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ABSTRACT 

Single-cell analyses have revealed extensive intra- and inter-patient cancer 

heterogeneity1, but complex single-cell phenotypes and their spatial context are not yet reflected 

in the histologic stratification that is the foundation of many clinical decisions. Here, we used 

imaging mass cytometry2 to simultaneously quantify 35 biomarkers resulting in 720 high-

dimension immunohistochemistry pathology images of tumor tissue from 352 breast cancer 

patients for whom long-term survival data were available. Spatial, single-cell analysis identified 

tumor and stromal single-cell phenotypes, their organization and heterogeneity, and enabled 

categorization of breast cancer cellular architecture based on cellular composition and tissue 

organization. Our analysis revealed multi-cellular features of the tumor microenvironment and 

novel breast cancer subgroups associated with distinct clinical outcomes. Thus, spatially resolved, 

single-cell analysis can characterize intra-tumor phenotypic heterogeneity in a disease-relevant 

manner with the potential to inform patient-specific diagnosis.  

 

Main 

Histologic and phenotypic differences between tumors guide cancer diagnosis, prognosis, 

and selection of treatment. Currently, breast cancer patients are graded based on tumor 

structure and cellular morphology, and subcategorized when more than 1% of tumor cells 

contain hormone receptors or more than 10% express high levels of HER2 or have amplified HER2 

3–5. This leaves a large portion of cells uncharacterized even though additional molecular 

subclasses and morphologic features have been identified as prognostic6–9. It is clear that clonal 

evolution and spatially distinct tumor microenvironments drive inter- and intra-patient cellular 
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heterogeneity and hinder effective treatment10–14. Using highly multiplexed imaging2,15,16, 

multiple complex cellular phenotypes have been identified within the context of the tumor 

microenvironment, enabling refined histopathology classification of clinical tissue samples17–20. 

Here, harnessing topographical single-cell network analysis of high-dimensional mass cytometry 

images, we quantified spatial inter- and intra-tumor single-cell heterogeneity and identified 

spatially resolved features and novel breast cancer subtypes that are associated with clinical 

outcome.  

Spatially resolved single-cell phenotypes 

To comprehensively quantify the cellular heterogeneity and spatial organization of breast 

cancer tissue, we designed a breast-histology-specific imaging mass cytometry (IMC) panel 

(Extended Data 1) to image samples from 281 tumors representing all clinical subtypes and 

pathology grades (Supplementary Table 1). IMC combines immunohistochemistry staining using 

metal isotope-labelled antibodies with laser ablation and mass spectrometry-based detection to 

produce high-dimension images (Figure 1a)2. Our 35-antibody panel simultaneously quantified 

clinically established breast cancer targets estrogen receptor (ER), progesterone receptor (PR), 

and HER2, proliferation marker Ki-67, markers of epithelial, mesenchymal, immune, and 

endothelial lineages, and targets that provide insight into signaling pathways, oncogenes, and 

epigenetics (Extended Data 1, Supplementary Table 2). IMC produces images comparable to 

immunofluorescence or immunohistochemistry but with capacity for highly multiplexed 

staining2,21 (Extended Data 2 and 3). Images were segmented into single cells and tumor and 

stromal regions using a random forest pixel classifier (Ilastik), and CellProfiler17,20. We identified 

http://f1000.com/work/citation?ids=171305,4605010,535030,6918592,6913480&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
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855,668 cells in 381 images (289 tumor, 87 healthy breast and 5 liver controls), and quantified 

marker expression and spatial features of each cell (Figure 1a). Clustering with PhenoGraph22 

identified cell phenotype clusters, hereafter referred to as phenotypes, of endothelial, T and B 

cell, macrophage, and stromal cell populations as well as 59 diverse tumor cell phenotypes. 

Similar to Wagner et al.1, some tumor phenotypes were unique to individual patients (Figure 1b, 

c, Extended Data 4a). To identify common cellular subtypes within this diversity, we defined 14 

tumor-cell metaclusters by hierarchical clustering of the PhenoGraph-defined tumor single-cell 

phenotypes (Figure 1c, Extended Data 5a).  

Tumors from every clinical subtype contained fibroblast, endothelial, and immune cell 

populations at similar densities but were enriched in tumor cell populations with variable 

expression of cytokeratins, hormone receptors, and HER2 reflective of clinical subtype (Figure 1c, 

Extended Data 6a). Across all patients, immune cells were excluded from the cohesive tumor 

mass, although immune and fibroblast cells did infrequently infiltrate the tumor mass and rare 

HRlow/– cells lacking cytokeratins invaded past the tumor-stroma front in some samples (Figure 

1c, Extended Data 4). Tumor regions contained various luminal HR+ epithelial cell phenotypes 

identified by combinations of ER, PR, GATA3, E-cadherin, and multiple cytokeratins, but hormone 

receptors were also expressed without cytokeratins in a few cases (metacluster 26) (Figure 1c, 

Extended Data 6b). Of the luminal cytokeratins (CK7, CK8/18, and CK19), only CK7 was associated 

with specific luminal tumor cell subsets (metaclusters 19, 20) (Figure 1c). HER2 expression was 

not a defining metacluster feature but was observed at different levels in multiple phenotypes. 

Phenotypes without hormone and HER2 receptor expression (characteristics of triple-negative 

breast cancer (TNBC)) included metaclusters with high levels of Ki-67, p53, EGFR, and hypoxia 

http://f1000.com/work/citation?ids=355993&pre=&suf=&sa=0
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marker CAIX (metaclusters 15-17), basal cytokeratins (metacluster 18), and even luminal 

cytokeratins (PG clusters within metaclusters 19, 22) (Figure 1c).  

Multi-cellular breast cancer architecture 

Based on these single-cell phenotypes, we sought to define patterns of multi-cellular 

architecture in breast tumor tissue (Figure 2a). We evaluated regional correlations between 

cellular metaclusters to determine whether cells co-occurred across all images, and used 

permutation test-based neighborhood analysis17 to quantify cell co-localization and identify 

statistically significant interaction or avoidance between pairs of cell phenotypes (Figure 2b). 

Tumor cell phenotypes were rarely correlated: Each individual tumor contained many homotypic 

interactions between similar cells and few heterotypic tumor cell interactions (Figure 2b, box #1). 

Generally, heterotypic interactions were associated with regionally unique structures such as 

blood vessels (Figure 2b, box #2) or with distinct epithelial (box #1) or stromal cell-dense areas 

where immune cells interacted (box #3). Uni-directional interactions were also observed where 

supporting fibroblasts enclosed endothelial cells in large blood vessels and where stromal cells 

surrounded tumor cells at the tumor-stroma interface (Figure 2b, boxes #2 and #4). T cells and 

proliferating epithelial cells were observed in the vicinity of endothelial cells, and their 

proportions were correlated across images; T cells were surrounded by endothelial cells (e.g., 

inside vessels), not the reverse (Figure 2b, boxes #5 and #6). The neighborhood analysis revealed 

interaction signatures that distinguished well-separated or stromal-interactive tumor 

architectures that were related to pathologist-scored tumor grade (Extended Data 7)17. 

http://f1000.com/work/citation?ids=4035995&pre=&suf=&sa=0
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Tissue function is implemented by multicellular units, which we call communities, that 

consist of higher order, rather than paired, interactions between one or more cell phenotypes. 

We identified communities by first constructing a topological neighboring cell interaction 

network and then applying a graph-based community detection approach using the Louvain 

algorithm (Figure 2a)23. Applied only to tumor cells, community detection identified dense 

epithelial patches of different sizes, termed tumor communities (TCs); when applied to all cells 

microenvironment communities (MCs) containing tumor and stromal cell components were 

identified (Figure 2a). Using PhenoGraph, we grouped multi-cell communities according to 

community size and tumor cell phenotypes (TCs) or all cells, but agnostic to tumor cell type (MCs) 

. Tumor communities were mostly dominated by a single cellular metacluster and were separated 

based on absolute number of cells (Figure 2c, d, TCs 4, 7, 18; Supplementary Images). Some 

microenvironment communities consisted of fibroblasts that interacted with a variety of tumor 

cells (MCs 2, 5, 8); others showed sparse stroma content (MCs 14, 17, 18, 20, 21, 22) or were 

enriched for T cells (MCs 19, 25, 30), macrophages (MC 27), large networks of T and B cells (MC 

1), or endothelial cells (MCs 13, 6, 30, 25, 7) (Figure 2e, f). Fibroblast-enriched communities had 

few interacting immune cells, aligning with the known roles of fibroblasts as agents of tumor 

desmoplasia and immune exclusion24. 

Single-cell pathology subgroups are related to clinical outcome  

 We next investigated how the organization of single cells into communities contributes 

to breast cancer tissue architecture and tumor subtypes3. Cells from multiple cellular 

metaclusters were found in every clinically defined breast cancer subtype (Extended Data 6a), 

http://f1000.com/work/citation?ids=86797&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=2117339&pre=&suf=&sa=0
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supporting the conclusion that general pathology classification does not fully elucidate inter- and 

intra-patient cellular heterogeneity6,8. We reasoned that the single-cell pathology landscape 

would provide a higher resolution patient classification than classic histology-based clinical 

subtypes. Patient tumors were grouped based on the tumor cell metacluster composition using 

unsupervised clustering, identifying 18 single-cell pathology (SCP) subgroups that split the classic 

clinical subtypes (Figure 3a, Extended Data 8a, Supplementary Table 3). SCP subgroups had 

various proportions of the epithelial communities (Figure 3b), and individual SCP subgroups had 

distinct clinical outcomes when compared to all other patients, to SCP subgroups of the same 

clinical classification, and to other SCP subgroups containing similar cellular metaclusters but 

different architectures (Figure 4a-h, Supplementary Tables 4 and 5).  

HR+ clinically defined tumors were divided into those strongly enriched in cells with high 

expression of hormone receptors (SCPs 1-5 and 12) and tumors with few HRhi/+ cells surrounded 

by many cells that expressed only low levels or lacked HRs (SCPs 6-10 and 11) that are currently 

not clinically classified (Figure 3a, Extended Data 6 and 8a, Supplementary Images). SCP 1, which 

contained predominantly metacluster 23 (CK+/HRhi tumor cells), was only associated with 

patients who did not succumb to disease. Conversely, SCP 3, which contains the same cellular 

metaclusters but differs in structure, with smaller communities and relatively higher proportions 

of CKlow/HRlow metacluster 22 and 25 cells, was associated with poor prognosis, as were SCPs 6 

and 9, which involve predominantly CKlow/HRlow cells (Figure 3a, Figure 4c, e, Extended Data 9). 

SCP 2, containing CK+/HR+ cells, was significantly enriched in the HR+/HER2+ clinical subtype, 

which was otherwise dominated by CKlow/HRlow metacluster 22 (Figure 3a, Extended Data 6, and 

8a). SCPs 11 and 12 were characterized by CK7+ cells primarily from metaclusters 20 and 19, 

http://f1000.com/work/citation?ids=48476,93509&pre=&pre=&suf=&suf=&sa=0,0
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respectively. SCP 11 overlapped with the clinically assigned HR–/HER2+ tumor type, and, although 

this clinical subtype usually has poor outcomes3,5, SCP 11 patients had significantly better 

outcomes than other patients in this cohort. In contrast, the small number of CK7+ SCP 12 

patients, predominantly clinically assigned as HR+/HER2-, did not survive long term (Figure 3a, 

Figure 4a, c, e, Extended Data 6 and 8a). Tumors from patients with high-risk TNBC contained 

distinct cell types including cells with cytokeratin expression suggestive of a luminal, not 

myoepithelial, cell of origin (Figure 1c, Figure 3a, Extended Data 6 and 8a). TNBC phenotypes 

without luminal epithelial markers and with high levels of hypoxic, p53+/EGFR+, basal, or 

proliferative markers distinguished SCPs 13, 14, 15, and 17 with poor outcome (Figures 1c, Figure 

3a, Extended Data 6 and 8a). SCP 16 tumors were p53+ and expressed apoptotic markers, and 

interestingly, patients with tumors of this group did not succumb to disease even though they 

were clinically classified as TNBC (Figure 4f, Extended Data 8a). 

By mapping the cellular spatial organization of these tumors, we observed variable 

structures and cellular densities, and relationships between cellular phenotype and tissue 

organization (Figure 3a, b). Heterogeneous tumors consisted of multiple phenotypically pure 

communities indicated by many bands on the heatmap, whereas homogeneous tumors 

organized in one epithelial sheet or with similar communities of different sizes have only a few 

clustered bands (Figure 3b). Most tumors were dominated by a single tumor-cell metacluster and 

few community types, but tumors in SCP 8 and some in SCP 10 were unusually heterogeneous, 

consisting of multiple epithelial cellular metaclusters at similar proportions localized to spatially 

distinct communities (Figure 3b, Extended Data 6). Patients in SCP8 with these heterogeneous 

tumors had very poor outcomes (Figure 4d, e). Overall, intra-tumor phenotypic heterogeneity 

http://f1000.com/work/citation?ids=4444468,5733680&pre=&pre=&suf=&suf=&sa=0,0
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was spatially segregated into separate tumor communities as opposed to heterogeneous tumor 

masses, and patients with tumors with greater spatio-phenotypic heterogeneity had poorer 

outcomes. 

Unlike tumor cell phenotypes, the identified stromal cell phenotypes were present in 

every clinical subtype at similar densities (Figure 1c, Extended Data 6). We therefore investigated 

whether the tumor-stromal microenvironment communities were more informative than mere 

stromal phenotype content. When we hierarchically clustered images by the presence of 

microenvironment communities, 11 groups, which we term stromal environments (SEs), were 

revealed; some were enriched in one microenvironment community (single column in Extended 

Data 7a), whereas others contained mixtures of communities (multiple columns). Neighbor 

analysis detected distinct cell-cell interactions within each SE (Extended Data 7b). Some stromal 

environments included large epithelial networks with sparse stroma (SEs 7 and 10, made of MCs 

17 or 18), others involved vascularized regions (SE9, involving MCs 6 and/or 13), different 

fibroblast cell phenotypes such as vimentinhi (SEs 4, 6, and 9, involving metacluster 8 in many 

communities) or fibronectinhi (SEs 1 and 2, including metacluster 11), or were poorly cohesive 

and made up of many small communities (SEs 2, 5, and 6).  

We found that SEs were associated with SCP subgroups and specific tumor cell 

phenotypes. For example, hypoxic SCP 17 TNBCs were commonly classified as large, stroma-

deficient epithelial sheets (SEs 7), and TNBCs SCP 13-16 were associated with T cell-enriched (SEs 

5 and 8) or macrophage-enriched (SE 3) stromal environments (Extended Data 7 and 8b). HR+ 

tumors are likely to be immune-cold, but some contained rare and localized immune-enriched 

communities (SE 5); the HR+ tumors never contained an exclusively immune-hot stromal 
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environment (SE 8) like those observed in TNBCs and the highly heterogeneous SCP 8 (Extended 

Data 7 and 8b). HR+ tumors were associated with a range of fibroblast-enriched stromal 

environments with small elongated fibroblasts interacting with CK+/HRlow epithelial cells in SEs 1, 

2, and 5 and vimentinhi stroma associated with HRhi tumor cells in SEs 4 and 6 (Figure 2b, c, 

Extended Data 8b). Stromal environments were related to tumor phenotype, but only 

fragmented SE 6 containing proliferative vimentinhi fibroblasts was independently associated 

with poorer disease-free and overall survival (Figure 4h, Extended Data 8b and 9, Supplementary 

Tables 6 and 7). 

Compared to clinically defined subtypes, SCP grouping improved the ability to predict a 

patient’s overall survival using Cox proportional hazards modeling (Supplementary Table 8). In 

order to identify features associated with patient risk not captured by clinical grading and 

classification, we investigated the epithelial and stromal single-cell and community contributions 

to the model. Almost no single-cell phenotypes or cellular metaclusters were independently 

associated with outcome (not shown); however, spatially defined cell communities were (Figure 

4i). For certain cell types, large tumor cell communities were related to better outcome, whereas 

similar networks of small size were related to poor outcome (Figure 4i, TCs 12 vs. 13, 17 vs. 23, 5 

vs. 15). In addition, the microenvironment community MC 6, characterized by vascularization 

with T cell involvement, was significantly associated with increased risk of death even though it 

was more commonly found in the low-risk HR+ clinical subgroups than other subgroups (Figure 

4i, Extended Data 7). In contrast, highly T cell infiltrated MC 19 and macrophage-enriched MC 27 

were significantly associated with better patient outcomes even though inflammation is more 

common in high-risk TNBC tumors than other clinical subgroups (Figure 4i, Extended Data 7). 
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Thus, SCP-defined tumor types and tumor and stromal architectures could inform prognosis 

beyond current clinical classifications. 

Quantification of intra-tumor heterogeneity 

We investigated reproducibility and spatial variability of SCP classifications in two central 

and two peripherally located tumor regions from 72 patients in an independent cohort resulting 

in 344 additional images containing 411,410 cells (Supplementary Table 9). We used the same 

analytical approach described above to independently define single-cell phenotypes, match them 

to cellular metaclusters and to classify each imaged region into SCP subgroups and stromal 

architectures (Extended Data 5b and 10a). All cellular metaclusters and SCP subgroups identified 

in the first cohort were present in the second cohort. Likely due to the patient selection strategy, 

which enriched the second cohort in metastatic low-grade tumors, we observed a higher 

proportion of subgroups involving CKlow/HRlow single-cell phenotypes such as SCP 3, 6, and 9 in 

this cohort (Extended Data 10a). For each region of each tumor, we quantified the spatial 

variability of cell phenotypes using Shannon entropy, and the difference in cellular content 

relative to the patient’s overall single-cell phenotype distribution (all regions) was determined 

using Kullback-Leibler divergence. Most patients had only moderate inter-region heterogeneity 

(Extended Data 10b). Distinctly divergent regions were more commonly identified as SCP 2, which 

consists of CK+/HR+ cells, or SCP 7, containing Epitheliallow cells (Extended Data 10b, c). 

Approximately 40% of tumors had identical classification in all regions, and 60% had one or more 

regions that did not agree with the whole tumor classification (Extended Data 10d). However, in 
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the majority of cases SCP classification of individual regions matched the tumor-wide 

classification. 

SCP subgroups had varying levels of regional heterogeneity. SCP subgroups found in 

TNBCs were phenotypically homogenous (the exception being basal CK+ SCP 13). SCP subgroups 

associated with HR+ patients with relatively poor prognosis, such as CKlow/HRlow SCPs 6, 7, 9, 10, 

had substantial spatial heterogeneity (Extended Data 10e). Different SCP subgroups containing 

similar cell types occasionally co-occurred in the same tumor, but SCP 9 was always accompanied 

by SCP 6 regions, and the two were associated with similar outcomes (Figure 4e, Extended Data 

10e). Spatially heterogeneous HRlow and CKlow SCP subgroups 6-10 have indistinguishable 

outcomes from the population average, and based on their regional heterogeneity it is 

statistically likely that unsampled phenotypes influenced classification accuracy (Extended Data 

10e). We observed that heterogeneous regions classified as SCP 8 or 10 were always 

accompanied by multiple additional tumor subtypes (Extended Data 10e). These may be multi-

clonal or highly plastic tumors. Subsampling was sufficient to identify and stratify homogenous 

low-risk HRhi and high-risk TNBCs, but increased sampling may be needed to accurately identify 

HRlow tumor phenotypes and tumors with considerable intra-tumor heterogeneity. 

Discussion 

This systematic, multidimensional interrogation of breast cancer histology generated a 

detailed spatial map of single-cell phenotypes and cellular communities related to disease. We 

demonstrated that single-cell pathology can better segregate patients with distinct clinical 

outcomes than the current clinical subtyping strategy. Analysis of multi-cellular structures 
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revealed that phenotypic heterogeneity in tumors was spatially localized to distinct regions or 

lesions. Moreover, the multi-cellular structures yielded patient outcome-relevant information 

superior to single-cell data alone. We identified co-occurring breast cancer phenotypes and 

observed that phenotypic and spatial heterogeneity varied between clinically established 

subtypes. This work suggests that multi-cellular spatial information is medically relevant and 

provides a basis for future study of how spatial and phenotypic tissue features influence disease 

progression.  
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Figure legends 

Figure 1: Single-cell phenotypes in high-dimension histopathology of breast cancer. 

(a) Schematic of IMC acquisition of multiplexed images from 281 breast cancer patients and the 

analyses of single-cell phenotypes, metaclusters, stromal-cell organization and architecture, 

tumor and patient subclassification, and patient overall survival. (b) tSNE map of 171,288 

subsampled single cells from high-dimension images of breast tumors colored by cell-type 

metacluster identifier. (c) Heatmap showing the z-scored mean marker expression or distance to 

tumor-stroma interface for each PhenoGraph cluster, colored according to metacluster identifier. 

The absolute cell counts of each PhenoGraph cluster are displayed as a bar plot. In the bubble 

plot, circle size shows the relative proportion of all cells in a clinical subtype that come from each 

cluster, and circle opacity shows the proportion of each cluster present in the different clinical 

subtypes. 

 

Figure 2: A global map of the cellular neighborhoods and cell interaction networks of breast 

cancer. 

(a) Representative image depicting the different steps in the spatial analysis. Images show (left 

to right) pseudo-colored IMC, single-cell mask of the same field of view labeled by cellular 

metacluster identifier, the topologic cell interaction network, modular regions of the tumor 

network identifying epithelial communities labeled in color, and modular regions in the tumor-

stroma network identified as tumor microenvironment communities. Scale bar = 100 μm. (b) 

Heatmap in which squares visualize Pearson correlation of cell phenotype proportions across all 

measured tissue regions (n = 367 images) and circles indicate significant pairwise cell type 
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interaction or avoidance summarized across the two-sided permutation tests on the individual 

images (n = 367 images, 1000 permutations each). Circle color indicates percentage of images 

and size represents number of images with a significant cell-cell interaction or avoidance 

(p<0.01). Highlighted interactions include 1) tumor epithelium , 2) endothelium, 3) immune, 4) 

surrounding stroma, 5) endothelium and T cells, and 6) proliferating epithelium surrounding 

endothelial cells. Non-symmetric highlight colors indicate examples of directional interaction. 

Uniquely colored (c-d) epithelial communities (n = 8495) and (e-f) microenvironment 

communities (n = 12,854) clustered by PhenoGraph based on min-max normalized absolute 

numbers of cells from each cellular metacluster and visualized (c,e) on a tSNE map and (d,f) in 

stacked bar plots indicating the average number of cells from each cellular metacluster.  

Figure 3: Single-cell pathology identifies subgroups of breast cancer patients.  

(a) Hierarchically clustered stacked bar plot of cell-type metacluster densities in each tumor. 

Colored columns indicate clinical subtypes, and SCP subgroups. (b) Heatmap indicating 

proportions of different epithelial communities present within each image. 

 

Figure 4: Single-cell pathology subgroups have distinct clinical outcomes.  

Kaplan-Meier curves of overall survival for each patient group (n = 278 patients total) based on 

(a) clinical subtype, (b) clinical grade, (c-f) SCP subgroup, or (g-h) stromal environment. Two-sided 

logrank test ✪p<0.05 compared to all other samples, ✭p<0.05 compared to similar subgroups, 

✭p<0.05 compared to other HR+/HER2- patients (for exact p-values see SI Tables 4 and 6). (i) 

Relative hazard ratios and 95% confidence intervals of disease-specific overall survival for 

densities of tumor (T) and microenvironment (ME) cellular communities and clinical categories 
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(molecular subtype and grade) estimated by Cox proportional hazards model (n = 266 patients, 

n = 15 patients only containing communities <10 cells were excluded). 

 

Methods 

Clinical data 

The samples of tumors from the described patient cohorts were obtained from University 

Hospital Basel and University Hospital Zurich. The cohort from University Hospital Basel includes 

281 patients who were not selected for any clinical or histologic features. Pathologists recorded 

the available patient metadata (Supplementary Table 1) and evaluated the suitability of tissue 

sections for tissue microarray (TMA) construction25. The TMA contains one 0.8-mm tumor core 

per patient, in some cases an additional matched healthy breast tissue sample, and a few control 

samples (liver tissue). The cohort from University Hospital Zurich is comprised of 72 patients; the 

samples include four 0.6-mm cores from four different regions of each tumor as described in 

Kündig et al.26. Tumor cores were punched from two central and two peripheral areas that 

averaged 1 cm in distance between regions. Samples were selected to contain equal proportions 

of the different tumor grades as well as patients with and without lymph node metastases 

(Supplementary Table 9). In total 720 images were acquired that varied in size and localization in 

the tumor. This project was approved by the local Commission of Ethics (ref. no. 2014-397 and 

2012-0553).  

 

Panel 
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An antibody panel was designed to target epitopes specific for breast cancer as well as 

markers for cell cycle and phospho-signaling and to distinguish epithelial, endothelial, 

mesenchymal, and immune cell types (Extended Data 1, Supplementary Table 2). Clone 

information is available in Supplementary Table 2. 

 

 Preparation and staining 

Tissue samples were formalin-fixed and paraffin-embedded at the University Hospitals of 

Basel and Zurich. The above described antibody panel was used to stain the tissue sections27. 

Tissue sections were dewaxed in xylene overnight and rehydrated in a graded series of alcohol 

(ethanol:deionized water 100:0, 90:10, 80:20, 70:30, 50:50, 0:100; 5 min each). In a 95 °C water 

bath, heat-induced epitope retrieval was conducted in Tris-EDTA buffer at pH 9 for 20 min. The 

tissue microarrays were immediately cooled and then blocked with 3% BSA, 5% goat serum in 

TBS for 1 h. Samples were incubated overnight at 4 °C in primary antibody at 7.5 g/L diluted in 

TBS/0.1% Triton X-100/1% BSA. Tissue samples were washed twice with TBS/0.1% Triton X-100 

and twice with TBS and dried before imaging mass cytometry measurements. 

For combined immunofluorescence and imaging mass cytometry staining, tissues were 

stained overnight at 4 °C with primary metal-conjugated mouse HER2 (151Eu) and rabbit pan-

Cytokeratin (175Lu) antibodies prior to washing and the mixed addition of fluorescent and metal-

conjugated anti-mouse (AF488, 165Ho) and anti-rabbit (AF555, 159Tb) secondary stains for 1 h at 

room temperature. A cover slip was added, and tissue was imaged for fluorescence signal. 

Subsequently, the cover slip was removed, and samples were washed, dried, and subjected to 

mass cytometry laser ablation and acquisition.  
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Imaging mass cytometry 

Images were acquired using a Hyperion Imaging System (Fluidigm). The largest square 

area from each core of a tissue microarray was laser ablated in a rastered pattern at 200 Hz, and 

raw data preprocessing was completed using commercial acquisition software (Fluidigm). IMC 

acquisition stability was monitored by interspersed acquisition of isotope-containing polymer 

(Fludigm). All successful image acquisitions were processed, and images containing pan-marker 

staining variation specific to TMA location were removed. In few cases the acquisition was 

interrupted and later continued resulting in 2 tumor images of the same patient. Therefore, the 

281-patient cohort resulted in 289 tumor, 87 healthy breast and 5 liver control images. Where 

applicable, signal spillover between channels was corrected using functions from the CATALYST 

R package (version 1.5.6)28. During analysis of the samples from University Hospital Zurich, cells 

from images in one row of the TMA were almost exclusively assigned to the phenotype with the 

lowest overall marker expression. These samples were poorly stained and had to be excluded 

from further analysis (images Ay.x1). The 72-patient cohort resulted in 263 tumor, 68 healthy 

breast and 6 control  images used for analysis. 

 

Data processing 

Data were converted to .tiff format and segmented into single cells using the flexible 

analysis pipeline available at https://github.com/BodenmillerGroup/ImcSegmentationPipeline. 

Briefly, individual cells and tumor/stroma regions were segmented using a combination of Ilastik 

1.1.929 and CellProfiler 2.1.130. Ilastik was used to generate a probability map by classifying pixels 

https://github.com/BodenmillerGroup/ImcSegmentationPipeline


21 

 

(Single cells - nuclei, membrane and background; Tumor/Stroma - tumor, stroma and 

background) based on a combination of membrane and nuclei identifying antibody stains. 

Probability maps were then segmented into single cell, or tumor and stroma object masks using 

CellProfiler.  

Single-cell segmentation masks and tiff images of the 35 channels were overlaid and 

single-cell marker expression means and spatial features were extracted using the Matlab 

toolbox regionprops, as implemented in histoCAT31. Even with very good quality segmentation, 

the imaging of tissue segments results in single-cell data of tissue slices and overlapping cell 

fragments that do not always capture the nucleus of a cell, and therefore nuclei-mismatched 

signal can be assigned to neighboring cells in densely packed areas. This can lead to rare cases 

where data assigned to one cell contains marker expression from the neighborhood.  

The single cell IDs of each cell’s direct neighbors within 4 pixels (4 μm) of the cell of 

interest was detected and recorded using histoCAT software. The number of pixels expanded to 

detect neighbors was chosen such that small gaps in segmentation would be bridged, yet no cells 

after the direct neighbor would be recorded (cell minor axis lengths: 5th - 95th percentile 4.84 - 

14.59 pixels, average 9.51 pixels). 

Individual cell locations inside or outside of a tumor mask were identified and the distance 

of each cell to the tumor boundary (from inside and outside of the tumor region) was calculated 

using the Matlab toolbox regionprops. Distances were measured between the closest pixels of 

the objects in question. 

 

Data transformation and normalization 
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The presented data were not transformed, and all analyses were based on raw IMC 

measurements. Single-cell marker expressions are summarized by mean pixel values for each 

channel. The single-cell data were censored at the 99th percentile to remove outliers, and Z-

scored cluster means were visualized in heatmaps. For tSNE and PhenoGraph the data were 

normalized to the 99th percentile, as suggested by the authors of these algorithms32,33. To 

visualize the number of cells per image or patient and for survival modelling, the counts were 

normalized by the image area (total number of pixels) and displayed as cell density. For coxph 

survival modelling, these densities were multiplied by a factor of 1031 in order to yield values 

larger than 1 and then log-transformed. 

 

Analysis workflow 

The single-cell analysis pipeline was implemented in R, but image analysis steps were 

performed in Matlab. All statistical tests were performed using common R functions. 

 

Clustering and metaclustering 

Single cells of the large cohort from University Hospital Basel were clustered into groups 

of phenotypically similar cells using a combination of PhenoGraph33 for initial, unsupervised 

clustering and an aggregation of these clusters into larger groups based on their mean marker 

correlations to identify cellular metaclusters. In a first step, the data were over-clustered to 

detect and separate rare cell subpopulations. PhenoGraph (version 2.0) was used with default 

parameters (as implemented in histoCAT/Cyt) and 20 nearest neighbors. For high-dimensional 

clustering, 29 markers and 4 cell shape features were used: Iridium, Histone, phospho Histone, 
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CK14, CK5, CK8/18, CK19, CK7, panCK, E/P-Cadherin, ER, PR, HER2, GATA3, SMA, Vimentin, 

Fibronectin, vWF/CD31, CD44, CD45, CD68, CD3, CD20, cleaved Caspase 3/cleaved PARP, 

Carbonic Anhydrase, phospho-S6, Ki67, p53, EGFR, Area, Eccentricity, Extent, and Number 

Neighbors. Of the resulting 71 clusters, the 59 epithelial ones were aggregated into larger groups 

following the hierarchical clustering (Euclidean distance and Ward’s linkage) of their mean 

marker correlations. Multiscale bootstrap resampling was used to assess the uncertainty of each 

subtree (R package pvclust, version 2.0), and separation of the hierarchy was assigned so that 

significant epithelial subtrees were maintained and known biologic differences were separated. 

This resulted in 14 tumor cell metaclusters of varying size and subtree robustness (Extended Data 

5a). Clusters showing marker expression typical of stromal and immune cells, which were limited 

due to our tumor marker focused panel, were kept as in the original PhenoGraph clustering and 

not aggregated into larger groups. This metaclustering yielded 27 cellular subgroups, 

representing various immune, stromal, and epithelial cell types. The granularity, the level and 

detail at which phenotypes are divided or clustered, of the studied cell types depends on the 

selection of both the panel and the choice of parameters. While a more granular distinction of 

cell types might elucidate even more subtle difference in the marker expressions of cells, it would 

limit comparability between tumors as many tumor cell types would be patient specific. 

 

Cluster matching across cohorts 

Single cells from the second cohort from University Hospital Zurich were clustered 

unsupervised and independently using PhenoGraph33 with the same settings described above for 

the first cohort and a nearest neighbor parameter of 30. The clusters were matched to the most 
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similar metacluster of the previous cohort using Pearson correlation of the z-scored mean marker 

expressions. In two special cases (clusters 8 and 15) where the cluster in question was rather 

poorly correlated with all metaclusters but most correlated with a stromal cell type, we manually 

re-assigned the cluster because upon visual inspection of the images those clusters represented 

cells forming clear tumor bulks.  

 

bh-tSNE 

For visualization, high-dimension single-cell data were reduced to two dimensions using 

the non-linear dimensionality reduction algorithm tSNE32. We applied the Barnes-Hut 

implementation of tSNE (bh-tSNE) to 99th-percentile normalized data with default parameters 

(initial dimensions, 110; perplexity, 30; theta, 0.5). The algorithm was run on a randomly 

subsampled set of cells (20% from each image) in order to not obscure visible patterns in crowded 

plots and for better computational performance.  

 

Neighborhood analysis 

To identify significantly enriched or depleted pairwise neighbor interactions between cell 

types, histoCAT functions were used to perform a permutation test based analysis of spatial 

single-cell neighborhoods31. Neighboring cells were defined as those within 4 pixels (4 µm). A p-

value cut-off of <0.01 was used for significance. 

 

Single-cell pathology patient grouping 
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Patients were grouped based on the proportions of tumor cell metaclusters using the 

cytofkit R implementation of PhenoGraph33 (version 1.10.0) with 8 nearest neighbors and default 

parameters. The parameter number of nearest neighbors was chosen such that small groups of 

patients consisting of a distinct predominant cell type could be separated. A choice of a higher 

value for this parameter would lead to fewer groups, and hence patients with entirely unrelated 

predominant phenotypes grouped together. A lower value of the nearest neighbor parameter 

might capture more subtle differences in cellular composition of tumor types but would severely 

limit statistical power for group comparison and survival analysis. The composition of each 

patient group by their clinically assigned metadata is available in Supplementary Table 3. Patient 

group 18 was removed from further downstream analysis, due to lack of statistical power, as it 

contains only three patients with distinct tumors strongly dominated by a rare HR+/CK– cell type. 

 

Single-cell pathology group matching 

Tumor cores from the second cohort from University Hospital of Zurich were assigned to 

the most similar previously defined single-cell pathology group based on their matched tumor 

cell type components. The inverse of Pearson correlation was used as distance metric.  

 

Spatial heterogeneity  

In the cohort from University Hospital Zurich that contains multiple cores per tumor, 

intra-core heterogeneity of tumor and stromal cells were separately quantified using the entropy 

based Shannon index on the amounts of the different cell types within each core. Shannon 

entropy has been shown to serve as a measure of diversity and homogeneity in various 
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contexts34. It can also be considered a measure for the information content of a string, where in 

our case every cell of an image is represented by a letter according to its cell type. The most 

compressible string is obtained if every cell is of the same type, and the string with most 

information is obtained if every cell is unique (Formula 1, where Pi is the probability of a given 

symbol). Inter-core heterogeneity within a tumor was approximated by calculating the Kullback-

Leibler divergence from the cell-type distribution (proportions of each cell type) of an individual 

core to the average cell-type distribution across all cores of a patient. Kullback-Leibler divergence 

describes the information loss when going from an original distribution to a summary 

distribution35. Hence, if all cores of a tumor are composed of identical proportions of the same 

cell types, the Kullback-Leibler divergences of every individual core to the patient average will be 

minimal. The R package entropy (version 1.2.1) was used for the calculation of both Shannon 

entropy and the Kullback-Leibler divergence. Intra-tumor heterogeneity and the consistency of 

SCP group assignment of images of the same patient are visualized in Extended Data 10. 

 

  H(X) = -∑ pi log2 (pi)     (Formula 1) 

 

Spatial communities 

The images were converted into topological neighborhood graphs where every cell is 

represented by a node (visualized at the centroid), and the nodes are connected by an edge if 

the cells directly neighbor each other (Figure 2). Neighboring cells were defined as those within 

4 pixels (4 µm) of the outermost pixel assigned to a cell. Subsequently, the Louvain community 

detection algorithm36 (C implementation by Lefebvre and Guillaume, version 0.2, wrapped by 
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Matlab as used by the implementation of PhenoGraph 2.0 used by histoCAT/Cyt) was applied to 

identify highly interconnected spatial subunits in the tissue graph. While using community 

detection algorithms on spatially constrained networks is known to hide underlying non-spatially 

driven solutions, the only aim of applying the algorithm here was to extract spatial information 

and identify communities based on physical proximity37. This analysis was performed on 

epithelial cells only to identify tumor communities (without including stromal or immune cells in 

the graph) and again on all cells of a tissue to identify tumor-microenvironment communities. A 

tumor-specific cohesiveness score was calculated based on the average sizes of the identified 

tumor communities. Communities involving fewer than 10 cells were excluded from further 

analysis in order to focus on cohesive cell patches and not individual disconnected cells. 15 

patients were excluded from analysis based on tumor communities because the imaged regions 

did not contain any tumor communities consisting of at least 10 cells. In order to identify 

recurring similar spatial cell type communities, the cytofkit PhenoGraph33 (version 1.10.0) was 

run on the min-max normalized, absolute numbers of cells of each cell metacluster in each 

community. This analysis was conducted separately for the tumor communities based on only 

the epithelial cell types (k=80) and for the microenvironment communities based on all cells but 

only taking into account the individual stromal cell types and aggregating all tumor cell types into 

one label (cell type group 100: including all tumor cells, k=30). This analysis was conducted 

separately for each cohort but based on the matched metacluster cell types. 

 

Stromal environments 
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Based on their microenvironment community compositions, images were grouped into 

11 different stromal environments using hierarchical clustering (Euclidean distance and Ward’s 

linkage). This analysis was conducted separately for each cohort but based on the matched 

metacluster cell types. 

 

Overlapping classifications and enrichments 

Fisher’s exact test was used to identify single-cell pathology patient groups enriched for 

a specific stromal environment (Extended Data 8). The test was performed using the R function 

fisher.test (with parameter enrichment = “greater”) for every potential stromal region of a 

patient group. The p-values were corrected for multiple testing using the Bonferroni method. 

This enrichment analysis was also conducted with different combinations of single-cell pathology 

subgroups, stromal environments, and clinical classifications (Extended Data 8). 

 

Survival curves and coxph regression models 

Kaplan-Meier survival curves and coxph survival regression models were generated using 

the R package survival (version 2.42-4). The overall survival as well as the disease-free survival of 

patients in different clinical or single-cell-defined subgroups was analyzed (Figure 4, Extended 

Data 9, Supplementary Table 4-8). Both logrank tests and coxph models were employed to 

investigate whether a patient subgroup significantly deviated from the survival of the remaining 

patients or from the survival of other patients of similar SCP groups or the same clinical 

classification (Figure 4, Supplementary Table 4-7). Log-transformed densities of communities or 

single cells, alongside the clinical subgrouping and grading, were provided to a coxph survival 
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model in order to find significant associations of certain community or single-cell types with 

patient risk and to investigate the hazard ratios (Figure 4). Nested coxph models were compared 

using likelihood ratio tests (anova.coxph) to assess whether additional variables improved the 

survival model (Supplementary Table 8).  
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The data supporting the findings of this study, including high-dimension tiff images, 

single-cell and tumor/stroma masks, single-cell and patient data will be available online upon 
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Code availability 

All code that produced the results of this study will be available on 

https://github.com/BodenmillerGroup/SCPathology_publication upon publication.  

Extended data legends 

Extended Data 1: Antibody panel and example 6-marker pseudo-colored images. 

https://github.com/BodenmillerGroup/SCPathology_publication
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Antigens targeted by the antibodies in the panel of 35 isotope-conjugated antibodies used to 

stain the breast cancer tissue. Representative marker images from the analysed cohort generated 

by IMC. Every marker is visualized at least once. Each image represents a different tumor of the 

analysed cohort. Each marker was individually scaled to enable visualization. Scale bar = 100 μm. 

 

Extended Data 2: IHC and IMC comparison and reproducibility analysis. 

(a) Representative IMC and immunohistochemistry (IHC) images of the quantified stains in 

sections of the same tumor core. (b) Scatter plot and correlation of total IHC and IMC signal in 

sections of the same tumor core (IHC = optical density/μm2, IMC = ion counts/μm2,n = 319 cores). 

(c) Scatter plot and correlation of the number of positively stained cells in sections from the same 

tumor core (n = 319 cores). (d) Bland-Altman plots for reproducibility of IMC signal in positively 

stained cells across images from different regions of the same tumor adapted to visualize the 

average across four samples on the x-axis and the difference of every individual sample to the 

tumor average on the y-axis. Only images containing positively stained cells and more than 200 

cells in total were taken into account for this analysis (ER: n = 280 cores from 72, PR: n = 213 

cores from 66 patients, HER2: n = 291 cores from 72 patients, Ki67: n = 281 cores from 72 

patients, E/P-Cadherin: n = 200 cores from 65 patients) . The red line represents the overall 

average of the differences to the tumor mean, and the blues lines represent the 95% confidence 

interval (1.96*standard deviation). The percentage of observations that fall within the confidence 

interval is indicated at the top of each plot. 

 

Extended Data 3: Simultaneous IF and IMC imaging. 
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Immunofluorescence (IF) and Mass Cytometry (IMC) imaging of the same tissue sample using 

metal-conjugated HER2 and pan-Cytokeratin primary antibodies and both fluorescent and metal-

conjugated secondary stains. Pseudo-color images of (a) individual channels, (b) three marker 

images produced from each label type (White: overlap, Red: HER2, Green: pan-Cytokeratin, Blue: 

DNA Intercalator), as well as (c) an overlay of the same marker from all three label types (White: 

overlap, Red: Secondary IF, Green: Secondary IMC, Blue: Primary IMC). (d) High magnification 

image of regions labelled by white squares in panel b comparing immunofluorescence and 

imaging mass cytometry resolution. 

 

Extended Data 4: Single-cell localization relative to tumor-stroma interface. 

tSNE maps of 171,288 subsampled single cells from high-dimension images of breast tumors 

colored by (a) patient, (b) localization relative to the tumor-stroma interface, (c) single-cell 

distance to the tumor-stroma interface and (d) number of neighboring cells. (e-g) Representative 

image with single-cell mask labeled by (e) metacluster identifier , (f) tumor and stroma masks, 

and (g) heatmap representing distances of single cells to the tumor-stroma interface from each 

side. Scale bar = 100 μm. (h-j) Log-transformed distances to tumor front of (h) stromal-cell 

clusters and (i) tumor-cell metaclusters, and (j) binned distances of all metaclusters to the tumor 

front, where bin number 0 contains all cells that are directly touching the interface. Negative 

distances represent the distance to the tumor boundary from inside the tumor and positive 

values indicate distance outside the tumor. 

 

Extended Data 5: Metaclustering and cluster matching across cohorts. 
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(a) Heatmap displaying z-scored mean marker expressions of single-cell phenotypic clusters 

identified by PhenoGraph (Figure 1) with colors on colorbar and hierarchical clustering indicating 

the corresponding metacluster. Red stars on the hierarchical clustering tree indicate subgroups 

that robustly reappear as separate groups using multiscale bootstrap resampling (R function 

pvclust, p < 0.05). (b) Examples of untransformed distributions of cluster marker expressions 

differing between metaclusters. (c) Heatmaps showing the z-scored mean marker expression or 

distance to tumor-stroma interface for each metacluster defined in the Basel 281-patient cohort 

and each matched PhenoGraph cluster from the Zurich multi-core 71-patient cohort. 

PhenoGraph clusters of the Zurich cohort were matched to the metaclusters of the Basel cohort 

based on Pearson correlation of the mean marker expression (Methods). 

 

Extended Data 6: Densities of single-cell phenotypes in different clinical subtypes and SCP patient 

subgroups. 

Box plots of cellular metacluster densities in patients of (a) each clinical subtype (HR+HER2-: n = 

173, HR+HER2+: n = 29, HR-HER2+: n = 23, TripleNeg: n = 48) and (b) each SCP subgroup (center 

line, median; box limits, first and third quartile; whiskers, 1.5x interquartile range; points beyond 

whiskers, outliers; SCP1: n = 17, SCP2: n = 21, SCP3: n = 20, SCP4: n = 12, SCP5: n = 32, SCP6: n = 

10, SCP7: n = 13, SCP8: n = 11, SCP9: n = 20, SCP10: n = 24, SCP11: n = 31, SCP12: n = 14, SCP13: 

n = 15, SCP14: n = 11, SCP15: n = 8, SCP16: n = 10, SCP17: n = 9, SCP18: n = 3).  

 

Extended Data 7: Stromal environments based on microenvironment community composition 

and their distinct pairwise cell type interactions. 
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(a) Hierarchical clustering of tumor cores (n = 281) according to stromal community content and 

splitting into corresponding stromal environments (n = 11). The stacked bar plot at the top 

indicates the average number of cells from each cellular metacluster present within each 

microenvironment community type. (b) The presence of significant (p<0.01) cell-cell interactions 

(red) and cell-cell avoidances (blue) identified per image based on a permutation test (1000 

permutations). Black outlined regions indicate significant interactions that are enriched in images 

from the respective stromal environments (one-sided Fisher’s exact test for enrichment, p < 0.05 

after multiple-testing correction). Color bars on the right indicate the SCP subgroup, grade, and 

clinical subtype of the tumor. Cell-type interactions along the top are indicated by the labeled 

cell type of interest and neighboring cell. 

 

Extended Data 8: Comparisons and enrichments between classifications. 

Bubble plot visualizing overlap between SCP subgroups of breast cancer (SCP1: n = 17, SCP2: n = 

21, SCP3: n = 20, SCP4: n = 12, SCP5: n = 32, SCP6: n = 10, SCP7: n = 13, SCP8: n = 11, SCP9: n = 

20, SCP10: n = 24, SCP11: n = 31, SCP12: n = 14, SCP13: n = 15, SCP14: n = 11, SCP15: n = 8, SCP16: 

n = 10, SCP17: n = 9, SCP18: n = 3 excluded) and (a) clinical subtypes (HR+HER2-: n = 173, 

HR+HER2+: n = 29, HR-HER2+: n = 23, TripleNeg: n = 48) and (b) stromal environments (SE1: n = 

49, SE2: n = 88, SE3: n = 9, SE4: n = 24, SE5: n = 25, SE6: n = 24, SE7: n = 8, SE8: n = 14, SE9: n = 

14, SE10: n = 18, SE11: n = 2). One-sided Fisher’s exact test for enrichment. • p<0.1, * p<0.05, ** 

p<0.01, *** p<0.001. Exact p-values for highlighted pairs: SE1 and SCP7: p = 0.013, SE3 and SCP8: 

p = 0.021, SE5 and SCP15: p = 0.031, SE6 and SCP3: p = 0.034, SE8 and SCP14: p = 0.008, SE8 and 

SCP8: p = 0.093, SE9 and SCP12: p = 0.036, HR+HER2- and SCP3: p = 0.079, HR+HER2- and SCP5: 
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p = 3.58e-04, HR+HER2+ and SCP2: p = 0.032, HR-HER2+ and SCP11: p = 2.36e-04, HR-HER2- and 

SCP8: p = 0.060, HR-HER2- and SCP14: p = 0.008, HR-HER2- and SCP15: p = 6.13e-06, HR-HER2- 

and SCP16: p = 0.031. 

 

Extended Data 9: Kaplan-Meier survival curves for overall and disease free survival. 

Kaplan-Meier survival curves of (a-b) overall survival for Stromal Environments not shown in 

Figure 4 and (c-l)  disease-free survival for each patient group based on (c) clinical subtype , (d) 

grade , (e-h) SCP subgroup , and (i-l) stromal environment . Two-sided logrank test ✪ p<0.05 

compared to all other samples (for exact p-values see SI Tables 5 and 7).  

 

Extended Data 10: Multi-core cohort regional heterogeneity analysis. 

Quantification of intra-tumor regional heterogeneity in Zurich multi-core cohort. (a) 

Hierarchically clustered stacked bar plot of cell type metacluster densities in each tumor, grouped 

by patient. Colored columns indicate patient, clinical subtypes, SCP subgroups, location of core 

in the tumor, Shannon entropy (intra-core heterogeneity), and tumor-specific cohesiveness 

score. (b) Dot plot of Kullback-Leibler divergence from the cell-type distribution of an individual 

tumor region to the patient average distribution, colored according to the SCP subgroup 

classification per tumor region (n = 263 tumor cores), grouped by patient (n = 71 patients) and 

ordered by the increasing average Kullback-Leibler divergence per patient. (c) Boxplot of the 

same Kullback-Leibler divergences of each region to the patient’s average cell-type distribution, 

grouped by tumor regions individually identified as the same SCP subgroup, independent of 

patient (center line, median; box limits, first and third quartile; whiskers, 1.5x interquartile range; 
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points beyond whiskers, outliers; SCP1: n = 12, SCP2: n = 13, SCP3: n = 11, SCP4: n = 10, SCP6: n 

= 76, SCP7: n = 7, SCP8: n = 3, SCP9: n = 5, SCP10: n = 1, SCP11: n = 26, SCP12: n = 51, SCP13: n = 

15, SCP14: n = 18, SCP15: n = 4, SCP16: n = 5, SCP17: n = 5, SCP18: n = 1). (d) Bar indicating the 

percentage of patients (n = 71) with the indicated fraction of individually classified images 

matching the whole tumor classification. (e) Bubble plot visualizing intra-tumor region variation 

within patients of each SCP subgroup. Rows represent tumors of each SCP subgroup as identified 

by the combined analysis of all imaged regions. Columns represent tumor regions individually 

matched to a SCP subgroup. For each whole-tumor classification on the y-axis, circle size indicates 

the fraction of corresponding images individually classified as a SCP subgroup. For each image 

classification on the x-axis, color indicates the fraction of images within each tumor type.  


