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Summary: In survival analysis it often happens that a certain fraction of the subjects under study never experience

the event of interest, i.e. they are considered ‘cured’. In the presence of covariates, a common model for this type of

data is the mixture cure model, which assumes that the population consists of two subpopulations, namely the cured

and the non-cured ones, and it writes the survival function of the whole population given a set of covariates as a

mixture of the survival function of the cured subjects (which equals one), and the survival function of the non-cured

ones. In the literature one usually assumes that the mixing probabilities follow a logistic model. This is however a

strong modeling assumption, which might not be met in practice. Therefore, in order to have a flexible model which

at the same time does not suffer from curse-of-dimensionality problems, we propose in this paper a single-index model

for the mixing probabilities. For the survival function of the non-cured subjects we assume a Cox proportional hazards

model. We estimate this model using a maximum likelihood approach. We also carry out a simulation study, in which

we compare the estimators under the single-index model and under the logistic model for various model settings, and

we apply the new model and estimation method on a breast cancer data set.

Key words: Cure models; EM algorithm; kernel smoothing; logistic model; proportional hazards model; survival

analysis.
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1. Introduction

In survival analysis one usually assumes that all subjects under study will eventually expe-

rience the event of interest. However, there are various situations for which this assumption

is not realistic. For instance, when the event of interest is the time until a patient progresses

or relapses from a certain disease, then patients who are cured from the disease will never

experience the event. Likewise, when interest lies in the time until someone finds a new

job or the time until an electronic component fails, the event of interest may never happen

for some observations. Those observations will be considered as ‘long-term survivors’ or as

‘cured’, and their survival time will be set to infinity. Since it is not possible in practice to

follow all individuals until they all have experienced the event of interest, a typical feature

of survival data is (right-)censoring, meaning that for some individuals only a lower bound

of the survival time is known. When survival data contain a fraction of long-term survivors,

censored observations include uncured individuals for whom the event could not be observed,

but also cured ones who will never experience the event. As a result, the cure status is

unknown and survival data contain then a mix of cured and uncured individuals that are

not distinguishable a priori. Cure models are survival models that have been developed to

take this feature into account.

A typical field in which cure models are used is cancer studies. In clinical studies on breast

cancer for example, we know that some patients will never relapse from the disease. Beside

the contextual evidence for the presence of a cure fraction, the observation of a long plateau,

with a non-negligible fraction of censored observations, that levels-off at a value greater than

0 in the Kaplan and Meier (1958) estimator of the survival function, is an indicator and a

prerequisite for cure models, as explained by Sy and Taylor (2000). Web Figure 1, which

represents this estimator for the time to distant metastasis for patients that experienced
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a lymph-node negative breast cancer (Wang et al., 2005), gives a good example of cured

survival data.

When information on covariates is present, a commonly used cure regression model is the

mixture cure model. Originally proposed by Boag (1949) and Farewell (1982), it assumes

that the survival function S(t|x, z) = P (T > t|X = x,Z = z) of the survival time T given

a set of covariates (X t,Zt)t is given by

S(t|x, z) = 1− p(x) + p(x)Su(t|z), t > 0, (1)

where p(x) = P (B = 1|X = x) is the conditional probability of being uncured (often

referred to as the ‘incidence’) with B = I(T < ∞) the latent uncured status, and I(·) the

indicator function; and Su(t|z) = P (T > t|B = 1,Z = z) is the conditional survival function

for the uncured subjects (often referred to as the ‘latency’). Here, the vectors X and Z can

contain (partially) the same covariates, but they can also be completely different.

In the literature various models have been considered for the latency. Parametric models

are, for example, given in Boag (1949) and Farewell (1982). A semiparametric approach

based on a Cox (1972) proportional hazards (PH) model is provided by e.g. Kuk and Chen

(1992), Sy and Taylor (2000), and Lu (2008), whereas a completely nonparametric estimation

approach for Su(t|z) is given in Patilea and Van Keilegom (2018). On the other hand,

much less attention has been paid to the incidence and the modeling and estimation of the

cure rate 1 − p(x). In fact, it is common practice to assume a logistic model, i.e. p(x) =

exp(γ0 + γtx)/{1 + exp(γ0 + γtx)} for some parameter vector γ and an intercept γ0. The

logistic model has certainly a number of important qualities. For instance, it is easy to

interpret, it is easy to estimate, and it is available in various statistical software packages.

However, it also has an important drawback. Indeed, the logistic function exp(u)/{1+exp(u)}

is of a fixed known form, while there is no reason to constraint the cure rate 1−p(x) to have

a S-shape. Furthermore, even if p(x) is often monotone in practical applications, we might
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think of situations where p(x) would e.g. be increasing in γtx up to some threshold, after

which it would become decreasing. In order to accommodate these concerns, we propose in

this paper a single-index model for p(x), i.e. we assume that there exists an unknown link

function g(·) (monotone or non-monotone) such that

p(x) = g(γtx). (2)

The link function g can be any (smooth) function with values between 0 and 1, and will

be estimated non parametrically using kernel methods. As noted by a referee, the single-

index model is a special case (when M = 1) of Projection Pursuit Regression (Friedman

and Stuetzle, 1981), where E(B|X = x) =
∑M

m=1 gm(ω
t
mx), with gm, m = 1, . . . ,M , some

unknown functions, and ωm, m = 1, . . . ,M , some vectors of unknown parameters associates

with X. Considering the popular Cox PH model for the latency, and a single-index model

for the incidence, we will refer to our model as the Single-Index/Cox (SIC) cure model.

Single-index models have been used in various contexts and have several advantages. First

of all, as explained above, they are much more flexible than purely parametric models.

Second, contrary to the completely nonparametric models for p(x), they do not suffer

from curse-of-dimensionality problems, since they summarize the covariate vector X into

one single score γtX. Third, despite their nonparametric nature, they remain quite easy

to interpret. Indeed, to compare the relative importance of one covariate with respect to

another, it suffices to standardize the covariates and to compare the absolute value of the

corresponding γ-coefficients. We refer to Ichimura (1993) and Klein and Spady (1993) for

some early references, to the book by Horowitz (2009) for a nice overview of existing results,

and to Lu and Burke (2005), Wang et al. (2007), Lopez (2009), and Lopez et al. (2013) for

papers which have used the single-index model in survival analysis.

This paper is organized as follows. In Section 2 we detail our proposed model, i.e. the

SIC cure model, we provide results about the identifiability of the model and we define a
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maximum likelihood based estimation procedure. The proof of the identifiability of the model

is given in the Supplementary Materials. The finite sample performance of the proposed

estimators is investigated through a numerical study in Section 3. It also contains a discussion

on the issue of bandwidth selection for the kernel based non-parametric estimator of g. The

breast cancer data introduced previously is analyzed with the SIC cure model in Section 4,

and we end the paper with some concluding remarks in Section 5.

2. The Model and its Estimation

The survival time T is subject to random right censoring, i.e. instead of observing T we

observe the couple (Y,∆), where Y = min(T,C) is the follow-up time, ∆ = I(T 6 C) is

the censoring indicator, and C is the censoring time. As often, we assume that T and C

are independent given the covariates (X t,Zt)t. Let (Yi,∆i,X i,Zi), i = 1, . . . , n, be i.i.d.

realizations of (Y,∆,X,Z).

Consider the mixture cure model (1) and assume a single-index structure (2) for p(x),

where γt = (γ1, . . . , γd) and d is the dimension of X. For identifiability reasons we do not

include an intercept in the model. For the latency, a Cox PH model is considered with

survival function

Su(t|z) = S0(t)
exp(βtz), (3)

where S0(t) = P (T > t|B = 1) is the baseline conditional survival function, which is

totally unspecified and which corresponds to the conditional survival function for Z = 0,

and βt = (β1, . . . , βq) is a vector of parameters associated with Z that does not include

an intercept (with q = dim(Z)). The conditional hazard function is given by λu(t|z) =

λ0(t) exp(β
tz), where λ0(t) = f0(t)/S0(t) is the baseline conditional hazard function, with

f0(t) = −(d/dt)S0(t). Note that Su(t|z) is a proper survival function, i.e. Su(t|z) → 0 when

t → ∞, implying that the survival function is such that S(t|x, z) → 1− p(x) when t → ∞.
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Note also that even if the conditional hazard function λu(t|z) satisfies the proportional

hazard property, this is not the case for the hazard function of the entire population.

2.1 Identifiability of the Model

Under the data generating process described before, and assuming non-informative censoring,

the likelihood of an observation (y, δ,x, z) is given by

L(y, δ,x, z) = {g(γtx)fu(y|z)}δ{1− g(γtx) + g(γtx)Su(y|z)}1−δ,

where fu(t|z) = −(d/dt)Su(t|z).

In practice, the censoring time C is bounded. This prevents us from observing cured

subjects in the data. A way around this problem is to assume the existence of a so-called ‘cure

threshold’ τ < ∞, such that T > τ implies that T = +∞ (Taylor, 1995). This assumption

is commonly accepted and often used in cure models literature. As a consequence, whenever

Y is observed to be greater than τ , the individual is assumed to be cured.

We first derive our identifiability result for the case where X is only composed of contin-

uous random variables. Additional assumptions are necessary when X is composed of both

continuous and discrete random variables. We give them at the end of this subsection.

For a continuous random vector X, our identifiability result is derived under the following

set of assumptions:

(A1) (i) The function g is differentiable and not constant on the support of γtX.

(ii) The components of X are continuous random variables that have a joint probability

density function.

(iii) The support of X is not contained in any proper linear subspace of Rp.

(iv) γtX does not contain an intercept.

(v) Either γ1 = 1, or ‖γ‖ = 1 and the sign of γ1 is fixed, with ‖ · ‖ the Euclidean norm.

(A2) (i) βtZ does not contain an intercept.
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(ii) The matrix Var(Z) has full rank.

(A3) (i)There exists a τ < ∞ (cure threshold) such that T > τ ⇐⇒ T = ∞, and P (C >

τ |X,Z) > 0 for almost all X and Z.

(ii) For all x, 0 < p(x) < 1.

Assumption (A1) is required to identify the single-index model (see Horowitz (2009),

Theorem 2.1, p. 14), whereas (A2) is needed to make sure that the Cox model is identifiable,

and (A3) is a typical assumption needed to identify the mixture cure model (see e.g. Taylor

(1995)).

Proposition 2.1: Under (A1)-(A3), the model given by (1), (2) and (3) is identifiable.

The proof of this Proposition is given in the Supplementary Materials.

The identifiability result stated above only considers that X is a vector of continuous

covariates. When X is a mixture of continuous and discrete variables, two additional condi-

tions, as described in Horowitz (2009), are necessary:

(A4) The support of γtX must not be divided in disjoint subsets when the values of the

discrete components vary.

(A5) The function g is not periodic.

2.2 Maximum Likelihood Estimation

In the context of mixture cure models, the likelihood function takes the form L =
∏n

i=1{p(X i)

fu(Yi|Zi)}∆i [{1− p(X i)}+ p(X i)Su(Yi|Zi)]
1−∆i , with only two different types of contribu-

tions: from censored and from uncensored observations. When the latency is modeled as a

Cox PH model, a particular feature of this model is that the baseline hazard is left unspecified

(Cox, 1972). In classical survival analysis, the Cox PH model is usually fit using a profile

likelihood approach (Murphy and Van der Vaart, 2000), which consists in first maximizing

the likelihood function with respect to λ0 for fixed β, and then plugging-in the solution
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in the likelihood function. The so-obtained ‘partial likelihood’ does not depend on λ0, and

hence the likelihood is to be maximized only with respect to β. However in mixture cure

models, one can not eliminate λ0(t) from the likelihood L. Indeed λ0(t) is related to the

incidence because it is conditional on B. It then contains information about the uncure

status. Furthermore, cured and uncured censored observations have the same contribution

to the likelihood function and no distinction is made between the two. By eliminating λ0(t),

one would lose part of the information about the incidence. As a solution, Sy and Taylor

(2000) propose to use the Expectation-Maximization algorithm (Dempster et al., 1977) in

order to handle both the fact that the cure status is partially unobserved and the fact that

λ0(t) is unspecified. The method is based on a complete-data likelihood, that is, the likelihood

function that would be obtained if the uncure status B would be observed for all individuals :

Lc =
∏n

i=1 {p(X i)λu(Yi|Zi)Su(Yi|Zi)}Bi∆i

[

{p(X i)Su(Yi|Zi)}Bi × {1− p(X i)}1−Bi

]1−∆i

. As

it can be seen, cured and uncured censored subjects have a different contribution to this

likelihood, and one can therefore use a profile likelihood-type approach to estimate the

survival function for uncured observations without losing information about the incidence.

The EM algorithm consists in maximizing the complete-data likelihood by alternating

between an E(xpectation) and a M(aximization) step until convergence. At the mth iteration

of the algorithm, the E-step consists in computing the expectation of the logarithm of

the complete-data likelihood with respect to the latent variable (the uncure status), given

the observed data and the current parameter values. As the log-complete-data likelihood

is linear in B, it is the same as computing E
(

Bi|O, θ(m−1)
)

= ∆i [1 × P (Bi = 1|Y =

Yi,∆i = 1,X = X i,Z = Zi, θ
(m−1))] + (1 − ∆i) [1 × P (Bi = 1|Y = Yi,∆i = 0,X =

X i,Z = Zi, θ
(m−1))], where O = {(Yi,∆i,X i,Zi), i = 1, ..., n}, are the observed data,

θ = (γ,β, S0, g) is the vector of parameters, and θ(m−1) denotes the set of parameter

values at the (m − 1)th iteration. Given that P (Bi = 1|Y = Yi,∆i = 1,X = X i,Z =
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Zi, θ
(m−1)) = 1, and that P (Bi = 1|Y = Yi,∆i = 0,X = X i,Z = Zi, θ

(m−1)) = {P (Bi =

1, T > Yi|X = X i,Z = Zi, θ
(m−1))}/{P (T > Yi|X = X i,Z = Zi, θ

(m−1))}, it fol-

lows that E
(

Bi|O, θ(m−1)
)

= ∆i + (1 − ∆i){p(m−1)(X i)S
(m−1)
u (Yi|Zi)}/{1 − p(m−1)(X i) +

p(m−1)(X i)S
(m−1)
u (Yi|Zi)} = W

(m)
i . The substitution of W

(m)
i in the logarithm of Lc gives

the expected log-complete-data likelihood or equivalently the expected complete-data like-

lihood L̃c =
∏n

i=1{p(X i)λu(Yi|Zi)Su(Yi|Zi)}W
(m)
i

∆i × ∏n
i=1[{p(X i)Su(Yi|Zi)}W

(m)
i × {1 −

p(X i)}1−W
(m)
i ]1−∆i . In the M-step, L̃c is maximized with respect to the parameters of the

model. Since it can be re-written as the product of two factors, each of them contain-

ing the parameters of one part of the model, L̃c =
∏n

i=1[p(X i)
W

(m)
i {1 − p(X i)}1−W

(m)
i ] ×

∏n
i=1{λu(Yi|Zi)

∆iSu(Yi|Zi)}W
(m)
i = L̃1 × L̃2, it may be maximized separately for the two

parts of the model.

For the incidence, we follow the maximum likelihood approach of Klein and Spady (1993)

to estimate a single-index model with a binary outcome. The likelihood function given by

L̃1 =
∏n

i=1 g(γ
tX i)

W
(m)
i {1 − g(γtX i)}1−W

(m)
i is the same as for a logistic regression model,

except that the link function g(·) is totally unknown. So there is first a need to estimate

the link function g(·). The following (unfeasible) leave-one-out kernel estimator of g(γtX i)

based on Nadaraya-Watson weights:

n
∑

j 6=i

K
(

γtXi−γtXj

h

)

∑n
l 6=i K

(

γtXi−γtXl

h

)Bj,

where h is a one-dimensional bandwidth, can not be used in practice as B is latent. Alterna-

tively, B can be replaced by its expectation W (m) obtained in the E-step of the algorithm.

The Nadaraya-Watson estimator becomes

g̃
(m)
−i (γ

tX i) =
n
∑

j 6=i

K
(

γtXi−γtXj

h

)

∑n
l 6=i K

(

γtXi−γtXl

h

)W
(m)
j . (4)

The kernel estimator (4) is substitued in L̃1, and γ is estimated by maximizing the like-

lihood function with numerical techniques such as the Newton-Raphson algorithm. The

resulting estimator of γ is denoted by γ̂(m). Once γ̂(m) is computed, g(γtX i) is estimated
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by the estimator given in (4), but with γ replaced by γ̂(m). The estimator is denoted by

ĝ
(m)
−i {(γ̂(m))tX i}. Note that when d = 1, as γ1 = 1, the estimator (4) reduces to a non-

parametric estimator.

For the latency, the likelihood function given by L̃2 =
∏n

i=1[{λ0(Yi) exp(β
tZi)}∆i exp{−Λ0(Yi)

exp(βtZi)}]W
(m)
i is similar to the likelihood function for the classical Cox PH model except

that the baseline cumulative hazard Λ0(t) =
∫ t
0 λ0(u) du and λ0(t) are conditional on B = 1.

Sy and Taylor (2000) propose a profile likelihood approach to estimate β based on the

work of Breslow (1974). In a first step, the value of β is fixed and Λ0(t) is estimated non-

parametrically by

∑

j:Y(j)6t

Dj
∑

k∈Rj
W

(m)
k exp(βtZk)

, (5)

where Y(1) < . . . < Y(r) are the ordered uncensored event times with r the number of distinct

event times, Dj is the number of events at time Y(j), and Rj is the set of observations at risk

just before Y(j). In a second step, (5) is plugged in L̃2, obtaining the partial likelihood

L̆2 =
n
∏

i=1







exp(βtZi)
∑

k∈Ri
W

(m)
k exp(βtZk)







∆i

. (6)

The maximum likelihood estimator of β is obtained by maximizing (6), and is denoted by

β̂
(m)

. Λ̂
(m)
0 (t) denotes the estimator of Λ0(t) given in (5) but with β replaced by β̂

(m)
. The

EM algorithm iterates until the difference between two consecutive values of the estimates

of β, γ, and S0(·) is smaller than a certain value a priori defined. The final estimators are

denoted by γ̂, ĝ(·), β̂ and Λ̂0(·).

When the latency is modeled non- or semi-parametrically, little information is available

to distinguish cured from uncured individuals among censored subjects. The tail of the

conditional survival function Ŝu(t|z) may be hard to estimate and we often observe that

Ŝu(t|z) > 0 when t > Y(r), implying identifiability issues. To solve this problem, Taylor

(1995) proposes to consider Y(r) as a cure threshold τ , and to force Ŝu(t|z) to be equal to

zero beyond Y(r) by setting, in the M-step of the EM algorithm, W
(m)
i equal to 0 when an
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observation i is such that ∆i = 0 and Yi > Y(r). This proposal is equivalent to considering

that such an observation i is cured. To understand the intuition behind this proposal, we

have to recall some elements introduced previously. When cured observations are present in

survival data, limt→∞ S(t|x, z) > 0. In practice, this assumption translates into a Kaplan-

Meier estimator of the survival function with a large plateau, and leveling-off to a value

greater than 0 for t > Y(r). It corresponds to a situation where a certain number of censored

individuals have a follow-up time greater than Y(r). If the follow-up is sufficiently long and if

the number of observations in the plateau is sufficiently large, it reasonably makes sense to

consider these censored individuals as cured, as Taylor (1995) proposes. Under the assumed

Cox PH model for the latency, this constraint is also applied to the SIC cure model.

3. Numerical Study

The objective of this numerical study is to compare the fit of the SIC cure model with the

fit of the classical logistic/Cox (LC) cure model in various settings. The two models differ

in their incidence (a single-index versus a logistic structure), while they both assume a Cox

PH model in the latency. The impact of a single-index structure on both the estimates of

p(x) and Su(t|z) are investigated as well as the impact of different censoring rates.

Data for the incidence is generated according to three scenarios, each of them corre-

sponding to a different link function. The first scenario assumes a logistic link function

of the form g(u) = exp(γ0 + u)/{1 + exp(γ0 + u)}, where γ0 is an intercept term. The

second scenario is an adaptation of a model coming from Müller and Schmitt (1988), namely

g(u) = exp[0.75 Φ{(γ0 + u) + 0.5}+0.25 Φ{0.5(γ0 + u)3}]/(1+ exp[0.75 Φ{(γ0 + u) + 0.5}+

0.25 Φ{0.5(γ0 + u)3}]), with Φ(·) the standard normal cumulative distribution, leading to a

non-logistic but monotone link function. The third scenario assumes a non-monotone link

function of the form g(u) = exp[0.4{(γ0+u)3−(γ0+u)2−0.9(γ0+u)+1}]/(1+ exp[0.4{(γ0+

u)3 − (γ0 + u)2 − 0.9(γ0 + u) + 1}]). Figure 1 shows the three link functions. Note that the
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last two link functions were chosen sufficiently different from a logistic link function in order

to assess the performance of a single-index and a logistic model in such situations. Note also

that we included a logistic transformation in the two last link functions in order to restrict

the probability to the interval [0, 1].

[Figure 1 about here.]

For all scenarios, we consider four independent covariates: X1 and X2 have a standard

normal distribution, and X3 and X4 have a Bernoulli distribution with parameters 0.3 and

0.6 respectively. The parameters γ0, . . . , γ4 are chosen so that a sufficient cure proportion is

obtained and so that the identification condition (A4) is fulfilled. Table 1 summarizes the

parameter values and the cure proportions. Note that the intercept γ0 is only estimated under

the logistic model. Under the single-index model it is incorporated into the link function g.

For the latency, we consider one binary covariate Z that is independent ofX = (X1, X2, X3,

X4)
t and that has a Bernoulli distribution with parameter 0.6. The survival times for

the uncured observations are generated according to a Weibull PH model, i.e. Su(t|z) =

exp(−λtρ)exp(βz) for given choices of λ, ρ and β. For the three scenarios, the scale parameter

λ equals 1.5, the shape parameter ρ equals 1.2, and β = 1.5. The censoring time C is

independent of the vector (X, Z, T ), and is generated from an exponential distribution with

density function f(t) = λc exp(−λct). Three different values for the rate λc, denoted by level

1, level 2 and level 3, are considered so that the difference between the censoring rate and

the cure rate increases. An increment of 5% between each level has been considered. The

values for each scenario are given in Table 1.

[Table 1 about here.]

For both the survival and the censoring times, the parameter values were chosen in such

a way that a certain number of the censored observations have a follow-up time larger than

Y(r), and such that these observations are cured. In such a way we mimic the type of real
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survival data on which cure models are typically used. Additionally by increasing λc our goal

is to assess the impact of larger censoring rates on the model estimates. Note that when the

censoring rate increases, the proportion of observations with a follow-up time larger than

Y(r) tends to decrease. As a consequence, very large censoring rates are not considered in

order to still have a non-negligible number of observations in the plateau. Table 1 gives the

censoring rates and the percentage of observations in the plateau for the different values of

λc.

For each setting, we consider samples of size n = 250 and 500. This leads to a total of

18 settings (3 model scenarios, 3 censoring rates and 2 sample sizes). For each setting we

generate 500 datasets. For each dataset, we fit a LC cure model and a SIC cure model. For the

single-index model, we use an Epanechnikov kernel,K(u) = 3(1−u2/5)/(4
√
5)I(u2 6 5). The

bandwidth is selected according to a likelihood cross-validation procedure at the beginning

of the M-step, prior to the incidence estimation. It is computed at each iteration of the

algorithm. The cross-validation criterion is given by minus the logarithm of L̃1 evaluated

at γ̂(m−1), i.e. CV (m)(h) = −∑n
i=1 W

(m)
i log ĝ

(m−1)
h,−i {(γ̂(m−1))tXi} − ∑n

i=1(1 − W
(m)
i ) log[1 −

ĝ
(m−1)
h,−i {(γ̂(m−1))tXi}], where ĝ

(m−1)
h,−i (·) is the leave-one-out estimator (4) with γ replaced by

γ̂(m−1) and based on a bandwidth h. The selected bandwidth is the minimizer on the interval

[0.4,1] of the cross-validation criterion. It is given by h
(m)
CV = argminh CV (m)(h). The interval

[0.4,1] is chosen based on visual inspection of what are reasonable bandwidths in this setting.

The bandwidth obtained at the last iteration of the algorithm is the final bandwidth.

In order to make both models identifiable, the conditional survival function is forced to

be equal to 0 beyond Y(r) as proposed by Taylor (1995). For the SIC cure model, we apply

the identification conditions mentioned previously. For condition (A1)-(v), we set γ̂1 = 1 or

γ̂1 = −1, depending on the sign of γ̂1 for the LC cure model. These identification conditions

will be assumed for the remaining of the article. For the two models, the initial values of
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the EM algorithm are the parameters coming from a logistic regression model taking the

censoring indicator as response variable for the incidence and coming from a Cox PH model

fitted on the uncensored observations only for the latency. We consider that the algorithm

converges when the difference between two consecutive values of the parameters is smaller

than 10−5.

In order to evaluate the performance of the SIC cure model for the incidence, we compute

the Average Squared Error (ASE) of p̂(x) for each model, ASE(p̂) = M−1 ∑M
j=1

{

ĝ(γ̂txj)−

g(γtxj)
}2
. The ASE is computed on a grid (xj)j = ({xj1, xj2, xj3, xj4})j, j = 1, ...,M , of

values of the vector (X1, X2, X3, X4). For X1 and X2 we take grid points on [−1.5, 1.5] with

step size 0.01, while X3 and X4 take values in {0, 1}. For the latency, we compute the bias,

the variance and the mean squared error (MSE) of β̂ for each model.

Table 2 shows the bias, variance, and MSE of β̂ for the two models. As can be seen from the

table, the bias of β̂ is small for the two models, and we observe very small differences between

them. These small differences however tend to increase when λc increases. This situation oc-

curs because when λc increases, the censoring rate increases, and the number of observations

in the plateau becomes substantially smaller than the number of cured observations. In such

a situation, the number of censored observations such that Y 6 Y(r) gets larger. The weight

W
(m)
i for these observations will be equal to {p(m−1)(X i)S

(m−1)
u (Yi|Zi)}/{1 − p(m−1)(X i) +

p(m−1)(X i)S
(m−1)
u (Yi|Zi)}, that is, it will rely more on p̂(x) than when an observation is

uncensored (W
(m)
i = 1) or when an observation is censored after Y(r) (W

(m)
i = 0). Depending

on the estimate for p(x), these observations censored before Y(r) will have a different con-

tribution to the likelihood function for the latency. Larger differences in the estimation of β

are observed between the two models. Despite this effect, the bias is still small for the two

models and it seems that choosing between a logistic regression and a single-index model

does not have a large impact on the latency parameter estimate when the latency modeling
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is the same. Furthermore, the variance and MSE of β̂ are very similar for the two models.

Nevertheless, when λc increases, β̂ becomes more variable, and the MSE increases for the

same reason as above.

[Table 2 about here.]

For the incidence, Figure 2 shows the boxplots of the ASE of p̂(x) for both models. As

can be expected, the LC cure model performs better than the SIC cure model when the true

model is a logistic regression, regardless of the sample size (see the boxplots in Figure 2,

scenario 1). For scenarios 2 and 3 on the contrary, when the true link function is different

from a logistic one, the SIC cure model performs better for all censoring rates and sample

sizes considered. As is the case for the latency, the censoring rate has an impact on the

quality and the precision of the estimates of p(x), with the ASE taking on higher values

and being more variable when λc increases. The explanation is the same as above. When the

censoring rate gets much larger than the cure proportion, more observations have a weight

W
(m)
i taking values between 0 and 1. Because W

(m)
i is involved in the likelihood function for

estimating p(x), the uncertainty in the estimation of p(x) increases, and larger and more

variable values of ASE are observed. On the contrary, as can be expected, when the sample

size increases, a decrease in the value of the ASE is observed, meaning a better fit to the

data.

[Figure 2 about here.]

Estimating a SIC cure model is computationally more demanding. However, although a

difference by a factor of around 85 has been observed in our simulations, the required time

remains reasonable, going from 0.10 seconds for the LC cure model to 8.4 seconds for the

SIC cure model when n=250, and from 0.18 seconds to 15 seconds when n=500 (2.7 GH

processor and 16 Go of memory computer). With a more complex model, for e.g. with a

higher dimension of X or a more complex link function, the computation time increases
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for both models, mainly because the EM algorithm gets slower. In term of EM algorithm

convergence, between 99.2 % and 100% of the datasets converge when estimating a SIC cure

model.

4. Real Data Application

Our application concerns a breast cancer study which consists of 286 patients that expe-

rienced a lymph-node-negative breast cancer between 1980 to 1995 (Wang et al., 2005).

The event of interest is distant metastasis, and the associated survival time is the time to

distant metastasis (DM). Among the 286 patients, 107 experienced a distant recurrence from

breast cancer. As can be seen from Web Figure 1, the Kaplan-Meier estimator of the survival

function shows a large plateau at about 60%, and 88% of the censored observations are in

the plateau. A cure model seems therefore appropriate for these data. Four covariates are

considered : age of the patient (ranges from 26 to 83 with a median of 52 years), estrogen

receptor (ER) status (0 = ER−: less than 10 fmol per mg protein - 77 patients, 1 = ER+:

10 fmol per mg protein or more - 209 patients), size of the tumor (ranges from 1 to 4

with a median of 1), and menopausal status (0 = pre-menopausal - 129 patients, 1 = post-

menopausal - 157 patients) which has been obtained by dichotomizing age (pre-menopausal:

age 6 50 - post-menopausal: age > 50). The original data are split in a training and a test

set following the 2/3 - 1/3 recommendations of Hastie et al. (2009). For our application, it

corresponds to 190 and 96 observations, respectively. The training set is used to estimate

and to interpret the model. The test set is used to compute the prediction error of the

incidence, given by PE = −∑96
j=1 log[p̂(x

test
j )ŵj{1− p̂(xtest

j )}1−ŵj ], where p̂(xtest
j ) and ŵj are

the predicted uncure probability and the predicted weight for the jth observation in the test

set, respectively, computed based on the parameter estimates (and the link function for the

single-index) obtained from the training set. On the training set, a LC and a SIC cure model

including the four covariates in both parts of the two models are fitted. For interpretation
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convenience, a standardized version of all covariates, continuous and discrete, is considered

in the incidence. For the single-index model, we proceed as in Section 3 for model fitting,

bandwidth selection, and model identification, and the parameters are further normalized so

that ‖γ̂SI‖ = 1, with γ̂SI the vector of parameter estimates under the single-index model,

in order to ease the interpretation. The standard errors of the parameter estimates for both

models have been computed using a bootstrap approach, based on 250 bootstrap samples.

Table 3 gives the results jointly with p-values for the Wald test of the parameters. For

both models, the effects for the four covariates on the latency have the same direction, and

the estimates are very close. Moreover, only the ER status affects significantly the survival

of uncured patients. A positive ER status implies a longer time to DM.

[Table 3 about here.]

For the incidence, we first compute the prediction error for both models to compare their

fits. The prediction error for the SIC cure model equals to 67.71, while it is equal to 71.57

for the LC cure model, meaning that the SIC cure model performs better than the LC cure

model in predicting the uncure status. To understand why the single-index model performs

better, we compare the estimates of the two models. Beside different parameter estimates,

the link functions, given in Figure 3 (a)-(b), are also different, the single-index link function

showing a non-monotone trend which is quite different from the logistic one. Nevertheless,

as already pointed out by Li and Duan (1989) in a broader context, even if two models are

estimated with different link functions, the relative importance of the parameter estimates is

similar, permitting to evaluate which variable impacts the most the outcome. Here, age and

menopausal status are the most influential covariates on the uncure probability because of

their larger estimates in comparison with the other covariates. However, to interpret covariate

effects on p(x), the link function and the parameters have to be considered jointly as the

sign of the effect depends on the shape of the link function. If the link function is monotone
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increasing (resp. decreasing), the sign of the effect will be the same as (resp. the opposite)

the sign of the estimate.

[Figure 3 about here.]

For this dataset, the parameter estimates show, at a 10% level, that age and menopausal

status have a significant effect on the uncure probability for the single-index model, whereas

none of them are significant for the logistic model. As the link function is not monotone,

we can not interpret the parameter estimates directly. But we can instead plot the uncure

probability against covariates to better understand their effects. Figure 3 (c)-(d) shows the

effect of age on p(x) for the two models. For both of them, two different groups appear,

corresponding to pre-menopausal and post-menopausal women. Contrary to the logistic

model where the relationship seems to be almost equivalent and linear in the two groups, it

seems that the trend for pre-menopausal in the single-index model is flat between roughly

35 and 50, and much higher in the 25-35 range, while for post-menopausal it is roughly flat

from 50 to 70, then much lower for ages greater than 70.

5. Conclusion

We proposed a new semi-parametric modeling approach for the mixture cure model by

considering a single-index structure for the uncure probability. We proved the identifiability

of the proposed model, parameter estimators are obtained via maximum likelihood using

the EM algorithm, and for the unknown link function of the single-index a Nadaraya-

Watson estimator is proposed with a likelihood cross-validation method for the bandwidth

parameter. Based on a numerical study, we showed the good performance of the method

for the estimation of the uncure probability, and its ability to outperform the logistic model

when the true link function is not the logistic one. The application of the method to a breast

cancer dataset illustrates its practical use and the usefulness of a single-index model. The
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analysis uncovered a non-monotone link function, and both the parameter estimates and

the graphical representation indicate a more complex effect of age not observed with the

logistic model. To further investigate age effect on p(x), an alternative modeling would be

to consider splines in the incidence as age seems to have a non-linear effect. Li and Taylor

(2002) propose such modeling by considering a generalized additive model for the incidence

with cubic B-splines.

A single-index model is a flexible alternative to the logistic regression, and the SIC cure

model may be considered as a diagnostic tool to investigate misspecification of the incidence

of the mixture cure model. A possible extension of our work will be to develop a test for

the parametric form of p(·). Müller and Van Keilegom (2018) propose such a test based on

the non-parametric estimator of the cure rate proposed by Xu and Peng (2014) for the case

where X is one-dimensional. By avoiding curse of dimensionality problems, our estimator

ĝ(γ̂tX) may constitute a natural extension of their work when X is multi-dimensional.

Furthermore, with its flexibility, our proposal also permits to model a wide range of link

functions, monotone or not. However in certain contexts it is natural to assume that the

link function is monotone. A possible adaptation of this work would be to restrict the link

function to the monotone case.
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Figure 1. Link functions considered for the incidence in the data generation process when
γ0 = 0.
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Table 1

The parameter values for the incidence, the cure proportions, the censoring rates, and the proportion of observations
in the plateau for each scenario.

incidence parameters censoring scheme
scen. γ0 γ1 γ2 γ3 γ4 rate level λc rate plateau

1 1.4 -1.5 0.5 2.3 -1.3 18.6% level 1 0.05 20.1% 16.3%
18.6% level 2 0.25 25.7% 10.3%
18.6% level 3 0.5 31.4% 6.7%

2 -0.3 1.5 -0.9 2 -1 34.4% level 1 0.05 35.6% 30.3%
34.4% level 2 0.25 40.1% 19.5%
34.4% level 3 0.55 45.6% 12.0%

3 1 1.3 -2 -2 1 37.9% level 1 0.1 40.2% 29.7%
37.9% level 2 0.35 45.2% 18.2%
37.9% level 3 0.7 50.7% 11.2%
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Table 3

Parameter estimates and standard errors for the SIC cure model and for the LC cure model.

SIC cure model LC cure model

Incidence Estimate Std.Error p-value Estimate Std.Error p-value

(intercept) - - - -0.5707 0.1514 0.0002
age -0.8111 0.2394 0.0007 -0.3668 0.2593 0.1573

ER status [ER+ vs. ER-] 0.1758 0.2923 0.5475 0.1422 0.1805 0.4308
size of the tumour -0.0003 0.3496 0.9992 -0.0058 0.1563 0.9705

menopausal [post vs. pre] 0.5577 0.3293 0.0894 0.3413 0.2678 0.2026
bandwidth 0.3245 - - - - -

Latency Estimate Std.Error p-value Estimate Std.Error p-value

age -0.0113 0.0212 0.5953 -0.0107 0.0211 0.6122
ER status [ER+ vs. ER-] -1.3639 0.3855 0.0004 -1.3640 0.3886 0.0004

size of the tumour 0.4527 0.2977 0.1284 0.4524 0.3027 0.1351
menopausal [post vs. pre] -0.2519 0.6178 0.6835 -0.2644 0.6166 0.6682




