV is a non-trivial operator on space of the states.
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Note that taking the average value of the last two formulae weget forN odd:

N∏

a=1

Xa

Za
=

N∏

a=1

V (−1)1+a

a , (E.50)

while for N even:

ZA = 〈Θ〉−1
N−1∏

a=1

Z−1
a

N∏

a=1

Xa, ZD = ZA〈Θ〉2, (E.51)

where〈Θ〉 is the average value of the chargeΘ.
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