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The single-assignment hub covering problem:
Models and linearizations
BY Kara and BC Tansel*

Department of Industrial Engineering, Bilkent University, Ankara, Turkey

We study the hub covering problem which, so far, has remained one of the unstudied hub location problems in the
literature. We give a combinatorial and a new integer programming formulation of the hub covering problem that is
different from earlier integer programming formulations. Both new and old formulations are nonlinear binary integer
programs. We give three linearizations for the old model and one linearization for the new one and test their
computational performances based on 80 instances of the CAB data set. Computational results indicate that the linear
version of the new model performs significantly better than the most successful linearization of the old model both in
terms of average and maximum CPU times as well as in core storage requirements.
Journal of the Operational Research Society (2003) 54, 59–64. doi:10.1057/palgrave.jors.2601473
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Introduction

Hub location problems arise when it is desirable to conso-

lidate and disseminate flows at certain centralized locations

in many-to-many distribution systems. Applications arise in

air passenger travel, cargo delivery, and telecommunication

network design.1–3

The generic problem involves n cities that exchange flows

among themselves. The flows may be passengers, cargo, or

information packets. Some p of the n cities are taken to be

hubs and are used as consolidation and dissemination

centers that receive, process, and redistribute flows. The

flow from an origin i to a destination j is routed from i to j

via a pair of hubs that are assigned to serve these two cities.

The hub-to-hub portion of the journey is discounted by a

factor a ð04a4 1Þ to account for economies of scale that

result from bulk transportation between hub cities. The core

problem involves determining the locations of hubs and the

allocation of the demands to hubs. These decisions depend

on what criterion is used to optimize the system perfor-

mance. The primary focus so far has been on the total cost

criterion.4–10 The first deviation from the total cost criterion

seems to be due to O’Kelly and Miller,11 where the focus is

shifted from the total cost to the minimax criterion for p ¼ 1.

The minimax criterion for general p is studied by Kara and

Tansel,12 and a new minimax model, called the latest arrival

hub location problem, is formulated and analysed by Kara

and Tansel.13 A third criterion, which is mentioned by

Campbell,14 but which has not yet received any attention

in the literature, is the covering criterion, which is the focus

of this paper. In both the p-hub median (minisum) and the

p-hub center (minimax) problems, the number of hubs, p, is

fixed and their locations are optimized to minimize the total

cost or the worst case cost. In contrast, p is a variable of the

problem in the hub covering problem and it is to be

minimized while making sure that all trip times between

origin=destination pairs are within predetermined bounds.

Restricting the travel time to predetermined time bounds is

an appropriate constraint for cargo delivery systems where

certain deadlines must be met on delivery time. Typical

applications arise in overnight package delivery.15 Other

applications arise in the delivery of time-sensitive or perish-

able items. The covering model may also be appropriate for

passenger flows if it is desired to keep the dissatisfaction of

passengers associated with long trip times within reasonable

bounds.

The objective of minimizing the number of hubs while

obeying a maximum time bound on travel time makes sense

in view of the fact that establishing and operating hubs

involve large amounts of set-up and operating costs. Alter-

native objective functions such as the minimization of the

total transportation cost or the transportation cost plus fixed

charges could also be used subject to time bounds. None of

these problems have yet been studied in the literature other

than an expository formulation of the hub covering problem

given by Campbell.14 Our study of the hub covering

problem fills a gap in this respect. The insights obtained

in the paper for the solution of this problem may also prove

useful in the solution of other time constrained problems

with different objective functions.
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In the paper, we first give a combinatorial formulation of

the hub covering problem and propose a new nonlinear

integer programming model. We then give a linearization for

the new model and provide three different linearizations for

Campbell’s earlier quadratic formulation.14 The computa-

tional merits of these linearizations are tested on 80

instances of the CAB data set.4 The CPU times based on

the new formulation indicate a significant improvement in

computational performance. This demonstrates that different

modeling perspectives may indeed make a very substantial

difference in computability.

The paper is organized as follows. We first give a

combinatorial formulation of the hub covering problem

and present a new integer programming formulation. In

the same section, we also give an earlier model of

Campbell.14 We provide three different linearizations for

Campbell’s model and one linearization for the new model

in the second section. In the subsequent section, we report

computational results on all the models. The paper ends with

concluding remarks.

Problem formulations

Let N ¼ f1; . . . ; ng be the set of cities and let tij ¼ tji be

the travel time between nodes i and j. Assume that

tij þ tjk 5 tik8i; j; k. Let H � N be a set of nodes that

specify the locations of hubs and denote by aðiÞ 2 H

the hub that serves node i (we assume that each node is

served by a single hub, e.g., single-assignment). Let

a ð04a4 1Þ be a discount factor for hub-to-hub transpor-

tation and let b be a predetermined bound that imposes a

deadline for travel time between any pair of cities. We refer

to b as the cover radius. The hub covering problem involves

choosing the locations of the minimum number of hubs such

that the travel time between any pair of cities is no more than

the cover radius. The combinatorial formulation of the

problem is:

min
H�N

jH j

s.t.

tiaðiÞ þ ataðiÞað jÞ þ tað jÞj 4b 8i; j 2 N aðiÞ 2 H 8i

The recognition form of the problem is NP-Complete12 and

the optimization form is NP-Hard.

We now propose an integer programming formulation

that is directly derivable from the above combinatorial

formulation. Let Xik be a binary variable that takes on the

value 1 if node i is served from a hub at node k and 0

otherwise. Note that Xkk ¼ 1 iff there is a hub at node k.

An integer programming formulation of the hub covering

problem (HC), is as follows:

min
X

k

Xkk

s.t.

ðtir þ atrk þ tjkÞXirXjk 4b 8i; j; k; r ð1Þ
X

k

Xik ¼ 1 8i 2 N ð2Þ

Xik 4Xkk 8i; k 2 N ð3Þ

Xik 2 f0; 1g 8i; k 2 N ð4Þ

Constraint (1) ensures that the deadline on travel times are

met while constraints (2) and (4) ensure that every node is

assigned to exactly one hub. Constraint (3) ensures that such

an assignment cannot be made unless there is a hub at

node k. HC is a binary program with n2 binary variables

and n4 þ n2 þ n constraints. The model is nonlinear due to

constraint (1).

An earlier formulation of the hub covering problem,

which is different from HC, is given by Campbell.14 In

Campbell’s formulation, constraint (1) is replaced by the set

covering constraints
X

k;m

VijkmXikXjm 5 1 8i; j 2 N ð5Þ

where the coefficients Vijkm are such that Vijkm ¼ 1 if

tik þ atkm þ tjm 4b and 0 otherwise. We refer to this for-

mulation of the problem as the hub set covering (HSC)

formulation. Constraints (2), (3), (4), and the objective

function in both formulations are the same. Observe that,

in HSC, the number of binary variables is n2 and the number

of constraints is 2n2 þ n.

Linearizations

We first propose the following linearization for HC. Replace

(1) with constraint (6) below:

ðtir þ atrkÞXir þ tjkXjk 4b 8i; j; k; r ð6Þ

We refer to this linearization of HC as HC-Lin.

Theorem 1 Any feasible solution to HC is a feasible

solution to HC-Lin and vice versa.

Proof. Let X̂X be a feasible solution to HC. Since con-

straints (2), (3), and (4) are common to both HC and HC-

Lin, it suffices to show that X̂X is feasible to (6). Consider the

constraint (6) associated with the quadruplet i; j; k; r. There

are four cases to consider depending on the values of X̂Xir

and X̂Xjk .

� Case 1: X̂Xir ¼ 1, X̂Xjk ¼ 1: Then (1) and (6) give the same

left hand sides.

� Case 2: X̂Xir ¼ 1, X̂Xjk ¼ 0: Then the left side of (6) is

tir þ atrk and we must show that this is less than or equal

to b. Either X̂Xkk ¼ 1 or 0. If X̂Xkk ¼ 1, constraint (1) for

i; k; r; k yields tir þ atrk þ tkk 4b, which implies that (6)

is satisfied.

If X̂Xkk ¼ 0 then (2) implies that there exists an index l 6¼ k

such that X̂Xkl ¼ 1. Constraint (1) for i; k; r; l yields
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tir þ atrl þ tlk 4b (7). Noting that 04a4 1, and that

tir 4 trl þ tlk , we have tir þ atrk 4 tir þ atrl þ tlk , which

implies with (7) that (6) is satisfied.

� Case 3: X̂Xir ¼ 0, X̂Xjk ¼ 1: In this case the left hand side of

(6) is tjk . Since X̂Xir ¼ 0, constraint (2) implies that there

exists an index l 6¼ r such that X̂Xil ¼ 1. Constraint (1) for

i; j; l; k gives b5 til þ atlk þ tjk , which implies that

tjk 4b.

� Case 4: X̂Xir ¼ 0, X̂Xjk ¼ 0: In this case both (1) and (6)

yield the same left hand sides.

To prove the converse, observe that the left side of (1) is

always less than or equal to the left side of (6), which

implies that any feasible solution to HC-Lin is also feasible

to HC. u

Corollary. An optimum solution to HC-Lin is also an

optimum solution to HC (and vice versa).

HC-Lin is a strong linearization of HC in the sense that:

(1) it uses precisely the same set of variables as in HC, that

is, there is no change in the dimension of the space, (2) the

feasible sets are exactly the same, and (3) the optimal sets

are the same. It will be evident later that the same cannot be

said for the hub set covering formulation of the problem.

The linearizations we give for HSC require additional

variables, which increase the dimension of the space. In

this sense, the linearizations of HSC do not seem to be as

strong as the linearization we proposed for HC. Computa-

tional evidence also suggests that HC-Lin yields signifi-

cantly faster solution times than all linearizations of HSC.

We now provide three linearizations of HSC. The first one

is due to Campbell.14 The second is an adaptation of a

linearization of Skorin-Kapov et al.8 The third is a linear-

ization of ours.

Campbell14 linearizes HSC by introducing new variables

Xijkm for the product XikXjm. These four indexed variables

are also used in the other two linearizations. Campbell’s

linearization, which we refer to as HSC-Lin1, is as follows:

min
X

k

Xkk

s.t. (2)–(4)
X

k;m

VijkmXijkm 5 1 8i; j ð8Þ

X

j

X

m

ðwijXijkm þ wjiXjimkÞ ¼
X

j

ðwij þ wjiÞXik 8i; k ð9Þ

Xijkm 2 f0; 1g 8i; j; k;m

In this linearization, wij 5 0 is the annual flow from node i

to node j.

Next, we give the linearization HSC-Lin2, which is an

adaptation of the linearization of Skorin Kapov et al.8

min
X

k

Xkk

s.t. (2)–(4), (8)
X

k

Xijkm ¼ Xik 8i; j;m ð10Þ

X

m

Xijkm ¼ Xjm 8i; j; k ð11Þ

Xijkm 2 f0; 1g 8i; j; k;m

The third linearization, HSC-Lin3, which is motivated by

a linearization used in Kara and Tansel,12 is as follows:

min
X

k

Xkk

s.t. (2)–(4), (8)

Xijkm 5Xik þ Xjm  1 8i; j; k;m ð12Þ
X

k;m

Xijkm ¼ 1 8i; j ð13Þ

Xijkm 5 0 8i; j; k;m

The correctness of these linearizations can be directly

justified using the fact that Xijkm ¼ 1ð¼ 0Þ iff XikXjm ¼

1ð¼ 0Þ. In HSC-Lin3, the integrality constraint on Xijkm is

relaxed. This is well justified by the inclusion of the

constraints (12) and (13). In HSC-Lin1 and HSC-Lin2

there are n2 þ n4 binary variables, whereas in HSC-Lin3

there are n2 binary and n4 real variables. There are 3n2 þ n

constraints in HSC-Lin1, 2n3 þ 2n2 þ n constraints in HSC-

Lin2, and n4 þ 3n2 þ n constraints in HSC-Lin3.

Computational Analysis

We test all the linearizations with the CAB data set using

CPLEX 5.0. This data set is considered to be a benchmark

by most researchers in the hub location area. The CAB data

set is generated from the Civil Aeronautics Board Survey of

1970 passenger data in the United States. It contains the

passenger flows and distances between 25 cities (Figure 1).

In our experimental design, we take n 2 f10; 15; 20; 25g

and a 2 f0:2; 0:4; 0:6; 0:8; 1:0g. The cover radius b is not

a part of the CAB data set. We choose b on the basis of

the p-hub center optimal objective function values, denoted

by Z�
p. We generate a total of 80 instances taking

b 2 fZ�
2 ; Z�

3 ; Z�
4 ; Z�

5 g for each ða; nÞ combination except for

ða; nÞ ¼ ð1:0; 15Þ and ð1:0; 20Þ. For these two cases, we

have Z�
2 ¼ 2611 > Z�

3 ¼ Z�
4 ¼ Z�

5 ¼ 2600. Because the Z�
p

values coincide for p ¼ 3; 4; 5 in these two cases, we take

two of the b values strictly between Z�
3 and Z�

2 . The

complete list of the b values is given in Table 1.

Table 2 compares the computational performance of the

three linearizations of the hub set covering model and the

linearization of the hub cover model for different values of n

on the basis of three different criteria: number of instances

solved, average CPU, and maximum CPU. The time limit

to abandon a solution is 8.5 hours. The third column of

the table reveals that none of the linearizations of HSC are
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successful in solving problems of size n ¼ 25 while the

linearization of HC solves all instances of this size. For the

next largest size, n ¼ 20, HC-Lin solves all instances while

its closest competitor, HSC-Lin3, attains a success rate of

25% for this size. The other two linearizations cannot solve

any instances of n ¼ 20.

Comparing now the four linearizations on the basis of

average and maximum CPU times, we see that HSC-Lin3 is

the most successful of the three linearizations of HSC.

Despite that, its success is completely overshadowed by the

far more superior performance of HC-Lin. For example, for

n ¼ 20, the average CPU time of HC-Lin is at least 283 times

better than the average CPU time of HSC-Lin3. In terms of

the maximum CPU time, HC-Lin is, again, about 50 times

faster than HSC-Lin3 for n ¼ 15. The comparison of HC-Lin

and HSC-Lin3 cannot be made for n ¼ 20 and 25, because

not all instances are solved by HSC-Lin3 for these two sizes.

Nevertheless, it would not be unreasonable to expect an even

larger gap between their performances with increased n.

It is also worth mentioning that, of all the 20 instances

solved by HC-Lin for n ¼ 25, 17 are solved in less than 10

minutes while the remaining three instances are solved in

17, 47, and 86 minutes. In fact, of the 17 instances solved

under 10 minutes, 13 are solved in less than 5 minutes, and

7 are solved in less than 1 minute.

Some conclusions can also be drawn on the spatial

behavior of the optimal hub locations as a function of the

parameters a and b. We use the data set for n ¼ 25 to

illustrate some of our conclusions. First, we set a ¼ 0:4 and

observe the effects of decreased b for this a. For b ¼ 2401

the optimal solution has two hubs, one at Denver, the other

at Cincinnati, with allocations as shown in Figure 2a. When

b is decreased to 2099, two hubs are no longer sufficient.

The hub at Cincinnati splits, resulting in two hubs at Atlanta

and at Pittsburgh, while the hub at Denver remains intact

(Figure 2b). The allocation set of Denver is still the same

while the allocation set of the hub that was formerly at

Cincinnati is split now between the two hubs at Atlanta and

Pittsburgh. Further reduction of b to 1881 results in a

splitting of the hub at Denver into two hubs at Los Angeles

and Seattle. The hubs at Atlanta and Pittsburgh have moved

now to Memphis and Cincinnati (Figure 2c). It can be

observed that there is a general westward shift of the

hubs, both the ones at Atlanta and Pittsburgh as well as

the now-split hub at Denver. Even though the new allocation

sets seem to be quite different from the old ones there is

quite a bit of structure in the new allocation sets, particularly

for the hubs at Memphis (formerly at Atlanta) and Cincinnati

(formerly at Pittsburgh). The allocation set of Memphis

includes all cities that were formerly served by Atlanta.

Likewise the allocation set of Cincinnati includes all cities

that were formerly served by Pittsburgh. However, the

allocation sets of both Memphis and Cincinnati additionally

include new cities that were formerly served by Denver (this

is expected since Denver is no longer a hub). Note also that

the cities west of Denver are now served by the new hubs at

Los Angeles and Seattle. We note in passing that Seattle is

on a critical path (a longest path whose length matches the

cover radius) for b ¼ 2099 so that it seems natural for it to

Figure 1 Cities used in the CAB data set.

Table 1 The cover radii used for test problems

a

0.2 0.4 0.6 0.8 1.0

n¼ 10 1425 1627 1671 1744 1839
1117 1185 1387 1589 1791
811 970 1148 1457 1770
736 863 1079 1413 1766

n¼ 15 2004 2019 2103 2424 2611
1638 1741 1844 2165 2610
1324 1436 1756 2100 2605
1149 1287 1560 2080 2600

n¼ 20 1851 2067 2255 2493 2611
1549 1744 1996 2264 2605
1356 1473 1835 2154 2601
1162 1386 1663 2118 2600

n¼ 25 2136 2401 2557 2713 2826
1913 2099 2336 2552 2762
1617 1881 2184 2457 2726
1346 1597 2002 2307 2725
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become a new hub with a reduction in b. Further reduction

of b from 1881 to 1597 retains the two hubs at Los Angeles

and Seattle intact, together with their allocations (Figure 2d),

while the hub at Memphis moves now to Kansas City and

the hub at Cincinnati splits and moves eastward to two new

hubs at Miami and Philadelphia. The allocation sets asso-

ciated with these hubs are now reconfigured accordingly.

To see the effects of a, we vary a from 0.2 to 1.0 while

trying to keep the minimum number of hubs at two. This, in

general, requires the use of increased cover radius with

increased a. For example, as a is increased from 0.2 to 0.4,

0.6, 0.8, and 1.0, b has to be increased from 2136 to 2401,

2597, 2713, 2826, respectively, to keep the minimum number

of hubs p ¼ 2. There seems to be a tendency for the hubs to

get closer with increased a (accompanied with increased b) if

the minimum number of hubs is two. The behaviour of hubs

in this respect is irregular when the minimum number of hubs

is larger than two (e.g., one pair of hubs may get closer while

another pair may get farther apart).

Models of medium size can thus be solved optimally

within reasonable CPU time using our linearization HC-Lin.

Although heuristic methods or simulation are other possible

Table 2 Computational comparison of linearizations of HSC and of HC

Nonlinear
model Linearization n

Instances solved in
8.5 hr time limit Average CPU Max CPU

HSC HSC-Lin1 10 20 4.3 s 11.6 s
15 17 2.5 hr 6.5 hr
20 none — —
25 none — —

HSC-Lin2 10 20 1.45 min 3.7 min
15 20 1.5 hr 4.5 hr
20 none — —
25 none — —

HSC-Lin3 10 20 0.99 min 2.2 min
15 20 1.3 hr 3.4 hr
20 5 5 8.5 hr —
25 none — —

HC HC-Lin 10 20 1 s 4.5 s
15 20 21.5 s 4.2 min
20 20 1.8 min 18.4 min
25 20 10.2 min 1.4 hr

Figure 2 Optimal hub locations and allocations for a ¼ 0:4 and (a) b ¼ 2401, (b) b ¼ 2099, (c) b ¼ 1881, and (d) b ¼ 1597.
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tools of analysis for such problems, they do not necessarily

find optimal solutions. The worst case optimality gap

may be quite large. For larger sized problems where finding

an optimal solution may require excessive CPU times,

the use of heuristics or simulation may be unavoidable.

Additionally, simulation may be useful for handling more

complicated structures in distribution systems that involve

day-to-day decisions such as routing and scheduling.

Conclusion

In this paper, we study the hub covering problem that has

remained so far as one of the unstudied hub problems in the

literature. The common practice in delivery of time-sensitive

items is to increase resources as necessary (e.g., number of

hubs, fleet size, technologically improved fleet composition

for faster delivery) to meet imposed deadlines. This may be

more costly than necessary. The model studied in the paper

gives optimal solutions with which the existing systems can

be compared.

A computational study based on 80 instances generated

from the CAB data set is carried out in the paper to test the

computational performance of three different linearizations

of an initial model provided by Campbell14 and a linearized

new model proposed in this paper. The computational tests

indicate that the linearization of the new model’s perfor-

mance is significantly better than the linearizations of the

old model. We note also that the new linear model results in

a binary program with n2 binary variables while two of the

linearizations of the earlier model involve n2 þ n4 binary

variables and its third linearization involves n2 binary and n4

real variables. This shows that there are also substantial

reductions in core storage requirements in favor of the new

model.

The problem solved in the paper is a static problem. This

is well justified when transport distances of concern are over

relatively large geographical regions. Regardless of the

mode of transportation (air or ground), travel times over

large distances are relatively non-varying over time. Hence,

the static model appears to handle most real world situations

where the demand cities are spread over large territories.

If dynamic factors are such that variation over time is non-

negligible (e.g., travel through congested metropolitan

areas), then choosing the optimum locations of minimum

number of hubs while obeying time bounds with time-

dependent travel times can be converted to the static

problem by defining a time matrix �TT ¼ ½�ttij� where �ttij ¼
max04t4t� tijðtÞ with tijðtÞ representing the travel time

between points i and j at time t (t� is the planning horizon).

This reduces the family of constraints

tiaðiÞðtÞ þ ataðiÞað jÞðtÞ þ tað jÞjðtÞ4b 8 i; j; 04t4t�

to the finite family

�ttiaðiÞ þ a�ttaðiÞað jÞ þ �ttað jÞj 4b 8 i; j:

Stochastic variations on travel times can also be handled in a

similar way by choosing the worst realization for each pair

of cities. This can all be well justified under the assumption

that the hub locations and allocations remain fixed through-

out the planning horizon. Changing the locations of hubs

in each year is not an easy matter because of various

managerial and economic considerations. Consequently,

the assumption of non-varying hub locations is a reasonable

assumption. The allocation decisions may be more easily

modified from period to period. If such is the case then this

can be reflected into the model by appending an additional

time index to the allocation variables. This would increase

the model size by a multiplicative factor of the number of

time periods. Consequently, such problems can be formu-

lated as integer programs if time is discretized, but solution

times may be prohibitive unless special techniques are

developed for handling much larger sized problems.
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